PPARs与局灶性脑缺血再灌注损伤的相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的:1.观察脑缺血再灌注损伤时过氧化物酶体增殖物激活受体(peroxisome proliferators-activated receptors, PPARs)各亚型蛋白(PPARα、PPARβ/δ、PPARγ)表达的变化以及PPARs激动剂对PPARs表达的影响,并探讨PPARs的改变在脑缺血再灌注损伤中的意义;2.以PPARs三亚型中的PPARRγ为研究对象,观察脑缺血再灌注损伤时其核移位的变化,以及PPARγ激动剂和拮抗剂对核移位的影响,并初步探讨PPARγ核移位在脑缺血再灌注损伤中的意义;3.观察脑缺血再灌注损伤时12/15-脂氧酶(12/15-lipoxygenase,12/15-LOX)表达及其产物15-HETE含量的改变,以及12/15-LOX抑制剂和产物对PPARγ表达的影响,初步探讨12/15-LOX途径在PPARγ表达调控中的意义。
     研究方法:1.将SD大鼠随机分为假手术组(Sham组)、缺血再灌注模型组(I/R组)、治疗组。制作大鼠MCAO/R模型,缺血60min,再灌注24h。治疗组于MCAO/R前30min给予PPAR全激动剂苯扎贝特(Bezafibrate, Beza)。使用神经功能缺损评分、2%氯化三苯四唑(2,3,5-triphenyltetrazolium, TTC)染色对苯扎贝特在脑缺血再灌注损伤中的作用进行评价,免疫组化、Western blot检测PPARs各亚型蛋白表达情况;2.将大鼠随机分为假手术组(Sham组)、缺血再灌注模型组(I/R组)、PPARγ激动剂干预组(Ros组)、PPARγ抑制剂干预组(GW9662组)。其中I/R组,缺血均为60min,又根据再灌注时间分为2h、4h、8h、24h组。Ros组、GW9662组均于MCAO/R前30min给予相应的药物。使用神经功能缺损评分、TTC染色对PPARγ激动剂、抑制剂在脑缺血再灌注损伤中的作用进行评价,免疫组化、Western blot检测PPARγ表达水平,免疫荧光检测PPARγ在神经细胞内的定位;3.将大鼠随机分为Sham组、I/R组(60min/24h)、Baicalein干预组、15-羟基二十碳四烯酸(15-hydroxyeicosatetraenoic,15-HETE)干预组。Baicalein干预组、15-HETE干预组均于MCAO/R前30min给予相应的药物。使用免疫荧光双标检测和Western blot检测12/15-LOX、PPARγ表达,酶联免疫法检测15-HETE含量。
     研究结果:1.与假手术组相比,缺血60min再灌注24h(1)引起平均梗塞体积为44.30%,同时神经功能缺损评分增加,P<0.01,差异有统计学意义;(2)使脑组织PPARs各亚型表达均增加,分别增加了1.47倍、3.52倍和2.25倍,差别有统计学意义(免疫组化检测t值分别为8.63、9.29和13.62,Western blot检测t值分别为8.16、9.24和6.43,均P=0.000);同时PPARs各亚型免疫阳性细胞增加主要表现在缺血侧半暗带区域,而非缺血侧(对侧)表达没有明显改变。与I/R组相比,PPAR全激动剂Beza(1)显著降低脑梗死体积,平均减少54.36%,差异有统计学意义(t=7.69,P=0.000),同时mNSS降低,P<0.01,差异有统计学意义;(2)进一步增加PPARs各亚型表达,分别增加了95.45%、183.47%、224.61%,差异有统计学意义(免疫组化检测t值分别为7.36、5.64和10.50,Western blotting检测t值分别为13.02、17.52和13.64,均P=0.000);同时不但使缺血侧PPARs免疫阳性细胞增加,而且使非缺血侧(对侧)也增加。2. (1)I/R组与Sham组相比,①PPARγ总蛋白表达:Western blot检测显示,再灌注2h组未见明显改变(t=-0.701,P>0.05,差异无统计学意义),再灌注4h组、8h组、24h组PPARγ总蛋白表达水平均增高,且呈再灌注时间依赖性增强(t=-15.749,-16.715,-22.839,均P<0.05,差异有统计学意义);免疫组化检测与Western blot结果一致;②PPARγ成分蛋白表达:Western blot检测显示,Sham组胞浆、胞核内均有PPARγ表达;I/R后,再灌注2h、4h、8h、24h组PPARγ在胞核内的表达增加(与Sham组相比,t=-11.343、-27.191、-24.861、-25.75,均P<0.05),同时在胞浆内的表达减少(与Sham组相比,t=7.197、9.031、10.777、13.78,均P<0.05),且PPARγ的核移位改变呈再灌注时间依赖性;免疫荧光检测与Western blot结果一致;(2)与I/R(60min/24h)组相比,①Ros组梗死体积减小了48.27%,而GW9662组梗死体积增加了39.52%;神经功能缺损评分也呈现一致的改变(均为P<0.05,差异均有统计学意义);②PPARγ总蛋白和成分蛋白表达:Western blot检测显示,与I/R组(60min/24h)相比,PPARγ激动剂组(Ros组)PPARγ的总蛋白表达水平显著增高(t=-23.465,P<0.05),核蛋白表达水平亦显著增高(t=-33.788,P<0.05),浆蛋白表达水平则降低(t=6.428,P<0.05),差异均有统计学意义;而PPARγ抑制剂组(GW9662组)PPARγ的总蛋白表达水平显著降低(t=29.403,P<0.05),核蛋白表达水平亦显著降低(t=22.414,P<0.05),浆蛋白表达水平则增高(t=-6.826,P<0.05),差异均有统计学意义;免疫荧光检测与Western blot结果一致。3. (1)与Sham组相比,Western blot检测显示,I/R(60min/24h)组12/15-LOX总蛋白表达增高(t=-8.195,P<0.05,差异有统计学意义);免疫荧光检测显示,12/15-LOX的表达主要位于缺血半暗带,且其表达位置与PPARγ具有一致性;同时酶联免疫检测显示,I/R组12/15-LOX产物15-HETE的含量明显增加(t=-12.787,P<0.05,差异有统计学意义)。(2)与I/R(60min/24h)组相比,同时给予不同剂量Baicalein (150mg/kg、200mg/kg)使PPARγ总蛋白(t=7.253,8.61,P<0.05)、核蛋白(t=15.361,26.922,P<0.05)表达均降低,浆蛋白(t=-17.579,-25.719,P<0.05)表达增高,差异均有统计学意义;Baicalein 200mg/kg处理不同时间(缺血60min再灌注4h和24h)均引起PPARγ总蛋白(t=2.773,11.650,P<0.05)、核蛋白(t=4.313,37.468,P<0.05)表达水平均降低,浆蛋白(t=-2.553,-8.246,P<0.05)表达水平增高,差异均有统计学意义;(3)与I/R(60min/24h)组相比,12/15-LOX产物15-HETE干预组PPARγ总蛋白(t=-23.884,P<0.05)、核蛋白(t=-15.36,P<0.05)表达水平均增高,浆蛋白(t=5.86,P<0.05)表达水平降低,差异均有统计学意义。
