FXR对SR-BI表达的影响及其机制的初步探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:动脉粥样硬化(atherosclerosis,AS)是严重威胁人类健康的心血管疾病。血浆胆固醇水平与动脉粥样硬化斑块的形成密切相关。B类清道夫受体I(scavenger receptor class B type I,SR-BI)是高密度脂蛋白胆固醇(high density lipoprotein-cholesterol,HDL-C)的高亲和力受体,主要介导血浆胆固醇逆向转运回肝脏,从而有利于防止AS的发生和发展。法尼酯X受体(farnesoid X receptor,FXR)是核受体超家族成员,通过调节诸多靶基因而在调控胆固醇、脂类和葡萄糖的代谢过程中发挥着极其重要的作用,FXR功能丧失与AS密切相关。然而,关于FXR功能丧失到底是促进还是抑制AS的发展,目前尚难以定论。由于FXR和SR-BI均高表达于肝脏,且二者均与AS密切相关,那么SR-BI是否是FXR的一个新靶基因,其表达是否可受到FXR的调节?弄清该问题,将为进一步阐明二者在AS发生发展中的作用及为寻找防治AS的新靶点提供新的科学依据。
     研究目的:探讨FXR对SR-BI表达的影响及可能机制。
     研究方法:选取人内皮细胞Eahy926、胎肝细胞L02和肝癌细胞HepG2为细胞模型。经FXR激动剂GW4064、androsterone和CDCA分别处理24h后,RT-PCR和Real-time PCR法检测SR-BI mRNA表达的变化;western blot法检测SR-BI蛋白表达的差异。在线预测SR-BI基因5'侧翼启动子区域(-1200~-59bp)可能存在的FXR结合位点;荧光素酶报告基因检测FXR对SR-BI启动子的调控;采用电泳迁移率变动实验,观察FXR对SR-BI启动子区域的直接结合作用。利用RT-PCR和Real-time PCR法检测PPARγ的表达;经PPARγ拮抗剂GW9662和FXR激动剂GW4064先后作用,采用RT-PCR、Real-time PCR和western blot法检测SR-BI表达的变化;并进一步用荧光素酶报告基因检测GW9662对SR-BI启动子的调控。经PPARγ激动剂troglitazone处理HepG2细胞,RT-PCR、Real-time PCR和western blot法检测SR-BI mRNA和蛋白表达的变化。在体动物喂食含CDCA的食物,RT-PCR、Real-time PCR和western blot法检测其SR-BI表达的变化。
     研究结果:(1)在FXR激动剂处理的细胞系中,发现FXR呈配体剂量依赖性的上调SR-BI mRNA和蛋白表达;(2)在HepG2细胞中,FXR可上调SR-BI启动子的活性,并可直接结合于SR-BI启动子区域(-1200/-59bp)DR8元件,上调SR-BI的表达;(3)在FXR激动剂处理的细胞系中,发现FXR可在转录水平上调PPARγ的表达,PPARγ拮抗剂可抑制FXR激动剂对SR-BI的诱导表达作用;(4)在HepG2细胞中,PPARγ激动剂可上调SR-BI mRNA和蛋白表达;(5)小鼠喂食含CDCA的食物,FXR可上调SR-BI的表达。
     结论:(1)体外研究显示,FXR可通过结合于SR-BI启动子区的DR8位点直接上调SR-BI的表达;(2)FXR也可经上调PPARγ而间接诱导SR-BI的表达;(3)在体动物实验显示,FXR可在小鼠体内上调SR-BI的表达。以上有关研究,为深入认识FXR和SR-BI在胆固醇代谢以及AS等相关疾病中的作用具有重要意义,二者有可能成为防治AS等相关疾病的新靶点。
Background: Plasma concentrations of high-density lipoprotein (HDL) cholesterol are well known to be inversely related to the incidence of atherosclerosis and coronary heart disease. Scavenger receptor type B class I as HDL receptor plays an important role in reverse cholesterol transport, protected against AS. The nuclear farnesoid X receptor plays an important role in in glucose metabolism, cholesterol metabolism, TG metabolism. And there is a closely link with the FXR lacking and AS. Whether depletion of FXR induce or inhibit AS, remains controversial. FXR and SR-BI both are highly expressed in liver, then whether FXR could regulate SR-BI to inhibit AS? The study on the effect of FXR on SR-BI will provide useful information with regarding to the physiological and pathological roles FXR and SR-BI play in cholesterol metabolism, and supply a potential drug target.
