尽早干预对db/db糖尿病小鼠胰岛β细胞保护的研究和肝细胞脂毒性体外干预研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分:尽早干预对db/db糖尿病小鼠胰岛p细胞保护的探讨
     目的:探讨在血糖正常期和糖尿病早期采取不同方式对db/db小鼠进行干预对胰岛p细胞的保护。
     方法:(1)选取血糖正常的雄性db/db小鼠98只,分别在4周龄(血糖正常)和6周龄(糖尿病早期)时进行干预,各分为4个干预组:利拉鲁肽(Liraglutide,LIRA).吡咯列酮(Pioglitazone,PIO)、限制饮食(Calories restriction,CR)和运动(Exercise,EX),另设1个对照组。入组前及干预结束时测定糖化血红蛋白(Glycosylated hemoglobin,HbAlc).每周监测小鼠空腹血糖(Fasting blood glucose,FBG).体重和进食量。小鼠12周龄时结束干预,分别进行腹腔注射糖耐量试验(Intraperitoneal glucose tolerance test,IPGTT)和胰岛素耐量试验(Insulin tolerance test,ITT)评价糖耐量、胰岛素释放反应及胰岛素敏感性。检测血浆甘油三酯(Triglyceride,TG).游离脂肪酸(free fatty acids,FFA).脂联素和胰高血糖素浓度。免疫组织化学方法检测胰岛p细胞质量、增殖(Brdu)和凋亡(TUNEL);检测胰岛PDX-1和IRS-2表达变化。实时荧光定量PCR检测胰腺GRP78.CHOP mRNA.microRNA miR-34a.miR-375表达,普通PCR检测胰腺XBP-1/spliced XBP-1 mRNA表达.Western blot检测胰腺内质网应激标志物GRP78和CHOP蛋白表达。(2)35只8周龄db/db小鼠分为4周:对照组,PIO组,LIRA组,及PIO+LIRA联合治疗组,治疗4周后行IPGTT和ITT试验。测定血浆胰岛素、脂联素、游离脂肪酸和甘油三酯浓度。免疫组织化学方法检测胰岛β细胞质量、增殖(Brdu)和凋亡(TUNEL)水平。
     结果:1.(1)与未处理组相比,干预结束时各组血糖显著降低(HbA1c:对照组7.3±0.3%,4周龄干预组4.9±0.8%,6周龄干预组5.5士O.9%,P<0.001);IPGTTl 20min血糖曲线下面积显著降低(AUCglu:对照组4568±190 mmol/1*min,4周龄干预组2306±727mmol/l*min,6周龄干预组3559士903 mmol/lmin,P<0.001)。不同干预方式之间存在差别(HbA1c:LIRA组4.9±0.5%,PIO组4.3±0.4%,CR组5.4±0.7%,EX组6.1±0.6%, P     2.各治疗组血糖显著降低,PIO+LIRA联合治疗组降糖效果优于单药组(糖化血红蛋白对照组:7.3±0.4%, PIO:4.9±0.6%, LIRA:5.5±0.4%, PIO+LIRA:4.5±0.6%);与对照组相比IPGTT120min血糖曲线下面积降低56%(P<0.001), IPGTT120min胰岛素曲线下面积增加91%(P<0.01);脂联素升高95%(P<0.05);游离脂肪酸降低29%(P<0.05),甘油三酯降低49%(P<0.01),均优于单药组;胰岛组织切片胰岛素阳性面积增加1.7倍(P<0.001),胰岛新生β细胞比例增加2倍(P<0.01),均优于单药组。联合治疗显著改善胰岛a细胞分布,促进胰岛β细胞增殖,恢复正常的胰岛形态。结论:1.尽早干预更有利于对胰岛β细胞及其功能的保护,提示2型糖尿病尽早干预的必要。2.利拉鲁肽直接保护胰岛β细胞及其功能,但只能部分代偿严重的胰岛素抵抗。3.吡格列酮联合利拉鲁肽治疗相比单药更好地改善db/db小鼠糖脂代谢和保护胰岛β细胞功能。
     第二部分:京尼平抑制饱和脂肪酸诱导的HepG2细胞凋亡和内质网应激
     目的:探讨京尼平减轻棕榈酸对HepG2细胞毒性的作用及机制。
     方法:HepG2细胞分为空白组、棕榈酸组、京尼平组和京尼平预处理的棕榈酸组,分别用牛血清白蛋白、棕榈酸(1mmol/1)、京尼平(20μmol/1)或京尼平(20μmol/1)预处理30mmin后棕榈酸(1mmol/1)孵育24h,检测细胞活力(MTT)及乳酸脱氢酶(LDH)释放;孵育16h后流式细胞术和Hoechst染色检测细胞凋亡;孵育6h后实时荧光定量PCR检测、GRP78、CHOP基因表达,PCR结合电泳检测XBP-1裂解。
     结果:和空白组相比,棕榈酸减低HepG2细胞活力、增加LDH释放(P<0.01),增加HepG2细胞凋亡(P<0.05),上调GRP-78和CHOP表达(P<0.05)及XBP-1裂解;和棕榈酸组相比,京尼平增加细胞活力(P<0.05)、减少LDH释放(P<0.05),显著抑制细胞凋亡(P<0.01),降低GRP-78和CHOP基因表达(p<0.01)及XBP-1裂解。
     结论:京尼平具有抗棕榈酸诱导的肝细胞凋亡的作用:可能与抑制内质网应激有关。第三部分:PPAR-γ和PPAR-α激动剂改善HepG2细胞胰岛素抵抗及
     机制研究
     目的:探讨过氧化物酶体增殖激活受体γ(PPAR-γ)或α(PPAR-α)在肝细胞糖代谢和胰岛素抵抗改善中扮演的角色。
     方法:体外培养人肝癌细胞系HepG2细胞并用高浓度棕榈酸处理建立胰岛素抵抗模型,分别给予PPAR-γ激动剂吡格列酮或高选择性PPAR-a激动剂WY 14643处理,酶法测定葡萄糖的消耗量和糖酵解产物乳酸、丙酮酸;实时荧光定量PCR测定PPAR-γ, PPAR-α,及糖酵解相关基因烯醇酶1 (ENO1)、肝型6-磷酸果糖激酶(PFKL)、磷酸甘油酯激酶(PGK1)和丙酮酸激酶M2 (PKM2) mRNA表达的变化。
     结果:吡格列酮增加胰岛素抵抗的HepG2细胞葡萄糖消耗,诱导糖酵解相关基因PFKL、PGK1和PKM2表达显著上调,糖酵解产物乳酸和丙酮酸生成增多。WY14643部分改善HepG2细胞胰岛素抵抗,对糖酵解相关基因表达及糖酵解产物生成没有显著影响。吡格列酮或WY 14643对PPAR-γ或PPAR-amRNA的表达没有影响。
     结论:PPAR-γ激动剂通过促进糖酵解改善HepG2细胞的胰岛素抵抗。
Objectives:To explore the effects of different timings and intervention methods on the preservation of pancreaticβ-cells in db/db mice. To make comparison of effects ofβ-cell preservation between interventions on prediabetes and newly onset diabetes or cross-sectional comparison between different interventions.