     研究结论:1.局灶性脑缺血再灌注损伤大鼠脑组织PPARs各亚型(PPARα、PPARβ/δ和PPARγ)表达增加,该改变可能是脑组织的一种代偿性神经保护反应;2.(1)脑缺血再灌注损伤可诱导PPARγ表达上调及核移位,最终引起细胞核内PPARγ表达水平增高,即PPARγ核活性增加;(2)I/R时PPARγ核移位的发生早于表达水平上调,相对于增加蛋白水平,可能是机体调节该转录因子的更为直接、快捷的方式;(3)PPARγ激动剂增强、PPARγ抑制剂抑制I/R诱导的PPARγ表达及核移位改变,表明I/R诱导的PPARγ表达及核移位改变可能与内源性PPARγ配体的释放有关;3.I/R时12/15-LOX表达和活性增加;12/15-LOX抑制剂和产物可分别抑制和促进缺血再灌注诱导的PPARγ改变,提示脑缺血再灌注时PPARγ的改变可能(至少部分)与12/15-LOX途径有关。
Objectives:1. To examine PPAR isotypes (PPARa, PPARβ/δ, and PPARγ) expression, in rats exposed to cerebral I/R and I/R in combination with pan-PPAR co-agonist, as well as explore the significance of altered PPARs expression in the context of brain injury.2. To evaluate the alteration in protein expression and nuclear translocation of endogenous PPARγafter focal cerebral I/R in rats, and the influence of PPARγagonist and antagonist to nuclear translocation, and to investigate the meaning of PPARγnuclear translocation in brain ischemia reperfusion injury.3. To examine 12/15-LOX and its metabolite 15-HETE expression in rats exposed to cerebral I/R, and the influence of 12/15-LOX antagonist and metabolite to expression, and to investigate the meaning of 12/15-LOX pathway in PPARγexpression.
     Methods:1. Adult male SD rats underwent 60min middle cerebral artery occlusion followed by a 24-hour reperfusion (MCAO/R), receiving either vehicle (I/R-group) or bezafibrate (6mg/kg) treatment (Beza-group) 30min before operation. mNSS.was used to evaluate the neurological function. TTC staining was adopted to determine the volume of cerebral infarction. The expressions of PPAR isotypes were characterized by immunohistochemical staining (IHC) and Western blot, respectively. Furthermore, the spatial localizations of PPAR isotypes were detected with respect to ipsilateral ischemic (core and penumbra) and contralateral non-ischemic hemisphere. 2. Adult male SD rats underwent 60min middle cerebral artery occlusion followed by 2,4,8 or 24 hour reperfusion (MCAO/R), receiving either vehicle (I/R-group) or rosiglitazone (6mg/kg) treatment (Ros-group) or GW9662 (4mg/kg) treatment (GW9662-group) 30min before operation. mNSS was used to evaluate the neurological severity. TTC staining was adopted to determine the volume of cerebral infarction. The expressions of PPARγwas characterized by immunohistochemical staining (IHC) and Western blot, respectively. The nuclear translocation of PPARγwas characterized by immunoflorescene staining.3. Adult male SD rats underwent 60min middle cerebral artery occlusion followed by a 24-hour reperfusion (MCAO/R), receiving either vehicle (I/R-group) or Baicalein treatment (Baicalein-group) or 15-hydroxyeicosatetraenoic (15-HETE) treatment (15-HETE-group) 30min before operation. Immunoflorescene staining and Western blot were used to evaluate expression of 12/15-LOX and PPARy. The content of 15-HETE was evaluated by enzyme immunoassay.