     Objective: the present study investigated the effect of FXR on SR-BI expression and the mechanism by which FXR enhances the expression of the SR-BI.
     Methods: endothelial cells, hepatocyte and hepatoma cell lines were employed for investigation. Three cell lines were stimulated with the given different concentrations of FXR agonists, respectively. Using RT-PCR, Real-time PCR and western blot detected the SR-BI expression levels. Bioinformatics analysis (http://www.nubiscan.unibas.ch/) indicated that there is a potential FXR binding site (DR8) in the SR-BI promoter region (-1200/-59bp). Luciferase reporter assay detected the SR-BI promoter activity with FXR. And EMSA was performed to detect FXR protein associated with SR-BI. RT-PCR and Real-time PCR was performed to detected PPARγexpression. The combination of GW9662 with GW4064 treat HepG2, RT-PCR, Real-time PCR and western blot were performed to detect the SR-BI expression. Luciferase reporter assay detected the SR-BI promoter activity with GW9662. With RT-PCR, Real-time PCR and western blot, we detected SR-BI expression treatment with PPARγagonist troglitazone. In vivo study, upon treatment of FXR agonsit CDCA, SR-BI mRNA and protein were analysed with RT-PCR, Real-time PCR and Western Blot.
     Results: (1) treatment with FXR agonists, FXR could up-regulate SR-BI expression in concentration-dependent manner;(2) in HepG2, FXR enhanced SR-BI promoter activity, and up-regulate SR-BI expression through FXR binding site(DR8) in SR-BI promoter region;(3) FXR induced PPARγat transcription level, PPARγantagonist GW9662 repressed the SR-BI promoter activity which was stimulated by FXR;(4) in HepG2, PPARγcould up-regulate SR-BI expression;(5) in C57BL/6 mice FXR up-regulated the expression of SR-BI.
     Conclusion: (1) we identified SR-BI was a target gene of FXR, which could be directly up-regulated by FXR. There is a putative FXR binding site (DR8) within the SR-BI promoter region;(2) we also investigated the indirect mechanism that FXR mediates SR-BI through PPARγ;(3) in vivo study, we demonstrated that FXR could up-regulate SR-BI in mice.The study on the effect of FXR on SR-BI will provide useful information with regarding to the physiological and pathological roles FXR plays in cholesterol metabolism, and suggests a new therapy.
引文
1. Forman BM,Goode E,Chen J,et a1.Identification of a nuclear receptor that is activated by farnesol metabolites.Cell, 1995, 81:687–693.
    2. Makishima M,Okamoto AY,Repa J J,et al.Identification of a nuclear receptor for bile acids.Science,1999,284:1362–1365.
    3. Philippe Lefebvre, Bertrand Cariou,et al.Role of Bile Acids and Bile Acid Receptors in Metabolic Regulation.Physiol Rev,2009,89:147–191.
    4. Jyrki J. Eloranta and Gerd A. Kullak-Ublick. The Role of FXR in Disorders of Bile Acid Homeostasis.Physiology, 2008,23: 286-295.
    5. Seol W,Choi HS,Moore DD.Isolation of proteins that interact specifically with the retinoid X receptor:two novel orphan receptors.Mol Endocrinol,1995,9:72–85.
    6. Bishop-Bailey D, Walsh DT, Warner TD. Expression and activation of the farnesoid X receptor in the vasculature. Proc Natl Acad Sci U S A.2004,101:3668–3673.
    7. He F, Li J, Mu Y, Kuruba R, Ma Z, Wilson A et al. Downregulation of endothelin-1 by farnesoid X receptor in vascular endothelial cells. Circ Res 2006,98:192–199.