     Methods:1. Ninety-eight male,3-week old db/db mice which were confirmed as euglycemia were randomly assigned into two intervention model, early and earlier intervention. The interventions started at age 4 week referred to earlier intervention (treatments starting from age 4 week, T4), whereas interventions started at age 6 week referred to early intervention (treatments starting from age 6 week, T6). The mice fed with normal chow set as control group. Four groups of mice received liraglutide (300μg/kg wt bid), pioglitazone (0.02%PIO in mice chow), calories restriction (70%of food available of control) and exercise treatment respectively. Glycosylated hemoglobin (HbAlc) were determined before and after interventions. Fasting blood glucose (FBG), body weight and 24h food intake were monitored weekly. All interventions ended when the mice were 12-week old and introperitoneai glucose tolerance lest (IPGTT) or insulin tolerance test (ITT) was performed before mice were sacrificed. Plasma TG, FFA, insulin, adiponectin, and glucagon were determined. Tissue slides from paraffin embedded pancreas were stained by HE or antibodies for insulin, glucagon, Brdu (for determiningβ-cell proliferation rate), PDX-1(a factor essential for insulin gene expression) and IRS-2 (a protein involved in insulin signal pathway ofβ-cells). Apoptosis of pancreaticβ-cells were detected by TUNEL assay. Expression of GRP78 and CHOP were quantified by real-time quantitative PCR and western blot for assessing endoplasmic reticulum stress (ERS). Gene expression of XBP-1/spliced XBP-1 was detected by PCR and electrophoresis. Expression of microRNA miR-34a and miR-375 were quantified by real-time quantitative PCR.2. Thirty five 8-week old male db/db mice were randomly assigned into 4 groups:control group, PIO group (0.02%PIO in mice chow), LIRA group (liraglutide 300μg/kg wt), and combined treatment group (liraglutide 300μg/kg wt+0.02%PIO in mice chow). The effects of combined interventions on glucose, lipid metabolism and pancreaticβ-cell preservation were assessed after 4 weeks intervention as described above.
     Results:1.1) HbA1c of mice (12 week of age) treated at 4 week of age were lower than mice treated at 6 week of age (control:7.3±0.3%, T4:4.9±0.8%, T6:5.5±0.9%, P<0.001 vs. control, P<0.001 vs. T6). AUCglu after IPGTT showed similar changes as HbA1c (control:4568±190 mmol/l*mi, T4:2306±727 mmol/l*mi, T6:3559±903 mmol/l*min, P<0.001 vs. control, P<0.001 vs. T6). There were differences among treatments in HbAlc:(LIRA4.9±0.5%, PIO 4.3±0.4%, CR 5.4±0.7%, EX 6.1±0.6%, P<0.001) and in AUCglu (LIRA:2558±639 mmol/l*min, PIO:1662±483 mmol/l*min, CR:3262±613 mmol/l*min; EX:3904±610 mmol/l*min, P<0.001).2) Fasting plasma insulin level were higher in treated groups (control:5.7±2.5ng/ml,T4 11.0±3.0ng/ml, T6: 9.1±4.6ng/ml P<0.01 vs. control, p<0.05 vs. T6). Regarding to various interventions, although fasting insulin levels in all intervention groups were slightly higher than control group, only a significant difference was found in mice with liraglutide intervention (P=0.001). Earlier intervention showed better preservation of glucose-stimulated insulin secretion assessed by AUCins by IPGTT (control:799±186 ng/ml*min, T4:1410±595 ng/ml*min, T6:1216±347 ng/ml*min, P<0.001 vs. control, P<0.05 vs. T6).3) The levels of plasma TG, FFA and glucagon were reduced by different magnitude with various interventions, while no differences were observed between time points that treatments started. Only pioglitazone increased adiponectin levels among interventions (9.5±1.6 vs.15.3±3.9mg/l, P<0.05).4) At 12 week of age, db/db mice without intervention showed hypertrophic islet with fewer and weaker insulin staining cells, and abnormally distributedα-cells. Interventions that started at 4 week of age had a better effect on the preservation of pancreaticβ-cells (Insulin stained area:control 27.0±1.5%, T4 50.8±6.4%, T6 44.5±8.1%, P<0.001). In PIO-treated mice, islets were smaller with well-stainedβ-cells and nearly normal distribution of a-cells; LIRA and CR failed to prevent islet from hypertrophy, but they preservedβ-cell mass and alleviated degranulation; EX only had modestly effects. Apoptosis were reduced with interventions except for EX-treated mice, in which LIRA shown the better effect. Increase of pancreaticβ-cell proliferation was observed in LIRA and CR groups.5) LIRA preserved PDX-1 expression more while PIO increased IRS-2 expression in islets.6) LIRA and PIO inhibited expression of pancreatic ERS markers GRP78 and CHOP.7) LIRA reduced pancreatic expression of miR-375 by 71% and miR-34a by 50%(P<0.05).
     (2) After 4 weeks, HbA1cwere decreased under all treatments (control:7.3±0.4, PIO:4.9±0.6, LIRA:5.5±0.4, combination:4.5±0.6) and combination therapy did better than PIO or LIRA alone. PIO in combination with LIRA improved glucose tolerance (reduction of area under curve of glucose by IPGTT of combination was 56%,P<0.001) and preserved insulin release response to glucose (augment of area under curve of insulin by IPGTT of combination was 91%, P<0.01), both of which were greater than either medicine alone. Combination treatment also reduced circulated FFA by 29%(PIO alone:22%; LIRA:no effect), TG by 49%(PIO alone:35%; LIRA alone:15%), and increased plasma adiponectin by 95%(PIO:80%; LIRA no effect) compared with control, more effectively than PIO or LIRA alone. Islet immunohistochemistry showed that insulin positive area were increased significantly by 1.7 folds of control (PIO:1.3 folds; LIRA:0.9 fold) and isletβ-cell proliferation rate were increased by 2 folds (PIO, no effect; LIRA:1.7 folds) in combination-treated group, which confirmed the greater preservation ofβ-cells by combination treatment of PIO and LIRA than either treatment alone.
     Conclusions:1. Earlier interventions when blood glucose is within normal range manifests greater effect on preservation of isletβ-cells than early interventions of type 2 diabetes.2. Liraglutide has dirrect effect on preservation of isletβ-cells but only partly compensates severe insulin resistance.3. Combined therapy improves glucose and lipid metabolism, preserves islet beta-cell function and stimulates beta-cell proliferation, which are greater than either liraglutide or pioglitazone treatment alone.
     Objectives.-To examine the protective effect of genipin from palmitate-induced cytotoxicity in HepG2 cells and investigate the underlying mechanism.
     Methods:HepG2 cells were treated respectively with bovine serum albumin (BSA), palmitate (lmmol/1), genipin(20μmol/l) or genipin+palmitate for 24h, the cell viability was assayed by Methyl thiazol tetrazolium (MTT) method. Lactate dehydrogenase enzyme (LDH) release was measured to assess cell damage. Flowcytometry (Annexin V-PI) and Hoechst staining were employed for determination of cell apoptosis after 16h-treatment. ERS markers GRP78 and CHOP mRNA expression were quantified by Real time PCR while XBP-1 splicing was showed by PCR and electrophoresis.
     Results:Compared with BSA, palmitate decreased cell viability while increased LDH release (P<0.05). It also significantly induced apoptosis of HepG2 cell (P<0.05). Expression of GRP78 and CHOP mRNA was up-regulated by palmitate (P<0.05), so was XBP-1 splicing. Compared with palmitate, genipin pretreatment increased cell viability (P<0.05), inhibited apoptosis (P<0.01), and reduced LDH release (P<0.01) of HepG2 cell. The expression of GRP78 and CHOP mRNA was decreased by genipin (P<0.01). Electrophoresis of XBP-1 PCR products showed less spliced XBP-1 in genipin pretreated cells than palmitate treated ones.
     Conclusions:The results suggest that genipin protects HepG2 cells from palmitate-induced cell apoptosis and death mediated by ER stress.
     Objectives:This study is aimed at characterizing the role of peroxisome proliferator activated receptors (PPAR) y or a in glucose metabolism and insulin resistance of human hepatoma cells.
     Methods:The model of insulin resistance was established with HepG2 cells cultured at high concentrations of palmitate. Insulin resistant HepG2 cells were treated with the PPAR-y agonist pioglitazone or the PPAR-a agonist WY14643. Quantification of glucose consumption and glycolysis products pyruvate and lactate were performed. Quantitative RT-PCR was employed to analyze mRNA expression of PPAR-γ/a and glycolysis related genes.
     Results:Palmitate treatment decreased glucose consumption of HepG2 cells. Pioglitazone increased glucose consumption of both normal and insulin resistant HepG2 cells. It induced an up-regulation of glycolysis gene expression and strongly increased glycolysis leading to an elevated pyruvate and lactate production. WY14643 slightly increased glucose consumption of insulin resistant HepG2 cells, but had no effects on glycolysis gene expression.
     Conclusions:Altogether these results show that PPAR-y or PPAR-a can enhance glucose metabolism in HepG2 cells through different mechanisms.