     Results:1. Compared with sham-group,60min ischemia and 24 h reperfusion caused (1) 44.30% infarct volume in average in ipsilateral hemisphere and mNSS increased, P<0.01; (2) marked up-regulations of all 3 PPAR isotypes expression evaluated by IHC (t=8.63,9.29,13.62, and P<0.01) and Western blot (PPARa by 1.47-fold, PPARδ/βby 3.52-fold, and PPARy by 2.25-fold;t=8.16,9.24,6.43; and P=0.000); meanwhile, dramatical increase in PPARs staining in the ischemia-affected region of the ipsilateral MCA territory, and in particular to the ischemic penumbra. No detectable increase in number and intensity was observed in the contralateral (non-ischemic) hemisphere. Compared with I/R-group, the pan-PPAR co-agonists bezafibrate (Beza) (1) dramatically decreased infarct volume by 54.36% in average (t=7.69, P=0.000), mNSS decreased too, P<0.01; (2) Bezafibrate treatment further increased the alterations of all PPARs expression, which were induced by the exposure of I/R, as determined by IHC (t=7.36,5.64,10.50, and P=0.000) and Western blot (PPARa by 95.45%, PPARβ/δby 183.47%, and PPARγby224.61%; r=13.02,17.52,13.64, and P=0.000); (3) the PPARs immunoreactive expressions were observed in not only the ipsilateral but the contralateral hemisphere of Beza-group.2. (1) Compared with Sham-group, I/R-group①PPARy whole protein expression:As shown with Western blot, the PPARy whole protein expression of 2h-reperfusion hadn't detectable change,t=-0.701, P>0.05; however, the PPARy whole protein expression of 4,8 and 24h-reperfusion all up-regulated in a reperfusion time-dependent way (t=-15.749,-16.715,-22.839, P<0.05); we can observe the same change with immunohistochemical staining;②PPARy component protein expression:as shown with Western blot, in Sham-group, PPARy expressed in both cytosol and nuclear fractions. A increase of PPARy in the nucleus (t=-11.343,-27.191,-24.861,-25.75; P<0.05) could be noted with a simultaneous reduction in the cytosol (t=7.197,9.031,10.777,13.78; P<0.05) following I/R, a time-dependent enhancement in PPARy translocation by the analysis of cytosol and nuclear level of PPARγat 2,4,8 and 24h of reperfusion; we can observe the same change with immunoflorescene staining; (2)Compared with I/R(60min/24h)-group,①the infarct volume of Ros-group decreased by 48.27% and the infarct volume of GW9662-group increased by 39.52%, mNSS also showed the same change, P<0.05;②PPARy whole and component protein expression:as shown with Western blot, rosiglitazone dramtically increased I/R-induced PPARy total protein(t=-23.465, P<0.05) and nuclear protein level (t=-33.788, P<0.05), and decreased I/R-induced PPARy cytosol protein level(t=6.428, P<0.05); GW9662 dramtically decreased I/R-induced PPARy total protein(t=29.403, P<0.05) and nuclear protein level (t=22.414, P<0.05), and decreased I/R-induced PPARy cytosol protein level(t=-6.826, P<0.05); we can observe the same change with immunoflorescence staining; 3. (1) Compared with Sham group, as shown with Western blot, the expression of 12/15-lipoxygenase (12/15-LOX) whole protein was enhanced in I/R(60min/24h) group (t=-8.195, P<0.05); the localization of 12/15-LOX was major in ischemic penumbra as shown with immunoflorescence staining, and consistent with PPARy; and as shown with enzyme immunoassay, the content of 15-HETE in I/R group was dramatically enhanced compared with Sham group (t=-12.787, P<0.05). (2) As shown with Western blot, the majority of PPARy localized in the nucleus under the I/R condition, however, different dose of Baicalein treatment significantly suppressed I/R-induced PPARy nuclear accumulation (150mg/kg,t=15.361, P<0.05; 200mg/kg,t=26.922, P<0.05) and maintained PPARy cytoplasmic retention (150mg/kg,t=-17.579, P<0.05; 200mg/kg,t=-25.719, P<0.05), furthermore, Baicalein also inhibited the up-regulation of PPARy total protein expression (150mg/kg,t=7.253, P<0.05; 200mg/kg,t=8.61, P<0.05); Baicalein 200mg/kg treatment suppressed I/R-induced increase in PPARy total protein expression(t=2.773, P<0.05; t=11.650, P<0.05) and nuclear translocation(t=4.313, P<0.05; t=37.468, P<0.05) with vehicle-treated I/R rats at both 4h and 24h after ischemia, and maintained PPARy cytoplasmic retention (t=4.313, P<0.05; t=-8.246, P<0.05); (3) Compared with I/R(60min/24h) group, 12/15-LOX metabolite 15-HETE treatment dramatically enhanced I/R-induce increase in PPARy total protein expression (t=-23.884, P<0.05) and nuclear translocation (t=-15.36, P<0.05), and suppressed PPARγcytoplasmic retention (t=5.86, P<0.05).