    8. Chen W,Owsley E,Yang Y,et al.Nuclear receptor-mediated repression of human cholesterol 7-hydroxylase gene transcription by bile acids.J Lipid Res,2001,42: 1402–1412.
    9. Ananthanarayanan M,Balasubramanian N,Makishima M.et al.Human bile salt export pump promoter is transactivated by the Farnesoid x receptor/bile acid receptor.J Biol Chem,2001,276:28857-28865.
    10. Neimark E,Chen F,Li X,et al.Bile acid-induced negative feedback regulation of the human ileal bile acid transporter.Hepatology,2004,40:149-56.
    11. Denson LA,Sturm E,Echevarria W,et al.The orphan nuclear receptor, SHP, mediates bile acid-induced inhibition of the rat bile acid transporter,NTCP.Gastroenterology, 2001,121: 140–147.
    12. Ark PA,Kast-Woelbem HR,Anisfeld AM,et a1.Identification of PLTP as an LXR target gene and apoE as an FXR target reveals overlapping targets for the two nuclear receptors.J Lipid Res,2002,43:2037–2041.
    13. Kast HR,Nguyen CM,Sinal CJ,et al.Farnesoid X-activated receptor induces apolipoprotein C-II transcription:A molecular mechanism linking plasma triglyceride levels to bile acids.Mol Endocrinol,2001,15:1720–1728.
    14. Claudel T,Inoue Y,Barbier O,et al.Farnesoid X receptor agonists suppress hepatic apolipoprotein CIII expression.Gastroenterology,2003,125:544–555.
    15. Rizzo G,Disante M,Mencarelli A,et al.The farnesoid X receptor promotes adipocyte differentiation and regulates adipose cell function in vivo.Mol Pharmacol,2006,70: 1164-73.
    16. Lambert G,Amar MJ,Guo G,et al.The farnesoid X-receptor is an essential regulator of cholesterol homeostasis.J Biol Chem,2003,278:2563–2570.
    17. Lefebvre P, Cariou B, Lien F, Kuipers F, Staels B.Role of bile acids and bile acid receptors in metabolic regulation.Physiol Rev. 2009, 89(1):147–91.
    18. I.Issemann, S.Green, Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators, Nature,1990,347:645–650.
    19. M. Gottlicher, E. Widmark, Q. Li, J.A. Gustafsson, Fatty acids activate a chimera of the clofibric acid-activated receptor and the glucocorticoid receptor, Proc. Natl. Acad. Sci. USA,1992,89:4653–4657.
    20. G. Krey, H. Keller, A. Mahfoudi, J. Medin, K. Ozato, C. Dreyer, W. Wahli, Xenopus peroxisome proliferator activated receptors: genomic organization, response element recognition, heterodimer formation with retinoid X receptor and activation by fatty acids, J. Steroid Biochem. Mol. Biol,1993,47:65–73.
    21. F. Chen, S.W. Law, B.W. O Malley, Identification of two mPPAR related receptors and evidence for the existence of five subfamily members, Biochem. Biophys. Res. Commun. 1993,196:671–677.
    22. Zieleniak A,Wójcik M, Wo?niak LA. Structure and physiological functions of the human peroxisome proliferator-activated receptor gamma.Arch Immunol Ther Exp (Warsz) 2008 ,56(5):331–45.
    23. P. Tontonoz, E. Hu, R.A. Graves, A.I. Budavari,B.M. Spiegel-man, mPPARβ: tissue-specific regulator of an adipocyte enhancer, Genes Dev,1994,8:1224–1234.
    24. K.S. Miyata, S.E. McCaw, S.L. Marcus, R.A. Rachubinski, J.P. Capone, The peroxisome proliferator-activated receptor interacts with the retinoid X receptor in vivo, Gene,1994,148:327–330.
    25. Takano H, Komuro I.Peroxisome proliferator-activated receptor gamma and cardiovascular diseases.Circ J. 2009,73(2):214–20.