引文
[1]Lee CM, Huxley RR, Lam TH, et al. Prevalence of diabetes mellitus and population attributable fractions for coronary heart disease and stroke mortality in the WHO South-East Asia and Western Pacific regions. Asia Pac J Clin Nutr. 2007.16(1):187-92.
    [2]Yang W, Lu J, Weng J, et al. Prevalence of diabetes among men and women in China. N Engl J Med.2010.362(12):1090-101.
    [3]Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet.1998. 352(9131):837-53.
    [4]Holman RR. Assessing the potential for alpha-glucosidase inhibitors in prediabetic states. Diabetes Res Clin Pract.1998.40 Suppl:S21-5.
    [5]Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes. 2003.52(1):102-10.
    [6]Hosokawa T, Ando K, Tamura G An ascochlorin derivative, AS-6, reduces insulin resistance in the genetically obese diabetic mouse, db/db. Diabetes.1985. 34(3):267-74.
    [7]Shafrir E, Ziv E, Mosthaf L. Nutritionally induced insulin resistance and receptor defect leading to beta-cell failure in animal models. Ann N Y Acad Sci.1999. 892:223-46.
    [8]Bonner-Weir S. Life and death of the pancreatic beta cells. Trends Endocrinol Metab.2000.11 (9):375-8.
    [9]Pratley RE, Weyer C. The role of impaired early insulin secretion in the pathogenesis of Type II diabetes mellitus. Diabetologia.2001.44(8):929-45.
    [10]Wajchenberg BL. beta-cell failure in diabetes and preservation by clinical treatment. Endocr Rev.2007.28(2):187-218.
    [11]Del PS, Tiengo A. The importance of first-phase insulin secretion:implications for the therapy of type 2 diabetes mellitus. Diabetes Metab Res Rev.2001.17 (3): 164-74.
    [12]Doyle ME, Egan JM. Mechanisms of action of glucagon-like peptide 1 in the pancreas. Pharmacol Ther 2007.113 (3):546-93.
    [13]Leiter LA. Beta-cell preservation:a potential role for thiazolidinediones to improve clinical care in Type 2 diabetes. Diabet Med.2005.22 (8):963-72.
    [14]Campbell IW, Mariz S. Beta-cell preservation with thiazolidinediones. Diabetes Res Clin Pract.2007.76(2):163-76.
    [15]Decker M, Hofflich H, Elias AN. Thiazolidinediones and the preservation of beta-cell function, cellular proliferation and apoptosis. Diabetes Obes Metab. 2008.10(8):617-25.
    [16]Matsuda M, Kawasaki F, Mikami Y, et al. Rescue of beta-cell exhaustion by diazoxide after the development of diabetes mellitus in rats with streptozotocin-induced diabetes. Eur J Pharmacol.2002.453 (1):141-8.
    [17]Ortqvist E, Bjork E, Wallensteen M, et al. Temporary preservation of beta-cell function by diazoxide treatment in childhood type 1 diabetes. Diabetes Care. 2004.27 (9):2191-7.
    [18]Hasegawa G, Fukui M, Hosoda H, et al. Telmisartan, an angiotensin Ⅱtype 1 receptor blocker, prevents the development of diabetes in male Spontaneously Diabetic Torii rats. Eur J Pharmacol.2009.605 (1-3):164-9.
    [19]Sakuraba H, Mizukami H, Yagihashi N, Wada R, Hanyu C, Yagihashi S. Reduced beta-cell mass and expression of oxidative stress-related DNA damage in the islet of Japanese Type II diabetic patients. Diabetologia.2002.45 (1):85-96.
    [20]Fossum S, Rolstad B, Tjernshaugen H. Selective loss of S-phase cells when making cell suspensions from lymphoid tissue. Cell Immunol.1979.48(1): 149-54.
    [21]Rahier J, Guiot Y, Goebbels RM, Sempoux C, Henquin JC. Pancreatic beta-cell mass in European subjects with type 2 diabetes. Diabetes Obes Metab.2008.10 Suppl 4:32-42.
    [22]Kloppel G, Lohr M, Habich K, Oberholzer M, Heitz PU. Islet pathology and the pathogenesis of type 1 and type 2 diabetes mellitus revisited. Surv Synth Pathol Res.1985.4(2):110-25.
    [23]Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes. 2003.52(1):102-10.
    [24]Qian B, Wang H, Men X, et al. TRIB3 [corrected] is implicated in glucotoxicity-and endoplasmic reticulum-stress-induced [corrected] beta-cell apoptosis. J Endocrinol.2008.199(3):407-16.
    [25]Harmon JS, Stein R, Robertson RP. Oxidative stress-mediated, post-translational loss of MafA protein as a contributing mechanism to loss of insulin gene expression in glucotoxic beta cells. J Biol Chem.2005.280 (12):11107-13.
    [26]Poitout V, Robertson RP. Minireview:Secondary beta-cell failure in type 2 diabetes-α convergence of glucotoxicity and lipotoxicity. Endocrinology.2002. 143(2):339-42.
    [27]Kluth O, Mirhashemi F, Scherneck S, et al. Dissociation of lipotoxicity and glucotoxicity in a mouse model of obesity associated diabetes:role of forkhead box 01 (FOXO1) in glucose-induced beta cell failure. Diabetologia.2011. 54(3):605-16.
    [28]Sugiyama Y, Murao K, Imachi H, Sueyoshi N, Ishida T, Kameshita 1. Calcium/calmodulin-dependent protein kinase IV involvement in the pathophysiology of glucotoxicity in rat pancreatic beta-cells. Metabolism.2011. 60(1):145-53.
    [29]Briaud I, Dickson LM, Lingohr MK, McCuaig JF, Lawrence JC, Rhodes CJ. Insulin receptor substrate-2 proteasomal degradation mediated by a mammalian target of rapamycin (mTOR)-induced negative feedback down-regulates protein kinase B-mediated signaling pathway in beta-cells. J Biol Chem.2005.280(3): 2282-93.
    [30]Venieratos PD, Drossopoulou GI, Kapodistria KD, Tsilibary EC, Kitsiou PV. High glucose induces suppression of insulin signalling and apoptosis via upregulation of endogenous IL-1beta and suppressor of cytokine signalling-1 in mouse pancreatic beta cells. Cell Signal.2010.22(5):791-800.
    [31]Baggio LL, Drucker DJ. Biology of incretins:GLP-1 and GIP. Gastroenterology. 2007.132(6):2131-57.
    [32]Irwin DM. Evolution of genes for incretin hormones and their receptors. Vitam Horm.2010.84:1-20.
    [33]Merani S, Truong W, Emamaullee JA, Toso C, Knudsen LB, Shapiro AM. Liraglutide, a longacting human glucagon-like peptide 1 analog, improves glucose homeostasis in marginal mass islet transplantation in mice. Endocrinology.2008.149(9):4322-8.
    [34]Salehi M, Aulinger BA, D'Alessio DA. Targeting beta-cell mass in type 2 diabetes:promise and limitations of new drugs based on incretins. Endocr Rev. 2008.29(3):367-79.
    [35]Flint A, Raben A, Astrup A, Holst JJ. Glucagon-like peptide 1 promotes satiety and suppresses energy intake in humans. J Clin Invest.1998.101 (3):515-20.
    [36]Gutzwiller JP, Drewe J, Goke B, et al. Glucagon-like peptide-1 promotes satiety and reduces food intake in patients with diabetes mellitus type 2. Am J Physiol. 1999.276(5 Pt 2):R1541-4.
    [37]Murphy KG, Bloom SR. Gut hormones in the control of appetite. Exp Physiol. 2004.89(5):507-16.
    [38]Small CJ, Bloom SR. Gut hormones and the control of appetite. Trends Endocrinol Metab.2004.15 (6):259-63.
    [39]Wren AM, Bloom SR. Gut hormones and appetite control. Gastroenterology. 2007.132(6):2116-30.
    [40]Goldstone AP, Mercer JG, Gunn I, et al. Leptin interacts with glucagon-like peptide-1 neurons to reduce food intake and body weight in rodents. FEBS Lett. 1997.415(2):134-8.