     Conclusion:1. Cerebral I/R injury increases the expression all 3 PPAR isotypes and activation of PPARs by pan-PPAR agonist not only reduces ischemic size but further enhances the alteration of PPARs. The up-regulation of PPARs expression may represent the compensatory self-protection against brain I/R injury. 2. (1) Cerebral I/R could up-regulated PPARy expression-and promoted its nuclear' translocation, the combined and final effect of these changes is to bring about an elevation of nuclear PPARγ, which probably associates with the enchancement of its nuclear activity; (2) The onset of PPARy nuclear translocation was earlier than that of the up-regulation of protein expression, indicating that nuclear translocation of PPARγwas a more direct and quick response to I/R; (3) The supplementation of rosiglitazone, the exogenous PPARγligand, promoted I/R-induced PPARγalterations, whereas the treatment with PPARγantagonist GW9662 inhibited the changes of PPARγ, indicate that I/R-induced changes of PPARγresulting from the activation by endogenous ligands; 3. When ischemia reperfusion, the expression and activity of 12/15-LOX increased; 12/15-LOX inhibitor reduced and metabolite 15-HETE enhanced I/R-induced PPARγchanges, it seems that the mechanism underlying I/R-induced changes of PPARγmay be related to, at least partlγ,12/15-LOX pathway.-
引文
[1]He J, Klag MJ, Wu Z, et al. Stroke in the People's Republic of China. II.Meta-analysis of hypertension and risk of stroke [J]. Stroke,1995, 26(12):2228-2232.
    [2]Durukan A, Tatlisumak T. Acute ischemic stroke:overview of major experimental rodent models, pathophysiology, and therapy of focal cerebral ischemia [J]. Pharmacol Biochem Behav,2007,87(1):179-197.
    [3]Chiu D, Krieger D, Villar-Cordova C, et al. Intravenous tissue plasminogen activator for acute ischemic stroke:feasibility, safety, and efficacy in the first year of clinical practice [J]. Stroke,1998,29(1):18-22.
    [4]Saxena R, Lewis S, Berge E, et al. Risk of early death and recurrent stroke and effect of heparin in 3169 patients with acute ischemic stroke and atrial fibrillation in the International Stroke Trial [J]. Stroke,2001, 32(10):2333-2337.
    [5]Inzitari D, Poggesi A. Calcium channel blockers and stroke [J]. Aging Clin Exp Res,2005,17(4 Suppl):16-30.
    [6]Chen M, Lu TJ, Chen XJ, et al. Differential roles of NMDA receptor subtypes in ischemic neuronal cell death and ischemic tolerance [J]. Stroke, 2008,39(11):3042-3048.
    [7]Hazell AS. Excitotoxic mechanisms in stroke:an update of concepts and treatment strategies[J]. Neuro Inter,2007,50(7-8):941-953.
    [8]Danton GH, Dietrich WD. Inflammatory mechanisms after ischemia and stroke [J]. J Neuropathol Exp Neurol,2003,62(2):127-136.
    [9]Emsley HC, Tyrrell PJ. Inflammation and infection in clinical stroke [J]. J Cereb Blood Flow Metab,2002,22(12):1399-1419.
    [10]Chamorro A, Hallenbeck J. The harms and benefits of inflammatory and immune responses in vascular disease [J]. Stroke,2006,37(2):291-293.
    [11]Wang Q, Tang XN, Yenari MA. The inflammatory response in stroke [J]. J Neuroimmunol,2007,184(1-2):53-68.
    [12]Dong Y, Benveniste EN. Immune function of astrocytes [J]. Glia,2001, 36(2):180-190.
    [13]Che X, Ye W, Panga L, Wu DC, Yang GY. Monocyte chemoattractant protein-1 expressed in neurons and astrocytes during focal ischemia in mice [J]. Brain Res,2001,'902(2):171-177.
    [14]Mander P, Borutaite V, Moncada S, et al. Nitric oxide from inflammatory-activated glia synergizes with hypoxia to induce neuronal death [J]. J Neurosci Res,2005,79(1-2):208-215.
    [15]Pan J, Konstas AA, Bateman B, et al. Reperfusion injury following cerebral ischemia:pathophysiology, MR imaging and potential therapies [J]. Neuroradiology,2007,49(2):93-102.
    [16]Del Zpoop GJ, Becker KJ, Hallenbeck JM. Inflammation after stroke:Is it harmful? [J]. Arch Neurol,2001,58(4):669-672.
    [17]Feuerstein GZ, Wang X. Inflammation and stroke:benefits without harm? [J]. Arch Neurol,2001,58(4):672-674.
    [18]Zhang W. Smith C, Monette R, et al. Indomethacin and cyclosporine a inhibit in vitro ischemia-induced expression of ICAM-1 and chemokines in human brain endothelial cells[J]. Acta Neurochir suppl,2000,76:47-53.
    [19]Ooboshi H, Tbayashi S, Takada J, etal. Brain ischemia as a potential target of gene therapy[J]. Exp Gerontol,2003,38 (12):183.
    [20]Nuclear Receptors Nomenclature Committee. A unified nomenclature system for the nuclear receptor superfamily [J]. Cell,1999,97(2):161-163.
    [21]Kainu T, Wikstrom AC, Gustafsson JA, et al. Localization of the peroxisome proliferator-activated receptor in the brain [J]. Neuroreport, 1994,5(18):2481-2485.