    26. Hou M,Xia M,Zhu H,et al.Lysophosphatidylcholine promotes cholesterol efflux from mouse macrophage foam cells via PPARgamma-LXRalpha-ABCA1-dependent pathway associated with apoE.Cell Biochem Funct,2007,25:33–44.
    27. Chinetti-Gbaguidi G,Rigamonti E,Helin L,et al.Peroxisome proliferator-activated receptor alpha controls cellular cholesterol trafficking in macrophages.J Lipid Res,2005,46: 2717–2725.
    28. Cabrero A,Cubero M,Llaverias G,et al.Leptin down-regulates peroxisome proliferator- activated receptor gamma(PPAR-gamma)mRNA levels in primary human monocyte- derived macrophages.Mol Cell Biochem,2005,275:173-179.
    29. Kozarsky, K.F., Donahee, et al. Gene transfer and hepatic over expression of the HDL receptor SR-BI reduces atherosclerosis in the cholesterol-fed LDL receptor-deficient mouse . Arterioscler.Thromb.Vasc. Biol, 2000, 20:721–727.
    30. Claudel,T.et al. Bile acid-activated nuclear receptor FXR suppresses apolipoprotein A-I transcription via a negative FXR response element. J. Clin. Invest, 2002,109:961–971.
    31. Huber RM,Murphy K,Miao B et al.Generation of multiple farnesoid-X-receptor isoforms through the use of alternative promoters.Gene,2002,290:35–43.
    32. Goodwin, B. et al. A regulatory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 represses bile acid biosynthesis. Mol. Cell, 2000,6:517–526.
    33. Lu, T.T. et al. Molecular basis for feedback regulation of bile acid synthesis by nuclear receptors. Mol. Cell,200,6:507–515.
    34. Lene Malerod, LeneK. Juvet, Audun Hanssen-Bauer, et al. Oxysterol-activated LXRα/ RXR induces hSR-BI-promoter activity in hepatoma cells and preadipocytes. Biochemical and Biophysical Research Communications ,2002,299:916–923.
    35. Dayami Lopez a, Mark P. McLean. Activation of the rat scavenger receptor class B type I gene by PPARα. Molecular and Cellular Endocrinology, 2006, 251:67–77.
    36. Rania Abdel Muneem Ahmed, Koji Murao , Hitomi Imachi , Xiao Yu , Junhun Li ,Norman C. W. Wong , Toshihiko Ishida. Human scavenger receptor class b type 1 is regulated by activators of peroxisome proliferators-activated receptor-c in hepatocytesEndocrine,2009, 35(2):233–42.
    37. Anisfeld AM, Kast-Woelbern HR, Meyer ME, Jones SA, Zhang Y, Williams KJ, Willson T, Edwards PA.. Syndecan-1 expression is regulated in an isoform-specific manner by the farnesoid-X receptor.J Biol Chem,2003,278(22):20420–8.
    38. Kast, H. R., Nguyen, C. M., Sinal, C. J., Jones, S. A., Laffitte, B. A., Reue, K.,Gonzalez, F. J., Willson, T. M., and Edwards, P. A. Farnesoid X-activated receptor induces apolipoprotein C-II transcription: a molecular mechanism linking plasma triglyceride levels to bile acids.Mol. Endocrinol,2001,15:1720–1728.
    39. Stefano Fiorucci, Giovanni Rizzo, Elisabetta Antonelli, Barbara Renga, Andrea Mencarelli, Luisa Riccardi, Antonio Morelli, Mark Pruzanski, and Roberto Pellicciari. Cross-Talk between Farnesoid-X-Receptor (FXR) and Peroxisome Proliferator-Activated ReceptorγContributes to the Antifibrotic Activity of FXR Ligands in Rodent Models of Liver Cirrhosis. JPET ,2005,315:58–68.
    40. Jazurek M, DobrzyńP, DobrzyńA.Regulation of gene expression by long-chain fatty acids.Postepy Biochem,2008,54(3):242–50.