    [41]de Fonseca F R, Navarro M, Alvarez E, et al. Peripheral versus central effects of glucagon-like peptide-1 receptor agonists on satiety and body weight loss in Zucker obese rats. Metabolism.2000.49(6):709-17.
    [42]Madsbad S, Schmitz O, Ranstam J, Jakobsen G, Matthews DR. Improved glycemic control with no weight increase in patients with type 2 diabetes after once-daily treatment with the longacting glucagon-like peptide 1 analog liraglutide (NN2211):a 12-week, double-blind, randomized, controlled trial. Diabetes Care.2004.27 (6):1335-42.
    [43]Kaku K, Rasmussen MF, Clauson P, Seino Y. Improved glycaemic control with minimal hypoglycaemia and no weight change with the once-daily human glucagon-like peptide-1 analogue liraglutide as add-on to sulphonylurea in Japanese patients with type 2 diabetes. Diabetes Obes Metab.2010.12(4): 341-7.
    [44]Cummings BP, Stanhope KL, Graham JL, et al. Chronic administration of the glucagon-like peptide-1 analog, liraglutide, delays the onset of diabetes and lowers triglycerides in UCD-T2DM rats. Diabetes.2010.59 (10):2653-61.
    [45]Larsen PJ, Wulff EM, Gotfredsen CF, et al. Combination of the insulin sensitizer, pioglitazone, and the longacting GLP-1 human analog, liraglutide, exerts potent synergistic glucose-lowering efficacy in severely diabetic ZDF rats. Diabetes Obes Metab.2008.10(4):301-11.
    [46]Raun K, von VP, Gotfredsen CF, Golozoubova V, Rolin B, Knudsen LB. Liraglutide, a longacting glucagon-like peptide-1 analog, reduces body weight and food intake in obese candy-fed rats, whereas a dipeptidyl peptidase-IV inhibitor, vildagliptin, does not. Diabetes.2007.56(1):8-15.
    [47]Wang Q, Brubaker PL. Glucagon-like peptide-1 treatment delays the onset of diabetes in 8 week-old db/db mice. Diabetologia.2002.45 (9):1263-73.
    [48]Carruthers M, Trinick TR, Jankowska E, Traish AM. Are the adverse effects of glitazones linked to induced testosterone deficiency. Cardiovasc Diabetol.2008. 7:30.
    [49]Evans-Molina C, Robbins RD, Kono T, et al. Peroxisome proliferatoractivated receptor gamma activation restores islet function in diabetic mice through reduction of endoplasmic reticulum stress and maintenance of euchromatin structure. Mol Cell Biol.2009.29(8):2053-67.
    [50]Kubota N, Tobe K, Terauchi Y, et al. Disruption of insulin receptor substrate 2 causes type 2 diabetes because of liver insulin resistance and lack of compensatory beta-cell hyperplasia. Diabetes.2000.49(11):1880-9.
    [51]Niessen M. On the role of IRS2 in the regulation of functional beta-cell mass. Arch Physiol Biochem.2006.112 (2):65-73.
    [52]Cantley J, Choudhury AI, Asareanane H, et al. Pancreatic deletion of insulin receptor substrate 2 reduces beta and alpha cell mass and impairs glucose homeostasis in mice. Diabetologia.2007.50(6):1248-56.
    [53]Buchanan TA, Xiang AH, Peters RK, et al. Preservation of pancreatic beta-cell function and prevention of type 2 diabetes by pharmacological treatment of insulin resistance in high-risk hispanic women. Diabetes.2002.51 (9): 2796-803.
    [54]Kanaya AM, Narayan KM. Prevention of type 2 diabetes:data from recent trials. Prim Care.2003.30(3):511-26.
    [55]Hagura R. Diabetes mellitus and life-style-for the primary prevention of diabetes mellitus:the role of diet. Br J Nutr.2000.84 Suppl 2:S191-4.
    [56]Tuomilehto J, Lindstrom J, Eriksson JG, et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med.2001.344(18):1343-50.
    [57]Myers KA. Lifestyle changes can prevent the development of diabetes mellitus. CMAJ.2001.164(13):1885.
    [58]Fodor JG, Adamo KB. Prevention of type 2 diabetes mellitus by changes in lifestyle. N Engl J Med.2001.345 (9):696; author reply 696-7.
    [59]Sennott J, Morrissey J, Standley PR, Broderick TL. Treadmill exercise training fails to reverse defects in glucose, insulin and muscle GLUT4 content in the db/db mouse model of diabetes. Pathophysiology.2008.15 (3):173-9.
    [60]Smith AC, Mullen KL, Junkin KA, et al. Metformin and exercise reduce muscle FAT/CD36 and lipid accumulation and blunt the progression of high-fat diet-induced hyperglycemia. Am J Physiol Endocrinol Metab.2007.293 (1): E172-81.
    [61]Moraska A, Deak T, Spencer RL, Roth D, Fleshner M. Treadmill running produces both positive and negative physiological adaptations in Sprague-Dawley rats. Am J Physiol Regul Integr Comp Physiol.2000.279 (4): R1321-9.
    [62]Applegate EA, Stern JS. Exercise termination effects on food intake, plasma insulin, and adipose lipoprotein lipase activity in the Osborne-Mendel rat. Metabolism.1987.36(8):709-14.
    [63]Wei Y, Wang D, Topczewski F, Pagliassotti MJ. Saturated fatty acids induce endoplasmic reticulum stress and apoptosis independently of ceramide in liver cells. Am J Physiol Endocrinol Metab.2006.291 (2):E275-81.
    [64]McAlpine CS, Bowes AJ, Werstuck GH. Diabetes, hyperglycemia and accelerated atherosclerosis:evidence supporting a role for endoplasmic reticulum (ER) stress signaling. Cardiovasc Hematol Disord Drug Targets.2010.10(2): 151-7.
    [65]Erbay E, Babaev VR, Mayers JR, et al. Reducing endoplasmic reticulum stress through a macrophage lipid chaperone alleviates atherosclerosis. Nat Med.2009. 15(12):1383-91.
    [66]Sharkey D, Fainberg HP, Wilson V, et al. Impact of early onset obesity and hypertension on the unfolded protein response in renal tissues of juvenile sheep. Hypertension.2009.53 (6):925-31.
    [67]Cunha Da,Ladreere L,Ortis F,et al.(?) like peptede-1 agonists (?) pancreatic beta-cells from lipotoxic endoplasmic reticulum stress through upregulation of BiP and JunB. Diabetes.2009.58 (12):2851-62.
    [68]Guay C, Roggli E, Nesca V, Jacovetti C, Regazzi R. Diabetes mellitus, a microRNA-related disease. Transl Res.2011.157(4):253-64.
    [69]Poy MN, Eliasson L, Krutzfeldt J, et al. A pancreatic islet-specific microRNA regulates insulin secretion. Nature.2004.432(7014):226-30.
    [70]Poy MN, Hausser J, Trajkovski M, et al. miR-375 maintains normal pancreatic alpha-and beta-cell mass. Proc Natl Acad Sci USA.2009.106(14):5813-8.
    [71]Wajchenberg BL. beta-cell failure in diabetes and preservation by clinical treatment. Endocr Rev,2007,28:187-218. 参考文献
    [1]Farrell GC, Larter CZ. Nonalcoholic fatty liver disease:from steatosis to cirrhosis. Hepatology.2006.43 (2 Suppl 1):S99-S112.
    [2]Adams LA, Angulo P, Lindor KD. Nonalcoholic fatty liver disease. CMAJ.2005. 172(7):899-905.
    [3]Adams LA, Lymp JF, St SJ, et al. The natural history of nonalcoholic fatty liver disease:a population-based cohort study. Gastroenterology.2005.129(1): 113-21.
    [4]Choudhury J, Sanyal AJ. Insulin resistance and the pathogenesis of nonalcoholic fatty liver disease. Clin Liver Dis.2004.8 (3):575-94, ⅸ.
    [5]Baranova A, Randhawa M, Jarrar M, et al, Adipokines and melanocortins in the hepatic manifestation of metabolic syndrome:nonalcoholic fatty liver disease. Expert Rev Mol Diagn.2007.7 (2):195-205.