    [22]Braissant O, Wahli W. Differential expression of peroxisome proliferator-activated receptor-alpha,-beta,and-gamma duing rat embryonic development [J]. Endocrinology,1998,139(6):2748-2754.
    [23]Braissant O, Foufelle F, Scotto C, et al. Differential expression of peroxisome proliferator-activated receptors (PPARs):tissue distribution of PPAR-alpha,-beta, and-gamma in the adult rat [J]. Endocrinology, 1996,137(1):354-366.
    [24]Kremarik-Bouillaud P, Schohn H, Dauca M. Regional distribution of PPARbeta in the cerebellum of the rat[J]. J Chem Neuroanat,2000,19(4):225-232.
    [25]Watts GF, Staels B. Regulation of Endothelial Nitric Oxide Synthase by PPAR Agonists:Molecular and Clinical Perspectives[J]. Arterioscler Thromb Vasc Biol.2004,24(4):619-621.
    [26]Watts P, Gervois P, Fruchart JC, et al. Induction of IκBα expression as a mechanism contributing to the anti-inflammatory activities of peroxisome proliferator-activated receptor-alpha activators[J]. J Biol Chem.2000, 275(47):36703-36707.
    [27]Shah YM, Morimura K, Gonzalez FJ. Expression of peroxisome proliferator-activated receptor-gamma in macrophage suppresses experimentally induced colitis [J]. Am J Physiol Gastrointest Liver Physiol, 2007,292(2):G657-666.
    [28]Baregamian N, Mourot JM, Ballard AR, Evers BM, Chung DH. PPAR-gamma agonist protects against intestinal injury during necrotizing enterocolitis [J]. Biochem Biophys Res Commun,2009,379(2):423-427.
    [29]Boileau C, Martel-Pelletier J, Fahmi H, Mineau F, Boily M, Pelletier JP. The peroxisome proliferator-activated receptor gamma agonist pioglitazone reduces the development of cartilage lesions in an experimental dog model of osteoarthritis:in vivo protective effects mediated through the inhibition of key signaling and catabolic pathways [J]. Arthritis Rheum,2007, 56(7):2288-2298.
    [30]Ringseis R, Gahler S, Eder K. Conjugated linoleic acid isomers inhibit platelet-derived growth factor-induced NF-kappaB transactivation and collagen formation in human vascular smooth muscle cells[J]. Eur J Nutr, 2008,14(2):59-67.
    [31]Chima RS, Hake PW, Piraino G, Mangeshkar P, Denenberg A, Zingarelli B. Ciglitazone ameliorates lung inflammation by modulating the inhibitor kappaB protein kinase/nuclear factor-kappaB pathway after hemorrhagic shock [J]. Crit Care Med,2008,36(10):2849-57.
    [32]Yue TL, Chen J, Bao W, et al. In vivo myocardial protection from ischemia/reperfusion injury by the peroxisome proliferators-activated receptor-gamma agonist rosigliatzone [J].Circulation, 2001,104(21):2588-2594.
    [33]Wayman NS, Hattori Y, McDonald MC, et al. Ligands of the peroxisome proliferators-activated receptors (PPAR-gamma and PPAR-alpha) reduce myocardial infarct size [J]. FASEB,2002,16(9):1027-1040.
    [34]Collino M, Aragno M, Mastrocola R, et al. Oxidative stress and inflammatory response evoked by transient cerebral ischemia/reperfusion: effects of the PPAR-alpha agonist WY14643 [J]. Free Radical Biol Metab, 2006,41(4):579-589.
    [35]Pialat JB, Cho TH, Beuf 0, et al. MRI monitoring of focal cerebral ischemia in peroxisome proliferators-activated receptor (PPAR)-deficient mice [J]. NMR Biomed,2007,20(3):335-342.
    [36]Arsenijevic D, de Bilbao F, Plamondon J, et al. Increased infarct size and lack of hyperphagic response after focal cerebral ischemia in peroxisome proliferators-activated receptor beta-deficient mice [J]. J Cereb Blood Flow Metab,2006,26(3):433-445.
    [37]Iwashita A, Muramatsu Y, Yamazaki T, et al. Neuroprotective efficacy of peroxisome proliferators-activated receptor delta (PPAR-{delta}) selective agonists, L-165041 and GW501516, in vitro and in vivo [J]. J Pharmacol Exp Ther,2007,320(3):1087-1096.
    [38]Allahtavakoli M, Shabanzadeh AP, Sadr SS, et al. Rosiglitazone, a peroxisome proliferators-activated receptor-gamma ligand, reduces infarction volume and neurological deficits in an embolic model of stroke [J]. Clin Exp Pharmacol Physiol,2006,33(11):1052-1058.
    [39]Allahtavakoli M, Shabanzadeh A, Roohbakhsh A, et al. Combination therapy of rosiglitazone, a peroxisome proliferator-activated receptor-gamma ligand, and NMDA receptor antagonist (MK-801) on experimental embolic stroke in rats [J]. Basic Clin Pharmacol Toxicol,2007, 101(5):309-314.
    [40]Collino M, Aragno M, Mastrocola R, et al. Modulation of the oxidative stress and inflammatory response by PPAR-gamma agonists in the hippocampus of rats exposed to cerebral ischemia/reperfusion [J]. Eur J Pharmacol,2006,530(1-2):70-80.
