转录因子NFIC在人根尖牙乳头干细胞分化中的作用及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干细胞在组织工程学中的运用将为牙髓/牙本质再生和生物性牙根的形成提供广阔的运用前景。根尖牙乳头干细胞(stem cells from the apical papilla,SCAPs)位于未发育完成的年轻恒牙的根尖部,是一种取自正在发育组织的成体间充质干细胞(mesenchymal stem cells,MSCs)。SCAPs具有多向分化的潜能,在特定培养液诱导下可形成类牙髓/牙本质,且被认为是牙根部成牙本质细胞的来源,最终形成牙根部牙本质。SCAPs与牙髓干细胞(dental pulp stem cells,DPSCs)相比,具有较强的成牙分化能力和较低的免疫原形,此特性被认为更适合运用于骨/牙体组织再生领域。
     核转录因子NFIC(nuclear factor I-C)在调控牙根的发育中发挥了重要作用。敲除NFIC的小鼠,形成短小的磨牙牙根,而牙冠发育正常。鉴于NFIC是特异性调控牙根发育的信号分子,而SCAPs是牙根成牙本质细胞的来源,那么,NFIC在调控SCAPs分化中的作用及其机制如何,目前尚不清楚。
     牙齿的发育是由一系列上皮和间充质相互作用而形成,众多的细胞因子参与了牙齿发育的调控。转化生长因子β(transforming growth factor-β,TGF-β)超家族,包括TGF-βs,骨形成蛋白(bone morphogenetic proteins,BMPs)和激活素类等相关蛋白,参与调节细胞增殖、分化及上皮间充质转换和胚胎发育等。研究发现NFIC通过抑制TGF-β1调控的基因表达,影响皮肤伤口的愈合;敲除NFIC后,小鼠异常的成牙本质细胞中TGF-βⅠ型受体和磷酸化的Smad2/3显著上调,提示,NFIC可能参与TGF-β信号通路,但是两者是在调控SCAPs分化中的作用机制尚不清楚。
     本课题首先成功分离、培养和鉴定人根尖牙乳头干细胞。随后分别转染所构建的慢病毒NFIC真核表达载体或沉默NFIC的siRNA。通过体内、外实验观察NFIC对SCAPs增殖、分化的影响。最后,研究TGF-β1对SCAPs生物学特性及分化的影响,讨论NFIC与TGF-β1信号通路在SCAPs分化中的相互作用。为将来SCAPs在牙髓牙本质再生和生物性牙根方面的应用提供新的思路。
     结果如下:
     1.人根尖牙乳头感干细胞的分离、培养及鉴定
     选取因正畸原因而拔除的年轻患者第三磨牙,分离培养人原代SCAPs,有限稀释法纯化获得单克隆的细胞;免疫组织化学染色及流式细胞仪鉴定间充质干细胞标记物STRO-1等;成骨诱导、成脂诱导实验证实细胞的多向分化能力。
     2.转录因子NFIC促进SCAPs分化能力
     构建NFIC慢病毒真核表达载体plenti-NFIC后,与沉默NFIC的siRNA分别转染SCAPs。过表达NFIC还促进SCAPs的增殖能力、ALP活性和成骨/牙分化能力。此外,NFIC还不同程度地增强矿化基因标记物ALP、OCN和Col.I的mRNA;蛋白质印迹免疫检测技术也证实NFIC上调DSP蛋白水平。而沉默NFIC,则明显抑制SCAPs矿化能力及矿化基因ALP、OCN和Col.I的表达。此外,过表达NFIC增强脂滴的形成和成脂标记物CCAAT增强结合蛋白(CCAAT/enhancer binding protein)C/EBP-β、C/EBP-δ和过氧化物酶体增殖物激活受体(peroxisome proliferator-activated receptor-y,PPAR-γ)的表达。
     体内研究进一步证实:过表达NFIC的SCAPs细胞复合胶原/煅烧牛骨(calcinedbovine bone,CBB)材料植入免疫缺陷型小鼠的皮下12周后,可促进形成类成牙本质细胞和牙本质样结构。
     3.转录因子NFIC参与TGF-β1信号通路对SCAPs的调控
     不同浓度TGF-β1均抑制SCAPs增殖和体外矿化结节形成,并下调矿化基因的表达,而分别应用TGF-β1Ⅰ型受体抑制剂SB431542和Smad3的抑制剂SIS3阻断TGF-β信号通路后,可部分逆转TGF-β1对SCAPs增殖和分化的抑制作用。TGF-β1抑制NFIC蛋白的表达,过表达NFIC减弱TGF-β1对SCAPs矿化能力的抑制作用,而沉默NFIC则增强了TGF-β1对SCAPs成牙/骨的分化能力。实验结果显示NFIC参与TGF-β1信号通路对SCAPs的生物学调控。
     综上所述,本研究通过体内/外实验证实NFIC可以促进根尖牙乳头干细胞的增殖和分化能力;而TGF-β1则起抑制作用;且NFIC参与了TGF-β1对根尖牙乳头干细胞分化特性的调控。本实验结果为阐述NFIC在调控SCAPs定向分化中的重要作用;同时为进一步研究SCAPs在牙髓牙本质再生和生物学牙根的组织工程研究提供了新的研究思路。
The use of stem cells in tissue engineering strongly extends the range of itsapplications in dental pulp/dentin regeneration or the bioroot for the future. Stem cellsderived from the apical papilla (SCAPs) are a population of mesenchymal stem cells(MSCs) residing in root apex of incompletely developed teeth. SCAPs appear to have acapacity of multi-lineage dentinogenic, especially dentinogenic differentiation when underdefined culture conditions. SCAPs are thought to be the major souce for primaryodontoblasts which are responsible for the formation of root dentin. As a distinct source ofpotent dental stem/progenitor cells, SCAPs show a greater dentinogenic potential andweakly immunogenic compared with dental pulp stem cells (DPSCs), which might be of significance for their application in bone/dental tissue engineering.
     Nuclear factor I-C (NFIC) was reported as a critical regulator in root formation.Disruption of NFIC caused developed short molar roots contained aberrant odontoblastsand abnormal dentin formation, but normal crowns in mice. Studies have reported thatNFIC played a critical role in root development and SCAPs were the source ofodontoblasts of root. However, the effects and mechanisms of NFIC on the differentiationof SCAPs have not yet been reported.