    [6]Boppidi H, Daram SR. Nonalcoholic fatty liver disease:hepatic manifestation of obesity and the metabolic syndrome. Postgrad Med.2008.120(2):E01-7.
    [7]Kim CH, Younossi ZM. Nonalcoholic fatty liver disease:a manifestation of the metabolic syndrome. Cleve Clin J Med.2008.75 (10):721-8.
    [8]Listenberger LL, Ory DS, Schaffer JE. Palmitate-induced apoptosis can occur through a ceramide-independent pathway. J Biol Chem.2001.276(18):14890-5.
    [9]Malhi H, Bronk SF, Werneburg NW, et al. Free fatty acids induce JNK-dependent hepatocyte lipoapoptosis. J Biol Chem.2006.281 (17):12093-101.
    [10]Wei Y, Wang D, Topczewski F, et al. Saturated fatty acids induce endoplasmic reticulum stress and apoptosis independently of ceramide in liver cells. Am J Physiol Endocrinol Metab.2006.291 (2):E275-81.
    [11]Feldstein AE, Canbay A, Angulo P, et al. Hepatocyte apoptosis and fas expression are prominent features of human nonalcoholic steatohepatitis. Gastroenterology.2003.125(2):437-43.
    [12]Wang D, Wei Y, Pagliassotti MJ. Saturated fatty acids promote endoplasmic reticulum stress and liver injury in rats with hepatic steatosis. Endocrinology. 2006.147(2):943-51.
    [13]Flamment M, Kammoun HL, Hainault I, et al. Endoplasmic reticulum stress:a new actor in the development of hepatic steatosis. Curr Opin Lipidol.2010. 21(3):239-46.
    [14]Kapoor A, Sanyal AJ. Endoplasmic reticulum stress and the unfolded protein response. Clin Liver Dis.2009.13 (4):581-90.
    [15]Zhang CY, Parton LE, Ye CP, et al. Genipin inhibits UCP2-mediated proton leak and acutely reverses obesity- and high glucose-induced beta cell dysfunction in isolated pancreatic islets. Cell Metab.2006.3 (6):417-27.
    [16]IuV H, Shymans'ka TV, Sahach VF. Effect of UCP2 activity inhibitor genipin on heart function of aging rats]. Fiziol Zh.2009.55 (5):28-34.
    [17]Koriyama Y, Chiba K, Yamazaki M,et al. Longacting genipin derivative protects retinal ganglion cells from oxidative stress models in vitro and in vivo through the Nrf2/antioxidant response element signaling pathway. J Neurochem.2010. 115(1):79-91.
    [18]Nam KN, Choi YS, Jung HJ, et al. Genipin inhibits the inflammatory response of rat brain microglial cells. Int Immunopharmacol.2010.10 (4):493-9.
    [19]Yamazaki M, Chiba K, Yoshikawa C. Genipin suppresses A23187-induced cytotoxicity in neuro2a cells. Biol Pharm Bull.2009.32 (6):1043-6.
    [20]Wu P, Yang L, Shen X. The Relationship Between GPR40 and Lipotoxicity of the Pancreatic beta-cells As Well As the Effect of Pioglitazone. Biochem Biophys Res Commun.2010.
    [21]Gu X, Li K, Laybutt DR, et al. Bip overexpression, but not CHOP inhibition, attenuates fattyacid-induced endoplasmic reticulum stress and apoptosis in HepG2 liver cells. Life Sci.2010.
    [22]Henique C, Mansouri A, Fumey G, et al. Increased mitochondrial fatty acid oxidation is sufficient to protect skeletal muscle cells from palmitate-induced apoptosis. J Biol Chem.2010.
    [23]Chai W, Liu Z. p38 mitogenactivated protein kinase mediates palmitate-induced apoptosis but not inhibitor of nuclear factor-kappaB degradation in human coronary artery endothelial cells. Endocrinology.2007.148 (4):1622-8.
    [24]Kim SJ, Kim JK, Lee DU, et al. Genipin protects lipopolysaccharide-induced apoptotic liver damage in D-galactosamine-sensitized mice. Eur J Pharmacol. 2010.635(1-3):188-93.
    [25]Malhi H, Gores GJ. Molecular mechanisms of lipotoxicity in nonalcoholic fatty liver disease. Semin Liver Dis.2008.28 (4):360-9.
    [26]McAlpine CS, Bowes AJ, Werstuck GH. Diabetes, hyperglycemia and accelerated atherosclerosis:evidence supporting a role for endoplasmic reticulum (ER) stress signaling. Cardiovasc Hematol Disord Drug Targets.2010.10(2): 151-7.
    [27]Salminen A, Kauppinen A, Suuronen T, et al. ER stress in Alzheimer's disease:a novel neuronal trigger for inflammation and Alzheimer's pathology. J Neuroinflammation.2009.6:41.
    [28]Kaser A, Lee AH, Franke A, et al. XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell.2008.134(5):743-56.
    [29]Wei H, Kim SJ, Zhang Z, et al. ER and oxidative stresses are common mediators of apoptosis in both neurodegenerative and non-neurodegenerative lysosomal storage disorders and are alleviated by chemical chaperones. Hum Mol Genet. 2008.17(4):469-77.
    [30]Kitiphongspattana K, Khan TA, Ishii-Schrade K, et al. Protective role for nitric oxide during the endoplasmic reticulum stress response in pancreatic beta-cells. Am J Physiol Endocrinol Metab.2007.292 (6):E1543-54.
    [31]Yan M, Shen J, Person MD, et al. Endoplasmic reticulum stress and unfolded protein response in Atm-deficient thymocytes and thymic lymphoma cells are attributable to oxidative stress. Neoplasia.2008.10(2):160-7.
    [32]Schuler A, Spolarics Z, Lang CH, et al. Upregulation of glucose metabolism by granulocyte-monocyte colony-stimulating factor. Life Sci.1991.49(12): 899-906.
    [1]Imai T, Takakuwa R, Marchand S, et al. Peroxisome proliferatoractivated receptor gamma is required in mature white and brown adipocytes for their survival in the mouse. Proc Natl Acad Sci USA.2004.101 (13):4543-7.
    [2]Lazar MA. PPAR gamma,10 years later. Biochimie.2005.87 (1):9-13.
    [3]Mandard S, Muller M, Kersten S. Peroxisome proliferatoractivated receptor alpha target genes. Cell Mol Life Sci.2004.61 (4):393-416.
    [4]Ribet C, Montastier E, Valle C, et al. Peroxisome proliferatoractivated receptoralpha control of lipid and glucose metabolism in human white adipocytes. Endocrinology.2010.151 (1):123-33.
    [5]Hongo T, Kajikawa M, Ishida S, et al. Three-dimensional high-density culture of HepG2 cells in a 5-ml radial-flow bioreactor for construction of artificial liver. J Biosci Bioeng.2005.99 (3):237-44.
    [6]Nibourg GA, Huisman MT, Hoeven TV et al. Stable overexpression of pregnane X receptor in HepG2 cells increases its potential for bioartificial liver application. Liver Transpl.2010.16(9):1075-85.
    [7]Ruddock MW, Stein A, Landaker E, et al. Saturated fatty acids inhibit hepatic insulin action by modulating insulin receptor expression and post-receptor signalling. J Biochem.2008.144(5):599-607.
    [8]Sharma AM, Staels B. Review:Peroxisome proliferatoractivated receptor gamma and adipose tissue--understanding obesity-related changes in regulation of lipid and glucose metabolism. J Clin Endocrinol Metab.2007.92 (2):386-95.
    [9]Evans RM, Barish GD, Wang YX. PPARs and the complex journey to obesity. Nat Med.2004.10(4):355-61.
    [10]Wilding J. Thiazolidinediones, insulin resistance and obesity:Finding a balance. Int J Clin Pract.2006.60 (10):1272-80.
    [11]Bhatia V, Viswanathan P. Insulin resistance and PPAR insulin sensitizers. Curr Opin Investig Drugs.2006.7(10):891-7.