    [41]Shimazu T, Inoue I, Araki N, et al. A peroxisome proliferators-activated receptor-gamma agonist reduces infarct size in transient but not in permanent ischemia [J]. Stroke,2005,36(2):353-359.
    [42]Sundararajan S, Gamboa JL, Victor NA, et al. Peroxisome proliferator-activated receptor-gamma ligands reduce inflammation and infarction size in transient focal ischemia [J]. Neuroscience,2005,130(3): 685-696.
    [43]Longa EZ, Weinstein PR, Carlson S, et al. Reversible middle cerebral artery occlusion without craniectomy in rats [J]. Stroke,1989,20(1):84-91.
    [44]Watanabe T, Okuda Y, Nonoguchi N, et al. Postischemic intraventicular administration of FGF-2 expression adenoviral vectors improves neurologic outcome and reduces infarct volume after transient focal cerebral ischemia in rats [J]. J Cereb Blood Flow Metab,2004,24(11):1205-1213.
    [45]Ou Z, Zhao X, Labiche LA, et al. Neuronal expression of peroxisome proliferator-activated receptor-gamma (PPARgamma) and 15d-prostaglandin J2-mediated protection of brain after experimental cerebral ischemia in rat [J]. Brain Res,2006,1096(1):196-203.
    [46]Collino M, Aragno M, Mastrocola R, et al. Modulation of the oxidative stress and inflammatory response by PPAR-gamma agonists in the hippocampus of rats exposed to cerebral ischemia/reperfusion [J]. Eur J Pharmacol,2006,530(1-2):70-80.
    [47]Zhao Y, Patzer A, Herdegen T, et al. Activation of cerebral peroxisome proliferator-activated receptors gamma promotes neuroprotection by attenuation of neuronal cyclooxygenase-2 overexpression after focal cerebral ischemia in rats [J].FASEB J,2006,20(8):1162-1175.
    [48]尚进林,孙莉,梁浩,等.PPARγ激动剂对小鼠局灶性脑缺血再灌注损伤的保护作用[J].中华神经科杂志,2009,42(3):190-194.
    [49]Alvarez-Buylla A, Herrera DG, Wichterle H. The subventricular zone: source of neuronal precursors for brain repair [J]. Prog Brain Res,2000, 127(6):1-11.
    [50]王拥军,卢德宏,崔丽英,等.现代神经病学进展[M].北京,科学技术文献出版社,2004:324.
    [51]Markgraf CG, Kraydieh S, Prado R, et al. Comparative histopathologic consequences of photohrombotic consequences of photohrombotic occlusion of the distal middle cerebral artery in Sprague-Dawley and Wistar rats [J]. Stroke,1993,24(2):286-293.
    [52]Cai H, Yao H, Ibayashi S, et al. Photohrombotic middle cerebral artery occlusion in spontaneously hypertensive rats:Influence of substrain, gender and distal middle cerebral artery patterns on infarct size [J]. Stroke,1998, 29(10):1982-1987.
    [53]Wang LC, Futrell N, Wang DZ, et al. A reproducible model of middle cerebral infarcts, compatible with long-term survival, in aged rats [J]. Stroke,1995,26(11):2087-2090.
    [54]Ito D, Tanaka K, Suzuki S, et al. Enhanced expression of ionized calcium-binding adapter molecule after transient focal cerebral ischemia in rat brain [J]. Stroke,2001,32(5):1208-1215.
    [55]Marx N, Duez H, Fruchart JC, et al. Peroxisome proliferator-activated receptors and atherogenesis:regulators of gene expression in vascular cells[J]. Circ Res,2004,94(9):1168-1178.
    [56]Nuclear Receptors Nomenclature Committee. A unified nomenclature system for the nuclear receptor superfamily [J]. Cell,1999,97(2):161-163.
    [57]Moreno S, Farioli-Vecchioli S, Ceru MP. Immunolocalization of peroxisome proliferator-activated receptors and retinoid X receptors in the adult rat CNS [J]. Neuroscience,2004,123(1):131-145.
    [58]Martinez N, Capobianco E, White V, et al. Peroxisome proliferator-activated recptor alpha activation regulates lipid metabolism in the feto-placental unit from diabetic rats [J]. Reproduction,2008,136(1): 95-103.
    [59]Chawla A, Lee CH, Barak Y, et al. PPARdelta is a very low-density lipoprotein snesor in macrophages [J]. Proc Natl Acad Sci U.S.A,2003, 100(3):1268-1273.
    [60]Shaw N, Elholm M, Noy N. Retinoic acid is a high affinity selective ligand for the proxisome proliferator-activated receptor β/δ [J]. J Biol Chem,2003, 278(43):41589-41592.
    [61]Negishi M, Shimizu H, Okada S, et al.9HODE stimulates cell proliferation and extracelllular matrix synthesis in human mesangial cells via PPARgamma [J]. Exp Biol Med(Maywood),2004,229(10):1053-1060.
    [62]Li Q, Cheon YP, Kannan A, et al. A novel pathway involving progesterone receptor,12/15-lipoxygenase-derived eicosanoids, and peroxisome proliferaotr-activated receptor gamma regulates implantation in mice [J]. J Biol Chem,2004,279(12):11570-11581.