    41. Hong C, Tontonoz P.Coordination of inflammation and metabolism by PPAR and LXR nuclear receptors.Curr Opin Genet Dev,2008,18(5):461–7.
    42. Diana Jung, David J. Mangelsdorf, and Urs A. Meyer. Pregnane X Receptor Is a Target of Farnesoid X Receptor. J. Biol. Chem,2006, 281(28):19081–19091.
    43. Kim BH, Won YS, Kim DY, Kim B, Kim EY, Yoon M, Oh GT.Signal crosstalk between estrogen and peroxisome proliferator-activated receptor alpha on adiposity.BMB Rep, 2009,28;42(2):91-5.
    44. Van der Hoorn JW, Jukema JW, Havekes LM, Lundholm E, Camejo G, Rensen PC, Princen HM.The dual PPARalpha/gamma agonist tesaglitazar blocks progression of pre-existing atherosclerosis in APOE *3Leiden.CETP transgenic mice.Br J Pharmacol, 2009, 156(7): 1067-75.
    45. Do HQ, Nazih H, Luc G, Arveiler D, Ferrières J, Evans A, Amouyel P, Cambien F, Ducimetière P, Bard JM.Influence of cholesteryl ester transfer protein, peroxisome proliferator-activated receptor alpha, apolipoprotein E, and apolipoprotein A-I polymorphisms on high-density lipoprotein cholesterol, apolipoprotein A-I, lipoprotein A-I, and lipoprotein A-I:A-II concentrations: the Prospective Epidemiological Study ofMyocardial Infarction study.Metabolism,2009,58(3):283-9.
    46. Moschetta, A. et al. Prevention of cholesterol gallstonedisease by FXR agonists in a mouse model. Nat. Med,2004,10:1352–1358.
    1. Murao K, Terpstra V, Green SR, Kondratenko N, Steinberg D, Quehenberger O.Characterization of CLA-1, a human homologue of rodent scavenger receptor BI, as a receptor for high density lipoprotein and apoptotic thymocytes. J Biol Chem.1997,272:17551–17557.
    2. Imachi H, Murao K, Cao WM, Tada S, Taminato T, Wong NC, Takahara J, Ishida T. Expression of human scavenger receptor B1 on and in human platelets. Arterioscler Thromb Vasc Biol. 2003, 23:898–904.
    3. Webb NR, Connell PM, Graf GA, Smart EJ, de Villiers WJ, de Beer FC, van der Westhuyzen DR.SR-BII, an isoform of the scavenger receptor BI containing an alternate cytoplasmic tail, mediates lipid transfer between high density lipoprotein and cells. J Biol Chem.1998, 273:15241–8.
    4. Acton S, Rigotti A, Landschulz KT, et al. Identification of scavenger receptor SR-BI as a high density lipoprotein receptor. Science.1996, 271:518–520.
    5. Glass C, Pittman RC, Weinstein DB, Steinberg D. Dissociation of tissue uptake of cholesterol ester from that of apoprotein A-I of rat plasma high density lipoprotein: Selective delivery of cholesterol ester to liver, adrenal, and gonad. Proc Natl Acad. Sci USA.1983, 80:5435–5439.
    6. Reaven E, Chen Y-DI, Spicher M, Azhar S. Morphological evidence that high density lipoproteins are not internalized by steroid-producing cells during in situ organ perfusion. J Clin Inves.1984, 74:1384–1397.
    7. Glass C, Pittman RC, Civen M, Steinberg D. Uptake of high-density lipoprotein-associated apoprotein A-I and cholesterol esters by 16 tissues of the rat in vivo and by adrenal cells and hepatocytes in vitro. J Biol Chem.1985, 260:744–750.
    8. Peng Y, Akmentin W, Connelly MA, et al. Scavenger receptor BI (SR-BI)clustered on microvillar extensions suggests that this plasma membrane domain is a way station for cholesterol trafficking between cells and high-density lipoprotein. Mol Biol Cell.2004, 15:384–396.