    [12]Klopotek A, Hirche F, Eder K. PPAR gamma ligand troglitazone lowers cholesterol synthesis in HepG2 and Caco-2 cells via a reduced concentration of nuclear SREBP-2. Exp Biol Med (Maywood).2006.231 (8):1365-72.
    [13]Davies GF, McFie PJ, Khandelwal RL, et al. Unique ability of troglitazone to up-regulate peroxisome proliferatoractivated receptor-gamma expression in hepatocytes. J Pharmacol Exp Ther.2002.300(1):72-7.
    [14]Iyer VV, Yang H, Ierapetritou MG, et al. Effects of glucose and insulin on HepG2-C3 A cell metabolism. Biotechnol Bioeng.2010.107(2):347-56.
    [15]Kim HI, Ahn YH. Role of peroxisome proliferatoractivated receptor-gamma in the glucose-sensing apparatus of liver and beta-cells. Diabetes.2004.53 Suppl 1: S60-5.
    [16]Kim H, Haluzik M, Asghar Z, et al. Peroxisome proliferatoractivated receptoralpha agonist treatment in a transgenic model of type 2 diabetes reverses the lipotoxic state and improves glucose homeostasis. Diabetes.2003.52(7): 1770-8.
    [17]Schafer SA, Hansen BC, Volkl A, et al. Biochemical and morphological effects of K-111, a peroxisome proliferatoractivated receptor (PPAR) alpha activator, in non-human primates. Biochem Pharmacol.2004.68 (2):239-51.
    [18]Steiner G Altering triglyceride concentrations changes insulin-glucose relationships in vhypertriglyceridemic patients. Double-blind study with gemfibrozil with implications for atherosclerosis. Diabetes Care.1991.14(11): 1077-81.
    [19]Xiao X, Su G, Brown SN, et al. Peroxisome proliferatoractivated receptors gamma and alpha agonists stimulate cardiac glucose uptake via activation of AMPactivated protein kinase. J Nutr Biochem.2010.21 (7):621-6.
    [1]Reaven GM. Role of insulin resistance in human disease (syndrome X):an expanded definition. Annu Rev Med.1993.44:121-31.
    [2]Kahn SE. Clinical review 135:The importance of beta-cell failure in the development and progression of type 2 diabetes. J Clin Endocrinol Metab.2001.86 (9):4047-58.
    [3]Opie EL. THE RELATION OE DIABETES MELLITUS TO LESIONS OF THE PANCREAS. HYALINE DEGENERATION OF THE ISLANDS OE LANGERHANS. J Exp Med.1901.5 (5):527-40.
    [4]MACLEAN N, OGILVIE RF. Quantitative estimation of the pancreatic islet tissue in diabetic subjects. Diabetes.1955.4(5):367-76.
    [5]Kloppel G, Lohr M, Habich K, et al. Islet pathology and the pathogenesis of type 1 and type 2 diabetes mellitus revisited. Surv Synth Pathol Res.1985.4(2):110-25.
    [6]Butler AE, Janson J, Bonner-Weir S, et al. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes.2003.52 (1):102-10.
    [7]Clark A, Wells CA, Buley ID, et al. Islet amyloid, increased A-cells, reduced B-cells and exocrine fibrosis:quantitative changes in the pancreas in type 2 diabetes. Diabetes Res.1988. 9(4):151-9.
    [8]Rahier J, Goebbels RM, Henquin JC. Cellular composition of the human diabetic pancreas. Diabetologia.1983.24(5):366-71.
    [9]Saito K, Yaginuma N, Takahashi T. Differential volumetry of A, B and D cells in the pancreatic islets of diabetic and nondiabetic subjects. Tohoku J Exp Med.1979.129(3): 273-83.
    [10]Sakuraba H, Mizukami H, Yagihashi N, et al. Reduced beta-cell mass and expression of oxidative stress-related DNA damage in the islet of Japanese Type II diabetic patients. Diabetologia.2002.45 (1):85-96.
    [11]Yoon KH, Ko SH, Cho JH, et al. Selective beta-cell loss and alpha-cell expansion in patients with type 2 diabetes mellitus in Korea. J Clin Endocrinol Metab.2003.88 (5):2300-8.
    [12]Rahier J, Guiot Y, Goebbels RM, et al. Pancreatic beta-cell mass in European subjects with type 2 diabetes. Diabetes Obes Metab.2008.10 Suppl 4:32-42.
    [13]Seaquist ER, Robertson RP. Effects of hemipancreatectomy on pancreatic alpha and beta cell function in healthy human donors. J Clin Invest.1992.89 (6):1761-6.
    [14]Menge BA, Schrader H, Breuer TG, et al. Metabolic consequences of a 50%partial pancreatectomy in humans. Diabetologia.2009.52 (2):306-17.
    [15]Bonner-Weir S, Trent DF, Weir GC. Partial pancreatectomy in the rat and subsequent defect in glucose-induced insulin release. J Clin Invest.1983.71 (6):1544-53.
    [16]Ward WK, Wallum BJ, Beard JC, et al. Reduction of glycemic potentiation. Sensitive indicator of beta-cell loss in partially pancreatectomized dogs. Diabetes.1988.37 (6):723-9.
    [17]Imamura T, Koffler M, Helderman JH, et al. Severe diabetes induced in subtotally depancreatized dogs by sustained hyperglycemia. Diabetes.1988.37 (5):600-9.
    [18]Kassem SA, Ariel I, Thornton PS, et al. Beta-cell proliferation and apoptosis in the developing normal human pancreas and in hyperinsulinism of infancy. Diabetes.2000.49 (8): 1325-33.
    [19]Sorenson RL, Brelje TC. Adaptation of islets of Langerhans to pregnancy:beta-cell growth, enhanced insulin secretion and the role of lactogenic hormones. Horm Metab Res.1997. 29(6):301-7.
    [20]Van Assche FA, Aerts L, De Prins F. A morphological study of the endocrine pancreas in human pregnancy. Br J Obstet Gynaecol.1978.85 (11):818-20.
    [21]Teta M, Long SY, Wartschow LM, Rankin MM, et al. Very slow turnover of beta-cells in aged adult mice. Diabetes.2005.54 (9):2557-67.
    [22]Bonner-Weir S, Baxter LA, Schuppin GT, et al. A second pathway for regeneration of adult exocrine and endocrine pancreas. A possible recapitulation of embryonic development. Diabetes.1993.42(12):1715-20.
    [23]Menge BA, Tannapfel A, Belyaev O, et al. Partial pancreatectomy in adult humans does not provoke beta-cell regeneration. Diabetes.2008.57(1):142-9.
    [24]Yalow RS, Berson SA. Immunoassay of endogenous plasma insulin in man.1960. Obes Res. 1996.4(6):583-600.
    [25]YALOW RS, BERSON SA. Immunoassay of endogenous plasma insulin in man. J Clin Invest.1960.39:1157-75.
    [26]Holman RR. Assessing the potential for alpha-glucosidase inhibitors in prediabetic states. Diabetes Res Clin Pract.1998.40 Suppl:S21-5.
    [27]Roder ME, Porte D Jr, Schwartz RS, et al. Disproportionately elevated proinsulin levels reflect the degree of impaired B cell secretory capacity in patients with noninsulin-dependent diabetes mellirus. J Clin Endocrinol Metab.1998.83 (2):604-8.
    [28]Kahn SE, Halban PA. Release of incompletely processed proinsulin is the cause of the disproportionate proinsulinemia of NIDDM. Diabetes.1997.46(11):1725-32.
    [29]Saks V, Guzun R, Timohhina N, et al. Structure-function relationships in feedback regulation of energy fluxes in vivo in health and disease:mitochondrial interactosome. Biochim Biophys Acta.2010.1797(6-7):678-97.
    [30]Kahn SE, Leonetti DL, Prigeon RL, et al. Proinsulin as a marker for the development of NIDDM in Japaneseamerican men. Diabetes.1995.44(2):173-9.
    [31]Mykkanen L, Haffner SM, Kuusisto J, et al. Serum proinsulin levels are disproportionately increased in elderly prediabetic subjects. Diabetologia.1995.38(10):1176-82.