     Tooth root formation is mediated through a series of epithelial-mesenchymalinteractions regulated by several factors. The transforming growth factor-β (TGF-β)superfamily, including TGF-βs, bone morphogenetic protein, activins andinhibins,regulates cell proliferation, cell differentiation, the epithelial-to-mesenchymal transitionand embryonic development and so on. Reports have confirmed NFIC affected the normalprogression of the skin wound healing process by inhibiting the level of TGF-β.Disruption of NFIC, both the expression of TGF-β-RI and the phosphorylation of Smad2/3increased during odontoblast, which revealed the interaction between NFIC and TGF-βsignaling pathway. However, the exact mechanism for the regulation and interaction ofNFIC and TGF-β on the differentiation of SCAPs are still unknown.
     In the present study, we isolated, expanded and identificated SCAPs from the apicalpapilla. The pLenti6.3/v5-NFIC plasmid encoding full-length NFIC or NFIC silence bysi-RNA were constructed and transfected into SCAPs respectively. Then, the effects ofNFIC on the proliferation and differentiation of SCAPs were subsequently determined invitro and in vivo. In addition, we also evaluated the effects of TGF-β1on the proliferativecapacity and differentiation potential of SCAPs. The crosstalk between NFIC and TGF-β1were further determined. These will facilitate the application of SCAPs in pulp/dentinregeneration and bioroot formation.Main results
     1. Isolation, expandation and identification of SCAPs.
     Human third molars with developing roots were collected due to orthodontic reasons.The extraction procedure was approved by Institutional Review Board of the Fourth Military Medical University and performed with the informed consent of the patients.Single cell suspensions of SCAPs were obtained by limiting dilution procedures.Immunocytochemical staining and flow cytometry-based cell sorting showed that the cellsderived from apical papilla contained mesenchymal stem cell populations. Besides, theisolated cells had the ability of osteo/odontogenic and adipogenic differentiation, whengrew under defined culture conditions.
     2. The effects of NFIC on proliferation and differentiation of SCAPs and in vitro.
     The pLenti6.3/v5-NFIC plasmid encoding full-length NFIC or NFIC silence bysi-RNA were constructed and transfected into SCAPs respectively. The proliferation, ALPactivity and osteo/odontogenic differentiation capacity of SCAPs were increased byoverexpression of NFIC. Besides, NFIC upregulated the mRNA levels of alkalinephosphatase (ALP), osteocalcin (OCN) and collagen typeⅠ(CoL.I), as well as dentinsialoprotein (DSP) protein which were analyzed by western blot. In contrast, knockdownof NFIC blocked the mineralization of SCAPs and downregulated the expression ofodontogenic-related markers ALP, OCN and CoL.I. Additionally, the lipid dropletsformation and the adipogenic differentiation markers (CCAAT/enhancer binding proteinbeta C/EBP-β, CCAAT/enhancer binding protein delta C/EBP-δ and peroxisomeproliferator-activated receptor gamma PPARγ) were further induced by NFIC.
     Consistently, in vivo results further demonstrated that NFIC promoted the odontoblastor dentin like tissues regeneration integrating with the collagen and (calcined bovinebone,CBB) biomaterials in immunocompromised mice after12weeks.
     3. Involvement of NFIC in the biological effects of TGF-β1on SCAPs
     TGF-β1inhibited the prolifiration of SCAPs and mineral nodule formation indose-dependant manner. The mRNA levels of ALP, OCN and CoL.I were alldownregulated by TGF-β1. Results indicated that preincubated with the inhibitors ofTGF-β/Smad signaling (SB431542or SIS3) attenuated the suppressive effect of TGF-β1on the differention of SCAPs. TGF-β1inhibited NFIC protein level. In addition,overexpression of NFIC inhibited the effects of TGF-β1on SCAPs while knockdown of TGF-β1on SCAPs.
     In summary, results suggested that NFIC enhanced the proliferation and mineralizeddifferentiation of SCAPs both in vitro and in vivo, mechanically, we further found thatNFIC may be a key regulator for the inhibitory effect of TGF-β1in calcified noduleformation and osteo/dentinogenic differentiation. Taken together, current study providedvaluable evidence for the application of NFIC in the pulp/dentin regeneration and biorootformation in the future.
引文
1. Iwaya SI, Ikawa M, Kubota M. Revascularization of an immature permanent tooth with apicalperiodontitis and sinus tract. Dent Traumatol.2001;17(4):185–187.
    2. Sonoyama W, Liu Y, Fang D, Yamaza T, Seo BM, Zhang C, et al. Mesenchymal stemcell-mediated functional tooth regeneration in swine. PLoS ONE2007;1(1):e79.
    3. Sonoyama W, Liu Y, Yamaza T, Tuan RS, Wang S, Shi S, et al. Characterization of the apicalpapilla and its residing stem cells from human immature permanent teeth: a pilot study. J Endod.2008;34(2):166-171.
    4. Huang GT, Sonoyama W, Liu H, Wang S. The hidden treasure in apical papilla: the potential rolein pulp/dentin regeneration and bioroot engineering. J Endod.2008;34(6):645-651.
    5. J. M. The transforming growth factor-β family. Cell Biol.1990;6:597-641.
    6. Wu SP, Theodorescu D, Kerbel RS, Willson JK, Mulder KM, Humphrey LE, et al. TGF-beta1isan autocrine-negative growth regulator of human colon carcinoma FET cells in vivo as revealed bytransfection of an antisense expression vector. J Cell Biol.1992Jan;116(1):187-96.1992;116(1):187-196.
    7. Wong C, Rougier-Chapman EM, Frederick JP, Datto MB, Liberati NT, Li JM, et al. Smad3-Smad4and AP-1complexes synergize in transcriptional activation of the c-Jun promoter by transforminggrowth factor beta. Mol Cell Biol.1999Mar;19(3):1821-30.1999;19(3):1821-1830.
    8. Gronthos S, Mankani M, Brahim J, Robey PG, S. S. Postnatal human dental pulp stem cells(DPSCs) in vitro and in vivo. Proc Natl Acad Sci USA,2000;97(25):13625-13630.