    9. Wang N, Arai T, Ji Y, et al. Liver-specific overexpression of scavenger receptor BIdecreases levels of very low density lipoprotein apoB, low density lipoprotein apoB, and high density lipoprotein in transgenic mice. J Biol Chem.1998, 273:32920–32926.
    10. Ueda Y, Royer L, Gong E, et al. Lower plasma levels and accelerated clearance of high density lipoprotein (HDL) and non-HDL cholesterol in scavenger receptor class B type I transgenic mice. J Biol Chem.1999, 274:7165–7171.
    11. Rigotti A, Trigatti BL, Penman M, et al. A targeted mutation in the murine gene encoding the high density lipoprotein (HDL) receptor scavenger receptor class B type I reveals its key role in HDL metabolism. Proc Natl Acad Sci USA.1997, 94:12610–12615.
    12. Varban ML, Rinninger F, Wang N, et al. Targeted mutation reveals a central role of SR-BI in hepatic selective uptake of high density lipoprotein cholesterol. Proc Natl Acad Sci USA.1998, 95:4619–4624.
    13. Ji Y, Wang N, Ramakrishnan R, et al. Hepatic scavenger receptor BI promotes rapid clearance of high density lipoprotein free cholesterol and its transport into bile. J Biol Chem.1999, 274:33398–33402.
    14. Kozarsky KF, Donahee MH, Rigotti A, et al. Overexpression of the HDL receptor SR-BI alters plasma HDL and bile cholesterol levels. Nature.1997, 387:414–417.
    15. Kozarsky,K.F.,Donahee,M.H.,Glick,J.M.,Krieger,M.,and Rader,D.J.Gene transfer and hepatic overexpression of the HDL receptor SR-BI reduces atherosclerosis in the cholesterol-fed LDL receptor deficient mouse. Arterioscler. Thromb. Vasc. Biol.2000, 20:721–727.
    16. Zhang W, Yancey PG, Su YR, Babaev VR, Zhang Y, Fazio S, Linton MF.et al. Inactivation of macrophage scavenger receptor class B type I promotes atherosclerotic lesion development in apolipoprotein E-deficient mice. Circulation.2003, 108:2258–2263.
    17. Mardones, P., Strobel, P., Miranda, S., Leighton, F., Quinones, V., Amigo,L., Rozowski, J., Krieger, M. and Rigotti, A.Alpha-tocopherol metabolism is abnormal in scavenger receptor class B type I (SR-BI)-deficient mice. J. Nutr.2002,132, 443–449.
    18. Chinetti, G., Gbaguidi, F.G., Griglio, S., Mallat, Z., Antonucci, M., Poulain, P., Chapman, J., Fruchart, J.C., Tedgui,A., Najib-Fruchart, J.,Staels, B..CLA-1/SR-BI is expressed in atherosclerotic lesion macrophages and regulated by activators of peroxisome proliferator-activated receptors.Circulation. 2000,101:2411–2417.
    19. Dayami Lopez a, Mark P. McLean. Activation of the rat scavenger receptor class B type Igene by PPARα. Molecular and Cellular Endocrinology. 2006, 251:67–77.
    20. Lene Maler , Marita Sporst, Lene K. Juvet,et al.Hepatic scavenger receptor class B, type I is stimulated by peroxisome proliferator-activated receptorγand hepatocyte nuclear factor 4α. Biochemical and Biophysical Research Communications.2003, 305:557–565.
    21. Cao G, Garcia CK,Wyne KL ,et al. Structure and localization of the human gene encoding SR-BI/ CLA-1. Evidence for transcriptional control by steroidogenic factor 1.J Biol Chem.1997, 272 (52) :33068–33076.
    22. Van der Velde AE, Groen AK1. Shifting gears: liver SR-BI drives reverse cholesterol transport in macrophages. J Clin Invest. 2005, 115 (10) : 2699–2701.
    23. Zhang Y, Da Silva JR, Reilly M , et al. Hepatic expression of scavenger receptor class B type I (SR-BI) is a positive regulator of macrophage reverse cholesterol transport in vivo. J Clin Invest. 2005,115 (10) : 2870–2874.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700