    [32]Jensen CC, Cnop M, Hull RL, et al. Beta-cell function is a major contributor to oral glucose tolerance in high-risk relatives of four ethnic groups in the U.S. Diabetes.2002.51(7): 2170-8.
    [33]Mitrakou A, Kelley D, Mokan M, et al. Role of reduced suppression of glucose production and diminished early insulin release in impaired glucose tolerance. N Engl J Med.1992. 326(1):22-9.
    [34]Brunzell JD, Robertson RP, Lerner RL, et al. Relationships between fasting blood glucose levels and insulin secretion during intravenous glucose tolerance tests. J Clin Endocrinol Metab.1976.42(2):222-9.
    [35]Godsland IF, Jeffs JA, Johnston DG. Loss of beta cell function as fasting glucose increases in the non-diabetic range. Diabetologia.2004.47 (7):1157-66.
    [36]O'Rahilly S, Turner RC, Matthews DR. Impaired pulsatile secretion of insulin in relatives of patients with non-insulin-dependent diabetes. N Engl J Med.1988.318(19):1225-30.
    [37]Bergstrom RW, Fujimoto WY, Teller DC, et al. Oscillatory insulin secretion in perifused isolated rat islets. Am J Physiol.1989.257 (4 Pt 1):EX-479-85.
    [38]O'Meara NM, Sturis J, Van Cauter E, et al. Lack of control by glucose of ultradian insulin secretory oscillations in impaired glucose tolerance and in non-insulin-dependent diabetes mellitus. J Clin Invest.1993.92 (1):262-71.
    [39]Sturis J, Polonsky KS, Shapiro ET, et al. Abnormalities in the ultradian oscillations of insulin secretion and glucose levels in type 2 (non-insulin-dependent) diabetic patients. Diabetologia. 1992.35 (7):681-9.
    [40]Polonsky KS, Given BD, Hirsch LJ, et al. Abnormal patterns of insulin secretion in non-insulin-dependent diabetes mellitus. N Engl J Med.1988.318 (19):1231-9.
    [41]Leahy JL, Bonner-Weir S, Weir GC. Minimal chronic hyperglycemia is a critical determinant of impaired insulin secretion after an incomplete pancreatectomy. J Clin Invest.1988.81 (5): 1407-14.
    [42]Larsen MO, Gotfredsen CF, Wilken M, et al. Loss of beta-cell mass leads to a reduction of pulse mass with normal periodicity, regularity and entrainment of pulsatile insulin secretion in Gottingen minipigs. Diabetologia.2003.46 (2):195-202.
    [43]Ackermann MA, Costa RH, Gannon M. Beta-cell proliferation, but not neogenesis, following 60%partial pancreatectomy is impaired in the absence of FoxMl. Diabetes.2008.57(11): 3069-77.
    [44]Pederson RA, Satkunarajah M, McIntosh CH, et al. Enhanced glucose-dependent insulinotropic polypeptide secretion and insulinotropic action in glucagon-like peptide 1 receptor-/-mice. Diabetes.1998.47(7):1046-52.
    [45]De Leon DD, Deng S, Madani R, et al. Role of endogenous glucagon-like peptide-1 in islet regeneration after partial pancreatectomy. Diabetes.2003.52 (2):365-71.
    [46]Robertson RP, Harmon J, Tran PO, et al. Glucose toxicity in beta-cells:type 2 diabetes, good radicals gone bad, and the glutathione connection. Diabetes.2003.52(3):581-7.
    [47]Unger RH, Grundy S. Hyperglycaemia as an inducer as well as a consequence of impaired islet cell function and insulin resistance:implications for the management of diabetes. Diabetologia.1985.28(3):119-21.
    [48]Donath MY, Gross DJ, Cerasi E, et al. Hyperglycemia-induced beta-cell apoptosis in pancreatic islets of Psammomys obesus during development of diabetes. Diabetes.1999. 48 (4):738-44.
    [49]Maedler K, Spinas GA, Lehmann R, et al. Glucose induces beta-cell apoptosis via upregulation of the Fas receptor in human islets. Diabetes.2001.50(8):1683-90.
    [50]Donath MY, Ehses JA, Maedler K, et al. Mechanisms of beta-cell death in type 2 diabetes. Diabetes.2005.54 Suppl 2:S108-13.
    [51]Donath MY, Halban PA. Decreased beta-cell mass in diabetes:significance, mechanisms and therapeutic implications. Diabetologia.2004.47(3):581-9.
    [52]Harding HP, Ron D. Endoplasmic reticulum stress and the development of diabetes:a review. Diabetes.2002.51 Suppl 3:S455-61.
    [53]Grill V, Bjorklund A. Overstimulation and beta-cell function. Diabetes.2001.50 Suppl 1: S122-4.
    [54]Maedler K, Sergeev P, Ris F, et al. Glucose-induced beta cell production of IL-lbeta contributes to glucotoxicity in human pancreatic islets. J Clin Invest.2002.110(6):851-60.
    [55]Kaneto H, Xu G, Song KH, et al. Activation of the hexosamine pathway leads to deterioration of pancreatic beta-cell function through the induction of oxidative stress. J Biol Chem.2001. 276(33):31099-104.
    [56]Gopaul NK, Anggard EE, Mallet AI,et al. Plasma 8-epi-PGF2 alpha levels are elevated in individuals with non-insulin dependent diabetes mellitus. FEBS Lett.1995.368 (2):225-9.
    [57]Shin CS, Moon BS, Park KS, et al. Serum 8-hydroxy-guanine levels are increased in diabetic patients. Diabetes Care.2001.24(4):733-7.
    [58]Nourooz-Zadeh J, Tajaddini-Sarmadi J, McCarthy S, et al. Elevated levels of authentic plasma hydroperoxides in NIDDM. Diabetes.1995.44(9):1054-8.
    [59]Sakuraba H, Mizukami H, Yagihashi N, et al. Reduced beta-cell mass and expression of oxidative stress-related DNA damage in the islet of Japanese Type II diabetic patients. Diabetologia.2002.45 (1):85-96.
    [60]Kashyap S, Belfort R, Gastaldelli A, et al. A sustained increase in plasma free fatty acids impairs insulin secretion in nondiabetic subjects genetically predisposed to develop type 2 diabetes. Diabetes.2003.52(10):2461-74.
    [61]Shimabukuro M, Zhou YT, Levi M, Unger RH. Fatty acid-induced beta cell apoptosis:a link between obesity and diabetes. Proc Natl Acad Sci USA.1998.95 (5):2498-502.
    [62]Maedler K, Oberholzer J, Bucher P, et al. Monounsaturated fatty acids prevent the deleterious effects of palmitate and high glucose on human pancreatic beta-cell turnover and function. Diabetes.2003.52 (3):726-33.
    [63]Roehrich ME, Mooser V, Lenain V, et al. Insulin-secreting beta-cell dysfunction induced by human lipoproteins. J Biol Chem.2003.278 (20):18368-75.
    [64]Jacqueminet S, Briaud I, Rouault C, et al. Inhibition of insulin gene expression by long-term exposure of pancreatic beta cells to palmitate is dependent on the presence of a stimulatory glucose concentration. Metabolism.2000.49 (4):532-6.
    [65]Elassaad W, Buteau J, Peyot ML, et al. Saturated fatty acids synergize with elevated glucose to cause pancreatic beta-cell death. Endocrinology.2003.144 (9):4154-63.
    [66]Chan CB, MacDonald PE, Saleh MC, et al. Overexpression of uncoupling protein 2 inhibits glucose-stimulated insulin secretion from rat islets. Diabetes.1999.48 (7):1482-6.
    [67]Joseph JW, Koshkin V, Zhang CY, et al. Uncoupling protein 2 knockout mice have enhanced insulin secretory capacity after a high-fat diet. Diabetes.2002.51 (11):3211-9.
    [68]Teuscher AU, Kendall DM, Smets YF, et al. Successful islet autotransplantation in humans: functional insulin secretory reserve as an estimate of surviving islet cell mass. Diabetes.1998. 47 (3):324-30.
    [69]Kharroubi I, Ladriere L, Cardozo AK,et al. Free fatty acids and cytokines induce pancreatic beta-cell apoptosis by different mechanisms:role of nuclear factor-kappaB and endoplasmic reticulum stress. Endocrinology.2004.145 (11):5087-96.