    9. Morsczeck C, Gotz W, Schierholz J, Zeilhofer F, Kuhn U, Mohl C, et al. Isolation of precursorcells (PCs) from human dental follicle of wisdom teeth. Matrix Biol,2005;24(2):45-58.
    10. Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, et al. SHED: stem cells from humanexfoliated deciduous teeth. Proc Natl Acad Sci USA,2003;10(10):5807-5812.
    11. Seo BM, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J, et al. Investigation ofmultipotent postnatal stem cells from human periodontal ligament. Lancet2004;364(9429):149-155.
    12. Tziafas D, K. K. Differentiation potential of dental papilla, dental pulp, and apical papillaprogenitor cells. J Endod.2010May;36(5):781-9.2010;36(5):781-789.
    13. Banchs F, M. T. Revascularization of immature permanent teeth with apical periodontitis: newtreatment protocol? J Endod.2004;30(4):196-200.
    14. Elisabetta Cotti, Manuela Mereu, Lusso. D. Regenerative treatment of an immature, traumatizedtooth with apical periodontitis: report of a case. J Endod.2008;34(5):611-616.
    15. Abe S, Yamaguchi S, T. A. Multilineage cells from apical pulp of human tooth with immatureapex. Oral Sci Int,2007;4(1):45-58.
    16. George T.-J. Huang, Takayoshi Yamaza, Lonnie D. Shea, Farida Djouad, Nastaran Z, Kuhn, et al.Stem/Progenitor Cell–Mediated De Novo Regeneration of Dental Pulp with Newly DepositedContinuous Layer of Dentin in an In Vivo Model. Tissue Eeginering,2010;16(2):605-615.
    17. Nasef A, Zhang YZ, Mazurier C, Bouchet S, Bensidhoum M, Francois S, et al. SelectedStro-1-enriched bone marrow stromal cells display a major suppressive effect on lymphocyteproliferation. Int J Lab Hematol.2009;31(1):9-19.
    18. Chen W, Zhang HL, Jiang YG, Li JH, Liu BL, MY. S. Inhibition of CD146gene expression viaRNA interference reduces in vitro perineural invasion on ACC-M cell. J Oral Pathol Med.2009Feb;38(2):198-205.2009;38(2):198-205.
    19. Tachezy M, Reichelt U, Melenberg T, Gebauer F, Izbicki JR, JT. K. Angiogenesis index CD105(endoglin)/CD31(PECAM-1) as a predictive factor for invasion and proliferation in intraductalpapillary mucinous neoplasm (IPMN) of the pancreas. Histol Histopathol.2010Oct;25(10):1239-46.2010;25(10):1239-1246.
    20. Flores-Borja F, Kabouridis PS, Jury EC, Isenberg DA, RA. M. Altered lipid raft-associatedproximal signaling and translocation of CD45tyrosine phosphatase in B lymphocytes frompatients with systemic lupus erythematosus. Arthritis Rheum.2007;56(1):291-302.
    21. Huang GT, Sonoyama W, Liu Y, Liu H, Wang S, S. S. The hidden treasure in apical papilla: thepotential role in pulp/dentin regeneration and bioroot engineering. JOE2008;34(6):645-651.
    22. Abe S, Yamaguchi S, Watanabe A, Hamada K, T. A. Hard tissue regeneration capacity of apicalpulp derived cells (APDCs) from human tooth with immature apex. Biochem Biophys ResCommun.2008;371(1):90-93..
    23. Ding G, Liu Y, An Y, Zhang C, Shi S, Wang W, et al. Suppression of T cell proliferation by rootapical papilla stem cells in vitro. Cells Tissues Organs.2009;191(5):357-364.
    24. Wang X, Thibodeau B, Trope M, Lin LM, GT. H. Histologic characterization of regeneratedtissues in canal space after the revitalization/revascularization procedure of immature dog teethwith apical periodontitis. J Endod.2010;36(1):56-63.
    25. Jung IY, Kim ES, Lee CY, SJ. L. Continued development of the root separated from the main root.J Endod.2011;37(5):711-714.
    26. Trevino EG, Patwardhan AN, Henry MA, Perry G, Dybdal-Hargreaves N, Hargreaves KM, et al.Effect of irrigants on the survival of human stem cells of the apical papilla in a platelet-richplasma scaffold in human root tips. J Endod.2011Aug;37(8):1109-15.2011;37(8):1109-1115..
    27. Bakopoulou A, Leyhausen G, Volk J, Koidis P, W. G. Effects of resinous monomers on theodontogenic differentiation and mineralization potential of highly proliferative and clonogeniccultured apical papilla stem cells. Dent Mater.2012Mar;28(3):327-39.2012;28(3):327-339.
    28. Abe S, Hamada K, Yamaguchi S, Amagasa T, M. M. Characterization of the radioresponse ofhuman apical papilla-derived cells. Stem Cell Res Ther.2011;2(1):2.
    29. Ding G, Wang W, Liu Y, An Y, Zhang C, Shi S, et al. Effect of cryopreservation on biologicaland immunological properties of stem cells from apical papilla. J Cell Physiol.2010;223(2):415-422.
    30. Nagata K, Guggenheimer RA, J. H. Adenovirus DNA replication in vitro: synthesis of full-lengthDNA with purified proteins. Proc Natl Acad Sci USA.1983;80(14):4266-4270.
    31. Nagata K, Guggenheimer RA, J. H. Specific binding of a cellular DNA replication protein to theorigin of replication of adenovirus DNA. Proc Natl Acad Sci USA.1983;80(20):6177-6181.
    32. Rupp RA, Kruse U, Multhaup G, G bel U, Beyreuther K, AE. S. Chicken NFI/TGGCA proteinsare encoded by at least three independent genes: NFI-A, NFI-B and NFI-C with homologues inmammalian genomes. Nucleic Acids Res.1990;18(9):2607-2616.
    33. Kruse U, Qian F, AE. S. Identification of a fourth nuclear factor I gene in chicken by cDNAcloning: NFI-X. Nucleic Acids Res.1991;19(23):6641.
    34. de Jong RN, PC. vdV. Mechanism of DNA replication in eukaryotic cells: cellular host factorsstimulating adenovirus DNA replication. Gene.1999;236(1):1-12.