    [63]Chabane N, Zayed N, Benderdour M, et al. Human articular chondrocytes express 15-lipoxygenase-1 and-2:potential role in osteoarthritis. Arthritis Res Ther.2009,11(2):R44.
    [64]Ye Y, Nishi SP, Manickavasagam S, Lin Y, et al. Activation of peroxisome proliferator-activated receptor-gamma(PPAR-gamma) by atorvastatin is mediated by 15-deoxy-delta-12,14-PGJ2 [J]. Prostaglandins Other Lipid Mediat,2007,84(1-2):43-53.
    [65]Zhang F, Liu F, Yan M, et al Peroxisome proliferator-activated receptor-gamma agonists suppress iNOS exprssion induced by LPS in rat primary Schwann cells [J]. J Neuroimmunol,2010,218(1-2):36-47.
    [66]Trifilieff A, Bench A, Hanley M, et al. PPAR-alpha and-gamma but not-delta agonists inhit airway inflammation in a murine model of asthma:in vitro evidence for an NF-kappaB-independent effect [J]. Br J Pharmacol, 2003,139(1):163-171.
    [67]Yajima K, Hirose H, Fujita H, et al. Combination therapy with PPARgamma and PPARalpha agonists increases glucose-stimulated insulin secretion in db/db mice [J]. Am J Physiol Endocrinol Metab, 2003,284(5):E966-E971.
    [68]Ferre P. The biology of peroxisome proliferators-activated receptors: relationship with lipid metabolism and insulin sensitivity [J]. Diabetes, 2004,53 Suppl 1:S43-50.
    [69]Willson TM, Brown PJ, Sternbach DD, et al. The PPARs:from orphan receptors to drug discovery [J]. J Med Chem,2000,43(4):527-550.
    [70]Patel NS, di Paola R, Mazzon E, et al. Peroxisome proliferator-activated receptor-α contributes to the resolution of inflammation after renal ischemia/reperfusion injury [J]. J Pharmacol Exp Ther,2009, 328(2):635-643.
    [71]Pozzi A, Ibanez MR, Gatica AE, et al. Peroxisome proliferator-activated receptor-alpha-dependent inhibition of endothelial cell proliferation and tumorigenesis [J]. J Biol Chem,2007,282(24):17685-17695.
    [72]Kronke G, Kadl A, Ikonomu E, et al. Expression of heme oxygenase-1 in human vascular cells is regulated by peroxisome proliferator-activated receptors [J]. Arterioscler Thromb Vasc Biol,2007,27(6):1276-1282.
    [73]Berger JP, Akiyama TE, Meinke PT. PPARs:therapeutic targets for metabolic disease [J]. Trends Pharmacol Sci,2005,26(5):244-251.
    [74]Desvergne B, Michalik L, Wahli W. Be fit or be sick:peroxisome proliferaotr-activated receptors are down the road [J]. Mol Endocrinol, 2004,18(6):1321-1332.
    [75]Fredenrich A, Grimaldi PA. PPAR delta:an uncompletely known nuclear receptor [J]. Diabetes Metab,2005,31(1):23-27.
    [76]Fan Y, Wang Y, Tang Z, et al. Suppression of pro-inflammatory adhesion molecules by PPAR-δ in human vascular endothelial cells [J]. Arterioscler Thromb Vasc Biol,2008,28(2):315-321.
    [77]Galuppo M, Di Paola R, Mazzon E, et al. Role of PPAR-δ in the development of zymosan-induced multiple organ failure:an experimental mice study [J]. J Inflamm (Lond),2010,7:12.
    [78]Kota BP, Huang TH, Roufogalis BD. An overview on biological mechanisms of PPARs [J]. Pharmacol Res,2005,51(2):85-94.
    [79]Baron J. Mapping the ischemic penumbra with PET:implications for acute stroke treatment [J]. Cerebrovasc Dis 1999,9:193-201.
    [80]Schaller B, Graf R. Cerebral ischemia and reperfusion:the pathophysiologic concept as a basis for clinical therapy [J]. J Cereb Blood Flow Metab,2004,24:351-371.
    [81]Albers GW, Thijs VN, Wechsler L, Kemp S, Schlaug G, Skalabrin E,et al. Magnetic resonance imaging profiles predict clinical response to early reperfusion:the diffusion and perfusion imaging evaluation for understanding stroke evolution (DEFUSE) study[J]. Ann Neurol,2006,60: 508-517.
    [82]Buck BH, Liebeskind DS, Saver JL, et al. Early neutrophilia is associated with volume of ischemic tissue in acute stroke [J]. Stroke,2008,39(2): 355-360.
    [83]Tang Y, Xu H, Du X, et al. Gene expression in blood changes rapidly in neutrophils and monocytes after ischemic stroke in humans:a microarray study [J]. J Cereb Blood Flow Metab,2006,26(8):1089-1102.
    [84]Zeller JA, Lenz A, Eschenfelder CC, et al. Platelet-leukocyte interaction and platelet activation in acute stroke with and without preceding infection [J]. Arterioscler Thromb Vasc Biol,2005,25(7):1519-1523.
    [85]Chong ZZ, Xu QP, Sun JN. Effects and mechanisms of triacetylshikimic acid on platelet adhesion to neutrophils induced by thrombin and reperfusion after focal ischemia in rats [J]. Acta Pharmacol Sin,2001,22(8): 679-684.