    [70]Karaskov E, Scott C, Zhang L, et al. Chronic palmitate but not oleate exposure induces endoplasmic reticulum stress, which may contribute to INS-1 pancreatic beta-cell apoptosis. Endocrinology.2006.147(7):3398-407.
    [71]Wajchenberg BL. Subcutaneous and visceral adipose tissue:their relation to the metabolic syndrome. Endocr Rev.2000.21 (6):697-738.
    [72]Maeda N, Takahashi M, Funahashi T, et al. PPARgamma ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein. Diabetes.2001.50(9): 2094-9.
    [73]Butler AE, Janson J, Bonner-Weir S, et al. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes.2003.52 (1):102-10.
    [74]Chen YS, Chung SS, Chung SK. Noninvasive monitoring of diabetes-induced cutaneous nerve fiber loss and hypoalgesia in thyl-YFP transgenic mice. Diabetes.2005.54(11): 3112-8.
    [75]Hull RL, Westermark GT, Westermark P, et al. Islet amyloid:a critical entity in the pathogenesis of type 2 diabetes. J Clin Endocrinol Metab.2004.89 (8):3629-43.
    [76]Ryan EA, Imes S, Wallace C. Short-term intensive insulin therapy in newly diagnosed type 2 diabetes. Diabetes Care.2004.27(5):1028-32.
    [77]Li Y, Xu W, Liao Z, et al. Induction of long-term glycemic control in newly diagnosed type 2 diabetic patients is associated with improvement of beta-cell function. Diabetes Care.2004. 27(11):2597-602.
    [78]Leahy JL, Bumbalo LM, Chen C. Diazoxide causes recovery of beta-cell glucose responsiveness in 90%pancreatectomized diabetic rats. Diabetes.1994.43 (2):173-9.
    [79]Matsuda M, Kawasaki F, Mikami Y, et al. Rescue of beta-cell exhaustion by diazoxide after the development of diabetes mellitus in rats with streptozotocin-induced diabetes. Eur J Pharmacol.2002.453 (1):141-8.
    [80]Guldstrand M, Grill V, Bjorklund A, et al. Improved beta cell function after short-term treatment with diazoxide in obese subjects with type 2 diabetes. Diabetes Metab.2002.28 (6 Pt 1):448-56.
    [81]Teuscher AU, Kendall DM, Smets YF, et al. Successful islet autotransplantation in humans: functional insulin secretory reserve as an estimate of surviving islet cell mass. Diabetes.1998. 47 (3):324-30.
    [82]Van Gaal LF, Gutkin SW, Nauck MA. Exploiting the antidiabetic properties of incretins to treat type 2 diabetes mellitus:glucagon-like peptide 1 receptor agonists or insulin for patients with inadequate glycemic control. Eur J Endocrinol.2008.158 (6):773-84.
    [83]Nauck MA, Heimesaat MM, Orskov C, et al. Preserved incretin activity of glucagon-like peptide 1 [7-36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus. J Clin Invest.1993.91 (1):301-7.
    [84]Rachman J, Gribble FM, Barrow BA, et al. Normalization of insulin responses to glucose by overnight infusion of glucagon-like peptide 1 (7-36) amide in patients with NIDDM. Diabetes.1996.45(11):1524-30.
    [85]Prigeon RL, Quddusi S, Paty B,et al. Suppression of glucose production by GLP-1 independent of islet hormones:a novel extrapancreatic effect. Am J Physiol Endocrinol Metab. 2003.285(4):E701-7.
    [86]Rachman J, Barrow BA, Levy JC, et al. Near-normalisation of diurnal glucose concentrations by continuous administration of glucagon-like peptide-1 (GLP-1) in subjects with NIDDM. Diabetologia.1997.40(2):205-11.
    [87]Zander M, Madsbad S, Madsen JL, et al. Effect of 6-week course of glucagon-like peptide 1 on glycaemic control, insulin sensitivity, and beta-cell function in type 2 diabetes:a parallel-group study. Lancet.2002.359(9309):824-30.
    [88]Xu G, Stoffers DA, Habener JF, et al. Exendin-4 stimulates both beta-cell replication and neogenesis, resulting in increased beta-cell mass and improved glucose tolerance in diabetic rats. Diabetes.1999.48 (12):2270-6.
    [89]Gedulin BR, Nikoulina SE, Smith PA, et al. Exenatide (exendin-4) improves insulin sensitivity and{beta}-cell mass in insulin-resistant obese fa/fa Zucker rats independent of glycemia and body weight. Endocrinology.2005.146 (4):2069-76.
    [90]Buse JB, Klonoff DC, Nielsen LL, et al. Metabolic effects of two years of exenatide treatment on diabetes, obesity, and hepatic biomarkers in patients with type 2 diabetes:an interim analysis of data from the open-label, uncontrolled extension of three double-blind, placebo-controlled trials. Clin Ther.2007.29 (1):139-53.
    [91]Russell-Jones D, Vaag A, Schmitz O, et al. Liraglutide vs insulin glargine and placebo in combination with metformin and sulfonylurea therapy in type 2 diabetes mellitus (LEAD-5 met+SU):a randomised controlled trial. Diabetologia.2009.52(10):2046-55.
    [92]Aschner P, Kipnes MS, Lunceford JK, et al. Effect of the dipeptidyl peptidase-4 inhibitor sitagliptin as monotherapy on glycemic control in patients with type 2 diabetes. Diabetes Care. 2006.29 (12):2632-7.
    [93]Shimabukuro M, Zhou YT, Lee Y, Unger RH. Troglitazone lowers islet fat and restores beta cell function of Zucker diabetic fatty rats. J Biol Chem.1998.273 (6):3547-50.
    [94]Finegood DT, McArthur MD, Kojwang D, et al. Beta-cell mass dynamics in Zucker diabetic fatty rats. Rosiglitazone prevents the rise in net cell death. Diabetes.2001.50(5):1021-9.
    [95]Diani AR, Sawada G, Wyse B, et al. Pioglitazone preserves pancreatic islet structure and insulin secretory function in three murine models of type 2 diabetes. Am J Physiol Endocrinol Metab.2004.286(1):E116-22.
    [96]Lupi R, Del GS, Marselli L, et al. Rosiglitazone prevents the impairment of human islet function induced by fatty acids:evidence for a role of PPARgamma2 in the modulation of insulin secretion. Am J Physiol Endocrinol Metab.2004.286 (4):E560-7.
    [97]Chen M, Robertson RP. Restoration of the acute insulin response by sodium salicylate. A glucose dose-related phenomenon. Diabetes.1978.27 (7):750-6.
    [98]Juhl CB, Hollingdal M, Porksen N, et al. Influence of rosiglitazone treatment on beta-cell function in type 2 diabetes:evidence of an increased ability of glucose to entrain high-frequency insulin pulsatility. J Clin Endocrinol Metab.2003.88 (8):3794-800.
    [99]Fonseca V, Rosenstock J, Patwardhan R, et al. Effect of metformin and rosiglitazone combination therapy in patients with type 2 diabetes mellitus:a randomized controlled trial. JAMA.2000.283 (13):1695-702.
    [100]Miyazaki Y, Matsuda M, DeFronzo RA. Dose-response effect of pioglitazone on insulin sensitivity and insulin secretion in type 2 diabetes. Diabetes Care.2002.25 (3):517-23.
    [101]Buchanan TA, Xiang AH, Peters RK, et al. Preservation of pancreatic beta-cell function and prevention of type 2 diabetes by pharmacological treatment of insulin resistance in high-risk hispanic women. Diabetes.2002.51 (9):2796-803.
    [102]Knowler WC, Hamman RF, Edelstein SL, et al. Prevention of type 2 diabetes with troglitazone in the Diabetes Prevention Program. Diabetes.2005.54 (4):1150-6,
    [103]Giardino I, Fard AK, Hatchell DL, et al. Aminoguanidine inhibits reactive oxygen species formation, lipid peroxidation, and oxidant-induced apoptosis. Diabetes.1998.47(7): 1114-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700