    35. Fletcher CF, Jenkins NA, Copeland NG, Chaudhry AZ, RM. G. Exon structure of the nuclearfactor I DNA-binding domain from C. elegans to mammals. Mamm Genome.1999;10(4):390-396.
    36. Wong YW, Schulze C, Streichert T, Gronostajski RM, Schachner M, T. T. Gene expressionanalysis of nuclear factor I-A deficient mice indicates delayed brain maturation. Genome Biol.2007;8(5):R72.
    37. Shu T, Butz KG, Plachez C, Gronostajski RM, LJ. R. Abnormal development of forebrain midlineglia and commissural projections in Nfia knock-out mice. J Neurosci.2003;23(1):203-212.
    38. Steele-Perkins G, Plachez C, Butz KG, Yang G, Bachurski CJ, Kinsman SL, et al. Thetranscription factor gene Nfib is essential for both lung maturation and brain development. MolCell Biol.2005;25(2):685-698.
    39. Driller K, Pagenstecher A, Uhl M, Omran H, Berlis A, Gründer A, et al. Nuclear factor I Xdeficiency causes brain malformation and severe skeletal defects. Mol Cell Biol.2007;27(10):3855-3867.
    40. Qian F, Kruse U, Lichter P, AE. S. Chromosomal localization of the four genes (NFIA, B, C, andX) for the human transcription factor nuclear factor I by FISH. Genomics.1995;28(1):66-73.
    41. RM. G. Roles of the NFI/CTF gene family in transcription and development. Gene.2000;249((1-2)):31-45.
    42. Xiao H, Lis JT, Xiao H, Greenblatt J, JD. F. The upstream activator CTF/NF1and RNApolymerase II share a common element involved in transcriptional activation. Nucleic Acids Res.1994;22(11):1966-1973.
    43. Alevizopoulos A, Dusserre Y, Tsai-Pflugfelder M, von der Weid T, Wahli W, N. M. Aproline-rich TGF-beta-responsive transcriptional activator interacts with histone H3. Genes Dev.1995;9(4):3051-3066.
    44. Tarapore P, Richmond C, Zheng G, Cohen SB, Kelder B, Kopchick J, et al. DNA binding andtranscriptional activation by the Ski oncoprotein mediated by interaction with NFI. Nucleic AcidsRes.1997;25(19):3895-3903.
    45. Leahy P, Crawford DR, Grossman G, Gronostajski RM, RW. H. CREB binding proteincoordinates the function of multiple transcription factors including nuclear factor I to regulatephosphoenolpyruvate carboxykinase (GTP) gene transcription. J Biol Chem.1999;274(13):8813-8822.
    46. Chaudhry AZ, Vitullo AD, RM. G. Nuclear factor I-mediated repression of the mouse mammarytumor virus promoter is abrogated by the coactivators p300/CBP and SRC-1. J Biol Chem.1999;274(11):7072-7081.
    47. Satoh S, Noaki T, Ishigure T, Osada S, Imagawa M, Miura N, et al. Nuclear factor1familymembers interact with hepatocyte nuclear factor1alpha to synergistically activate L-type pyruvatekinase gene transcription. J Biol Chem.2005;280(48):39827-39834.
    48. Murtagh J, Martin F, RM. G. The Nuclear Factor I (NFI) gene family in mammary glanddevelopment and function. J Mammary Gland Biol Neoplasia.2003;8(2):241-254.
    49. Chaudhry AZ, Vitullo AD, RM. G. Nuclear factor I (NFI) isoforms differentially activate simpleversus complex NFI-responsive promoters. J Biol Chem.1998;273(29):18538-18546.
    50. Yeh LC, JC. L. Identification of an osteogenic protein-1(bone morphogeneticprotein-7)-responsive element in the promoter of the rat insulin-like growth factor-bindingprotein-5gene. Endocrinology.2000;141(9):3278-3286.
    51. Mukhopadhyay SS, Wyszomierski SL, Gronostajski RM, JM. R. Differential interactions ofspecific nuclear factor I isoforms with the glucocorticoid receptor and STAT5in the cooperativeregulation of WAP gene transcription. Mol Cell Biol.2001;21(20):6859-6869.
    52. Cesi V, Giuffrida ML, Vitali R, Tanno B, Mancini C, Calabretta B, et al. C/EBP alpha and betamimic retinoic acid activation of IGFBP-5in neuroblastoma cells by a mechanism independentfrom binding to their site. Exp Cell Res.2005;305(1):179-189.
    53. Cooke DW, MD. L. Transcription factor NF1mediates repression of the GLUT4promoter bycyclic-AMP. Biochem Biophys Res Commun.1999;260(3):600-604.
    54. Candeliere GA, Jurutka PW, Haussler MR, R. S-A. A composite element binding the vitamin Dreceptor, retinoid X receptor alpha, and a member of the CTF/NF-1family of transcription factorsmediates the vitamin D responsiveness of the c-fos promoter. Mol Cell Biol.1996;16(2):584-592.
    55. Allgood VE, Oakley RH, JA. C. Modulation by vitamin B6of glucocorticoid receptor-mediatedgene expression requires transcription factors in addition to the glucocorticoid receptor. J BiolChem.1993;268(28):20870-20876.
    56. Alevizopoulos A, Dusserre Y, Rüegg U, N. M. Regulation of the transforming growth factorbeta-responsive transcription factor CTF-1by calcineurin and calcium/calmodulin-dependentprotein kinase IV. J Biol Chem.1997;272(38):23597-23605.
    57. Ohlsson M, Leonardsson G, Jia XC, Feng P, T. N. Transcriptional regulation of the rat tissue typeplasminogen activator gene: localization of DNA elements and nuclear factors mediatingconstitutive and cyclic AMP-induced expression. Mol Cell Biol.1993;13(1):266-275.
    58. Cooke DW, MD. L. The transcription factor nuclear factor I mediates repression of the GLUT4promoter by insulin. J Biol Chem.1999;274(18):12917-12924.
    59. Steele-Perkins G, Butz KG, Lyons GE, Zeichner-David M, Kim HJ, Cho MI, et al. Essential rolefor NFI-C/CTF transcription-replication factor in tooth root development. Mol Cell Biol2003;23(3):1075-1084.
    60. RM. G. Roles of the NFI/CTF gene family in transcription and development. Gene.2000;249(1-2):31-45.
    61. Steele-Perkins G, Butz KG, Lyons GE, Zeichner-David M, Kim HJ, Cho MI, et al. Essential rolefor NFI-C/CTF transcription-replication factor in tooth root development. Mol Cell Biol.2003;23(3):1075-1084.
    62. Lee TY, Lee DS, Kim HM, Ko JS, Gronostajski RM, Cho MI, et al. Disruption of Nfic causesdissociation of odontoblasts by interfering with the formation of intercellular junctions andaberrant odontoblast differentiation. J Histochem Cytochem.2009;57(5):469-476.
    63. Lee DS, Park JT, Kim HM, Ko JS, Son HH, Gronostajski RM, et al. Nuclear Factor I-C isessential for odontogenic cell proliferation and odontoblast differentiation during tooth rootdevelopment. J Biol Chem2009;284(25):17293-303.
    64. Plasari G, Edelmann S, H gger F, Dusserre Y, Mermod N, Calabrese A. Nuclear factor I-Cregulates TGF-{beta}-dependent hair follicle cycling. J Biol Chem.2010;285(44):34115-34125.
    65. Kim MY, Reyna J, Chen LS, M. Z-D. Role of the transcription factor NFIC in odontoblast geneexpression. J Calif Dent Assoc.2009;37(12):875-881.
    66. Yamakoshi Y, Hu JC, Iwata T, Kobayashi K, Fukae M, JP. S. Dentin sialophosphoprotein isprocessed by MMP-2and MMP-20in vitro and in vivo. J Biol Chem.2006;281(50):38235-38243.
    67. Lamani E, Wu Y, Dong J, Litaker MS, Acevedo AC, M. M. Tissue-and cell-specific alternativesplicing of NFIC. Cells Tissues Organs.2009;189(1-4):105-110.
    68. Rossi P, Karsenty G, Roberts AB, Roche NS, Sporn MB, B. dC. A nuclear factor1binding sitemediates the transcriptional activation of a type I collagen promoter by transforming growthfactor-beta. Cell.1988Feb12;52(3):405-14.1988;52(3):405-414.
    69.Sun P, Dong P, Dai K, Hannon GJ, D. B. p53-independent role of MDM2in TGF-beta1resistance.Science.1998;282(5397):2270-2272.
    70. Cooke DW, MD. L. Transcription factor NF1mediates repression of the GLUT4promoter bycyclic-AMP. Biochem Biophys Res Commun.1999;260(3):600-604.
    71. Candeliere GA, Jurutka PW, Haussler MR, R. S-A. A composite element binding the vitamin Dreceptor, retinoid X receptor alpha, and a member of the CTF/NF-1family of transcription factorsmediates the vitamin D responsiveness of the c-fos promoter. Mol Cell Biol.1996Feb;16(2):584-92.1996;16(2):584-592.
    72. Luciakova K, Kollarovic G, Barath P, BD. N. Growth-dependent repression of human adeninenucleotide translocator-2(ANT2) transcription: evidence for the participation of Smad and Spfamily proteins in the NF1-dependent repressor complex. Biochem J.2008;412(1):123-130.
    73. Lee DS, Yoon WJ, Cho ES, Kim HJ, Gronostajski RM, Cho MI, et al. Crosstalk between nuclearfactor I-C and transforming growth factor-β1signaling regulates odontoblast differentiation andhomeostasis. PLoS One.2010;6(12):e29160.
    74. Zhang Y, Feng XH, R. D. Smad3and Smad4cooperate with c-Jun/c-Fos to mediateTGF-beta-induced transcription. Nature.1998Aug27;394(6696):909-913.
    75. Frolik CA, Dart LL, Meyers CA, Smith DM, MB. S. Purification and initial characterization of atype beta transforming growth factor from human placenta. Proc Natl Acad Sci USA.1983;80(12):3676-3680.
    76. Zhou GH, Sechrist GL, Periyasamy S, Brattain MG, KM. M. Transforming growth factor betaisoform-specific differences in interactions with type I and II transforming growth factor betareceptors. Cancer Res.1995;55(10):2056-2062.
    77. Massagué J, Andres J, Attisano L, Cheifetz S, López-Casillas F, Ohtsuki M, et al. TGF-betareceptors. Mol Reprod Dev.1992;32(2):99-104.
    78. Itoh S, Itoh F, Goumans MJ, P. D. Signaling of transforming growth factor-b family membersthrough Smad proteins. Eur J Biochem.2000;267(54):6954–6967.
    79. Derynck R, XH. F. TGF-beta receptor signaling. Biochim Biophys Acta.1997;1333(2):105-150.
    80. Heldin CH, Miyazono K, P. tD. TGF-beta signalling from cell membrane to nucleus throughSMAD proteins. Nature.1997Dec4;390(6659):465-71.1997;390(6659):465-471.
    81. López-Casillas F, Payne HM, Andres JL, J. M. Betaglycan can act as a dual modulator ofTGF-beta access to signaling receptors: mapping of ligand binding and GAG attachment sites. JCell Biol.1994Feb;124(4):557-68.1994;124(4):557-568.
    82. Derynck R, YE. Z. Smad-dependent and Smad-independent pathways in TGF-beta familysignalling. Nature.2003Oct9;425(6958):577-84.2003;425(6958):577-584.
    83. Xiao Z, Watson N, Rodriguez C, HF. L. Nucleocytoplasmic shuttling of Smad1conferred by itsnuclear localization and nuclear export signals. J Biol Chem.2001;276(42):39404-39410.
    84. Kurisaki A, Kose S, Yoneda Y, Heldin CH, A. M. Transforming growth factor-beta inducesnuclear import of Smad3in an importin-beta1and Ran-dependent manner. Mol Biol Cell.2001;12(4):1079-1091.
    85. Xu L, Chen YG, J. M. The nuclear import function of Smad2is masked by SARA and unmaskedby TGFbeta-dependent phosphorylation. Nat Cell Biol.2000Aug;2(8):559-62.2000;2(8):559-562.
    86. Inman GJ, Nicolás FJ, CS. H. Nucleocytoplasmic shuttling of Smads2,3, and4permits sensingof TGF-beta receptor activity. Mol Cell.2002Aug;10(2):283-94.2002;10(2):283-294.
    87. Feng XH, Lin X, R. D. Smad2, Smad3and Smad4cooperate with Sp1to induce p15(Ink4B)transcription in response to TGF-beta. EMBO J.2000;19(19):5178-5193.
    88. Moustakas A, Souchelnytskyi S, CH. H. Smad regulation in TGF-beta signal transduction. J CellSci.2001;114(Pt24):4359-4369.
    89. Alliston T, Choy L, Ducy P, Karsenty G, R. D. TGF-beta-induced repression of CBFA1bySmad3decreases cbfa1and osteocalcin expression and inhibits osteoblast differentiation. EMBO J.2001;20(9):2254-2272.
    90. Choy L, R. D. Transforming growth factor-beta inhibits adipocyte differentiation by Smad3interacting with CCAAT/enhancer-binding protein (C/EBP) and repressing C/EBP transactivationfunction. J Biol Chem.2003;278(14):9609-9619.
    91. Liberati NT, Moniwa M, Borton AJ, Davie JR, XF. W. An essential role for Mad homologydomain1in the association of Smad3with histone deacetylase activity. J Biol Chem.2001Jun22;276(25):22595-603. Epub2001Apr16.2001;276(25):22595-22603.
    92. Thesleff I, Vaahtokari A, Kettunen P, T. A. Epithelial-mesenchymal signaling during toothdevelopment. Connect Tissue Res.1995;32(1-4):9-15.
    93. Vaahtokari A, Vainio S, I. T. Associations between transforming growth factor beta1RNAexpression and epithelial-mesenchymal interactions during tooth morphogenesis. Development.1991;113(3):985-994.
    94. Toyono T, Nakashima M, Kuhara S, A. A. Temporal changes in expression of transforminggrowth factor-beta superfamily members and their receptors during bovine preodontoblastdifferentiation in vitro. Arch Oral Biol.1997Jul;42(7):481-8.1997;42(7):481-488.
    95. Bègue-Kirn C, Ruch JV, Ridall AL, WT. B. Comparative analysis of mouse DSP and DPPexpression in odontoblasts, preameloblasts, and experimentally induced odontoblast-like cells. EurJ Oral Sci.1998;106(Suppl1):254-259.
    96. Smith AJ, Cassidy N, Perry H, Bègue-Kirn C, Ruch JV, H. L. Reactionary dentinogenesis. Int JDev Biol.1995;39(1):273-280.
    97. Sloan AJ, AJ. S. Stimulation of the dentine-pulp complex of rat incisor teeth by transforminggrowth factor-beta isoforms1-3in vitro. Arch Oral Biol.1999;44(2):149-156.
    98. D'Souza RN, Cavender A, Dickinson D, Roberts A, J. L. TGF-beta1is essential for thehomeostasis of the dentin-pulp complex. Eur J Oral Sci.1998;106(Suppl1):185-191.
    99. Li Y, Lü X, Sun X, Bai S, Li S, Shi J. Odontoblast-like cell differentiation and dentin formationinduced with TGF-β1. Arch Oral Biol.2011,56(11):1221-1229.
    100. Ochiai H, Okada S, Saito A, Hoshi K, Yamashita H, Takato T, et al. Inhibition of insulin-likegrowth factor-1(IGF-1) expression by prolonged transforming growth factor-β1(TGF-β1)administration suppresses osteoblast differentiation. J Biol Chem.2012Jun29;287(27):22654-612012;287(27):22654-22661
    101. Ripamonti U, Duneas N, Van Den Heever B, Bosch C, J. C. Recombinant transforming growthfactor-beta1induces endochondral bone in the baboon and synergizes with recombinantosteogenic protein-1(bone morphogenetic protein-7) to initiate rapid bone formation. J BoneMiner Res.1997;12(10):1584-1595.
    102. Borton AJ, Frederick JP, Datto MB, Wang XF, RS. W. The loss of Smad3results in a lower rateof bone formation and osteopenia through dysregulation of osteoblast differentiation andapoptosis. J Bone Miner Res.2001;16(10):1754-1764.
    103. Kwok S, Partridge NC, Srinivasan N, Nair SV, N. S. Mitogen activated protein kinase-dependentinhibition of osteocalcin gene expression by transforming growth factor-beta1. J Cell Biochem.2009;106(1):161-169..
    104. Tziafas D, S. P. Role of exogenous TGF-beta in induction of reparative dentinogenesis in vivo.Eur J Oral Sci.1998Jan;106Suppl1:192-6.1998;106(Suppl1):192-196.
    105. Hu CC, Zhang C, Qian Q, NB. T. Reparative dentin formation in rat molars after direct pulpcapping with growth factors. J Endod.1998;24(11):744-751.
    106. Bakopoulou A, Leyhausen G, Volk J, Tsiftsoglou A, Garefis P, Koidis P, et al. Assessment ofthe impact of two different isolation methods on the osteo/odontogenic differentiation potentialof human dental stem cells derived from deciduous teeth. Calcif Tissue Int.2011;88(2):130-141.
    107. Yu J, Wang Y, Deng Z, Tang L, Li Y, Shi J, et al. Odontogenic capability: bone marrow stromalstem cells versus dental pulp stem cells. Biol Cell,2007;99(8):465-474.
    108. Shi S, S. G. Perivascular niche of postnatal mesenchymal stem cells in human bone marrow anddental pulp. J Bone Miner Res.2003;18(4):696-704.
    109. Eastham AM, Spencer H, Soncin F, Ritson S, Merry CL, Stern PL, et al. Epithelial-mesenchymaltransition events during human embryonic stem cell differentiation. Cancer Res.2007;67(23):11254-11262.
    110. Naldini L, Bl mer U, Gallay P, Ory D, Mulligan R, Gage FH, et al. In vivo gene delivery andstable transduction of nondividing cells by a lentiviral vector. Science.1996;272(5259):263-267.
    111. Verma IM, N. S. Gene therapy--promises, problems and prospects. Nature1997;389(6648):239-242.
    112.王淑艳,,张愚.慢病毒载体的设计及应用进展.中国生物工程杂志2006;26(11):70-75.
    113. Liu Y, Chen C, He H, Wang D, E L, Liu Z, et al. Lentiviral-mediated gene transfer into humanadipose-derived stem cells: role of NELL1versus BMP2in osteogenesis and adipogenesis invitro. Acta Biochim Biophys Sin.2012;44(10):856-865.
    114. Wang S, Mu J, Fan Z, Yu Y, Yan M, Lei G, et al. Insulin-like growth factor1can promote theosteogenic differentiation and osteogenesis of stem cells from apical papilla. Stem Cell Res.2012;8(3):346-356..
    115. Wu J, Huang GT, He W, Wang P, Tong Z, Jia Q, et al. Basic fibroblast growth factor enhancesstemness of human stem cells from the apical papilla. J Endod.201238(5):614-622..
    116. Kim JJ, Kim SJ, Kim YS, Kim SY, Park SH, EC. K. The role of SIRT1on angiogenic andodontogenic potential in human dental pulp cells. J Endod.2012;38(7):899-906..
    117. Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR, et al. The novel zincfinger-containing transcription factor osterix is required for osteoblast differentiation and boneformation. Cell.2002;108(1):17-29.
    118. Wang B, Huang S, Pan L, S. J. Enhancement of bone formation by genetically engineered humanumbilical cord-derived mesenchymal stem cells expressing osterix. Oral Surg Oral Med OralPathol Oral Radiol.2012.
    119. Strauss PG, Closs EI, Schmidt J, V. E. Gene expression during osteogenic differentiation inmandibular condyles in vitro. J Cell Bioi1990;110(4):1369-1378.
    120. S. Rajan, H. Awang, S. Devi, A.H. Pooi, Hassan H. Alkaline phosphatase activity assessment oftwo endodontic materials: A preliminary study. Annal Dent Univ Malaya2008;15(1):5-10.
    121. Shiba H, Mouri Y, Komatsuzawa H, Mizuno N, Xu W, Noguchi T, et al. Enhancement ofalkaline phosphatase synthesis in pulp cells co-cultured with epithelial cells derived from lowerrabbit incisors. Cell Biol Int.2003;27(10):815-823.
    122. Onishi T, Kinoshita S, Shintani S, Sobue S, T. O. Stimulation of proliferation and differentiationof dog dental pulp cells in serum-free culture medium by insulin-like growth factor. Arch OralBiol.1999Apr;44(4):361-71.1999;44(4):361-371.
    123. Eghbali-Fatourechi GZ, M dder UI, Charatcharoenwitthaya N, Sanyal A, Undale AH, ClowesJA, et al. Characterization of circulating osteoblast lineage cells in humans. Bone.2007;40(5):1370-1377.
    124. Sreenath T, Thyagarajan T, Hall B, Longenecker G, D'Souza R, Hong S, et al. Dentinsialophosphoprotein knockout mouse teeth display widened predentin zone and developdefective dentin mineralization similar to human dentinogenesis imperfecta type III. J Biol Chem.2003;278(27):24874-24880.
    125. Lee SK, Lee KE, Jeon D, Lee G, Lee H, Shin CU, et al. A novel mutation in the DSPP geneassociated with dentinogenesis imperfecta type II. J Dent Res.2009;88(1):51-55.
    126. Song Y, Wang C, Peng B, Ye X, Zhao G, Fan M, et al. Phenotypes and genotypes in2DGIfamilies with different DSPP mutations. Oral Surg Oral Med Oral Pathol Oral Radiol Endod.2006;102(3):360-374.
    127. Kim JW, Nam SH, Jang KT, Lee SH, Kim CC, Hahn SH, et al. A novel splice acceptor mutationin the DSPP gene causing dentinogenesis imperfecta type II. Hum Genet.2004;115(3):248-254..
    128. Zhang X, Chen L, Liu J, Zhao Z, Qu E, Wang X, et al. A novel DSPP mutation is associatedwith type II dentinogenesis imperfecta in a Chinese family. BMC Med Genet.2007;8(52).
    129. Godovikova V, Li XR, Saunders TL, HH. R. A rat8kb dentin sialoprotein-phosphophoryn(DSP-PP) promoter directs spatial and temporal LacZ activity in mouse tissues. Dev Biol.2006;289(2):507-516.
    130. Ogbureke KU, LW. F. Renal expression of SIBLING proteins and their partner matrixmetalloproteinases (MMPs). Kidney Int.2005;68(1):155-166.
    131. Ogbureke KU, LW. F. Expression of SIBLINGs and their partner MMPs in salivary glands. JDent Res.2004;83(9):664-670.
    132. Park JC, Herr Y, HJ K. Nfic gene disruption inhibits differentiation of odontoblasts responsiblefor root formation and results in formation of short and abnormal roots in mice. J Periodontol2007;78(9):1795-1802.
    133. Oh HJ, Lee HK, Park SJ, Cho YS, Bae HS, Cho MI, et al. Zinc balance is critical for NFI-Cmediated regulation of odontoblast differentiation. J Cell Biochem.2012;113(3):877-887.
    134. He WX, Niu ZY, Zhao SL, Jin WL, Gao J, AJ. S. TGF-beta activated Smad signalling leads to aSmad3-mediated down-regulation of DSPP in an odontoblast cell line. Arch Oral Biol.2004Nov;49(11):911-8.2004;49(11):911-918.
    135. Hwang YC, Hwang IN, Oh WM, Park JC, Lee DS, HH. S. Influence of TGF-beta1on theexpression of BSP, DSP, TGF-beta1receptor I and Smad proteins during reparativedentinogenesis. J Mol Histol.2008;39(2):153-160.
    136. Kliewer SA, TM. W. The nuclear receptor PPARgamma-bigger than fat. Curr Opin Genet Dev.1998;8(5):576-581.
    137. Ramji DP, P. F. CCAAT/enhancer-binding proteins: structure, function and regulation. BiochemJ.2002;365(Pt3):561-575.
    138. Freytag SO, Paielli DL, JD. G. Ectopic expression of the CCAAT/enhancer-binding proteinalpha promotes the adipogenic program in a variety of mouse fibroblastic cells. Genes Dev.19948(14):1654-1663.
    139. Lin FT, MD. L. CCAAT/enhancer binding protein alpha is sufficient to initiate the3T3-L1adipocyte differentiation program. Proc Natl Acad Sci USA.199491(19):8757-8761
    140. Lee J, Lee J, Jung E, Hwang W, Kim YS, D. P. Isorhamnetin-induced anti-adipogenesis ismediated by stabilization of beta-catenin protein. Life Sci.2010;86(11-12):416-423.
    141. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, CC. M. Potent and specific geneticinterference by double-stranded RNA in Caenorhabditis elegans. Nature.1998;391(6669):806-811.
    142. Wakeland EK, Liu K, Graham RR, TW. B. Delineating the genetic basis of systemic lupuserythematosus. Immunity.2001;15(3):397-408.
    143. Lee YS, Nakahara K, Pham JW, Kim K, He Z, Sontheimer EJ, et al. Distinct roles for DrosophilaDicer-1and Dicer-2in the siRNA/miRNA silencing pathways. Cell.2004;117(1):69-81.
    144. Okamura K, Ishizuka A, Siomi H, MC. S. Distinct roles for Argonaute proteins in smallRNA-directed RNA cleavage pathways. Genes Dev.2004;18(14):1655-1666.
    145. Damm-Welk C, Fuchs U, W ssmann W, A. B. Targeting oncogenic fusion genes in leukemiasand lymphomas by RNA interference. Semin Cancer Biol.2003;13(4):283-292.
    146. Ge Q, McManus MT, Nguyen T, Shen CH, Sharp PA, Eisen HN, et al. RNA interference ofinfluenza virus production by directly targeting mRNA for degradation and indirectly inhibitingall viral RNA transcription. Proc Natl Acad Sci U S A.2003;100(5):2718-2723..
    147. Gitlin L, Karelsky S, R. A. Short interfering RNA confers intracellular antiviral immunity inhuman cells. Nature.2002;418(6896):430-434..
    148. Zhou Y, Qian M, Liang Y, Liu Y, Yang X, Jiang T, et al. Effects of leukemia inhibitory factor onproliferation and odontoblastic differentiation of human dental pulp cells. J Endod.2011;37(6):819-824..
    149. Gregory CA, Gunn WG, Peister A, DJ. P. An Alizarin red-based assay of mineralization byadherent cells in culture: comparison with cetylpyridinium chloride extraction. Anal Biochem.2004;329(1):77-84.
    150. Shimizu T, Yamato M, Kikuchi A. Cell sheet engineering for myocardial tissue reconstruction.Biomaterials.2003Jun;24(13):2309-16.;24(13):2309-2316.
    151. Shimizu T, Sekine H, Yang J, Isoi Y, Yamato M, Kikuchi A, et al. Polysurgery of cell sheetgrafts overcomes diffusion limits to produce thick, vascularized myocardial tissues. FASEB J.2006;20(6):708-710..
    152. Mitani G, Sato M, Lee JI, Kaneshiro N, Ishihara M, Ota N, et al. The properties of bioengineeredchondrocyte sheets for cartilage regeneration. BMC Biotechnol.2009;9(17).
    153. Xie H, H. L. A novel mixed-type stem cell pellet for cementum/periodontal ligament-likecomplex. J Periodontol.2012;83(6):805-815..
    154. Zhang H, Liu S, Zhou Y, Tan J, Che H, Ning F, et al. Natural mineralized scaffolds promote thedentinogenic potential of dental pulp stem cells via the mitogen-activated protein kinasesignaling pathway. Tissue Eng Part A.2012;18(7-8):677-691.
    155. Shirakawa M, Shiba H, Nakanishi K, Ogawa T, Okamoto H, Nakashima K, et al. Transforminggrowth factor-beta-1reduces alkaline phosphatase mRNA and activity and stimulates cellproliferation in cultures of human pulp cells. J Dent Res.1994;73(9):1509-1514.
    156. Dkhissi F, Raynal S, DA. L. Altered complex formation between p21waf, p27kip and theirpartner G1cyclins determines the stimulatory or inhibitory transforming growth factor-beta1growth response of human fibroblasts. Int J Oncol.1999May;14(5):905-10.1999;14(5):905-910.
    157. Ravitz MJ, CE. W. Cyclin-dependent kinase regulation during G1phase and cell cycle regulationby TGF-beta. Adv Cancer Res.1997;71(1):165-207.
    158. Chen CR, Kang Y, Siegel PM, J. M. E2F4/5and p107as Smad cofactors linking the TGFbetareceptor to c-myc repression. Cell.2002;110(1):19-32.
    159. Kang Y, Chen CR, J. M. A self-enabling TGFbeta response coupled to stress signaling: Smadengages stress response factor ATF3for Id1repression in epithelial cells. Mol Cell.2003;11(4):915-926.
    160. Feng JQ, Luan X, Wallace J, Jing D, Ohshima T, Kulkarni AB, et al. Genomic organization,chromosomal mapping, and promoter analysis of the mouse dentin sialophosphoprotein (Dspp)gene, which codes for both dentin sialoprotein and dentin phosphoprotein. J Biol Chem.1998;273(16):9457-9464.
    161. Qing J, Zhang Y, R. D. Structural and functional characterization of the transforming growthfactor-beta-induced Smad3/c-Jun transcriptional cooperativity. J Biol Chem.2000Dec8;275(49):38802-12.2000;275(49):38802-38812.
    162. Li Y, Lü X, Sun X, Bai S, Li S, J. S. Odontoblast-like cell differentiation and dentin formationinduced with TGF-β1. Arch Oral Biol.2011;56(11):1221-1229.
    163. Stefancsik R, S. S. Relationship between the DNA binding domains of SMAD and NFI/CTFtranscription factors defines a new superfamily of genes. DNA Seq.2003Aug;14(4):233-9.2003;14(4):233-239.
    164. Plasari G, Calabrese A, Dusserre Y, Gronostajski RM, McNair A, Michalik L, et al. Nuclearfactor I-C links platelet-derived growth factor and transforming growth factor beta1signaling toskin wound healing progression. Mol Cell Biol.2009;29(22):6006-6017.
    165. Rossi P, Karsenty G, Roberts AB, Roche NS, Sporn MB, B. dC. A nuclear factor1binding sitemediates the transcriptional activation of a type I collagen promoter by transforming growthfactor-beta. Cell.1988;52(3):405-414.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700