    [86]Wong CH, Crack PJ. Modulation of neuro-inflammation and vascular response by oxidative stress following cerebral ischemia-reperfusion injury [J]. Curr Med Chem,2008,15(1):1-14.
    [87]Huang J, Choudhri TF, Winfree CJ, et al. Postischemic cerebrovascular E-selectin expression mediates tissue injury in murine stroke [J]. Stroke, 2000,31(12):3047-3053.
    [88]Ehrensperger E, Minuk J, Durcan L, et al. Predictive value of soluble intercellular adhesion molecule-1 for risk of ischemic events in individuals with cerebrovascular disease [J]. Cerebrovasc Dis,2005,20(6):456-462.
    [89]Simundic AM, Basic V, Topic E, Demarin V, Vrkic N, Kunovic B, et al. Soluble adhesion molecules in acute ischemic stroke [J]. Clin Invest Med, 2004,27(2):86-92.
    [90]Blann AD, Ridker PM, Lip GY Inflammation, cell adhesion molecules, and stroke:tools in pathophysiology and epidemiology? [J]. Stroke,2002, 33(9):2141-2143.
    [91]Matarin M, Brown WM, Hardy JA, et al. Association of integrin alpha2 gene variants with ischemic stroke [J]. J Cereb Blood Flow Metab,2008, 28(1):81-89.
    [92]Vial N, Castillo J, Davalos A, Esteve A, Planas AM, Chamorro A. Levels of anti-inflammatory cytokines and neurological worsening in acute ischemic stroke [J]. Stroke,2003,34(3):671-675.
    [93]Mao M, Hua Y, Jiang X, et al. Expression of tumor necrosis factor a and neuronal apoptosis in the developing rat brain after neonatal stroke[J]. Neurosci Lett,2006,403(3):227-232.
    [94]Stamatovic SM, Keep RF, Kunkel SL,et al. Potential role of MCP-1 in endothelial cell tight junction'opening':signaling via Rho and Rho kinase [J]. J Cell Sci,2003,116(pt22):4615-4628.
    [95]Dimitrijevic OB, Stamatovic SM, Keep RF, et al. Effects of the chemokine CCL2 on blood-brain barrier permeability during ischemia-reperfusion injury [J]. J Cereb Blood Flow Metab,2006,26(6):797-810.
    [96]Adibhatla RM, Hatcher JF, Larsen EC, et al. CDP-choline significantly restores phosphatidylcholine levels by differentially affecting phospholipase A2 and CTP:phosphocholine cytidylyltransferase after stroke [J]. J Biol Chem,2006,281(10):6718-6725.
    [97]Schwab JM, Schluesener HJ. Cyclooxygenases and central nervous system inflammation:conceptual neglect of cyclooxygenase 1 [J]. Arch Neurol, 2003,60(4):630-632.
    [98]Kawano T, Anrather J, Zhou P, et al. Prostaglandin E2 EP1 receptors: downstream effectors of COX-2 neurotoxicity [J]. Nat Med,2006,12(2): 225-229.
    [99]Manabe Y, Anrather J, Kawano T, et al. Prostanoids, not reactive oxygen species, mediate COX-2-dependent neurotoxicity [J]. Ann Neurol,2004, 55(5):668-675.
    [100]Tomimoto H, Shibata M, Ihara M, et al. A comparative study on the expression of cyclooxygenase and 5-lipoxygenase during cerebral ischemia in humans [J]. Acta Neuropathol,2002,104(6):601-607.
    [101]Gidday JM, Gasche YG, Copin JC, et al. Leukocyte-derived matrix metalloproteinase-9 mediates blood-brain barrier breakdown and is proinflammatory after transient focal cerebral ischemia [J]. Am J Physiol Heart Circ Physiol,2005,289(2):H558-568.
    [102]Xu H, Tang Y, Liu DZ, et al. Gene expression in peripheral blood differs after cardioembolic compared with large-vessel atherosclerotic stroke: biomarkers for the etiology of ischemic stroke [J]. J Cereb Blood Flow Metab,2008,28(7):1320-1328.
    [103]Collion M, Aragno M, Castiglia S, et al. Insulin reduces cerebral ischemia/reperfusion injury in the hippocampus of diabetic rats:a role for glycogen synthase kinase-3beta[J]. Diabetes,2009,58(1):235-242.
    [104]Zhang HL, Gu ZL, Savitz SI, et al. Neuroprotective effects of prostaglandin A(1) in rat models of permanent focal cerebral ischemia are associated with nuclear factor-kappaB inhibition and peroxisome proliferator-activated receptor-gamma up-regulation [J]. J Neurosci Res,2008,86(5):1132-1141.
    [105]Zhao Y, Patzer A, Herdegen T, et al. Activation of cerebral peroxisome proliferator-activated receptors gamma promotes neuroprotection by attenuation of neuronal cyclooxygenase-2 overexpression after focal cerebral ischemia in rats [J]. FASEB J,2006,20(8):1162-1175.
    [106]孙莉,程焱,郑建普,等.自发性高血压大鼠脑组织炎症反应和PPARs亚型表达[J].中华神经科杂志,2008,41(2):118-122.
    [107]Sun L, Ke Y, Zhu CY, et al. Inflammatory reaction versus endogenous PPARs expression, re-exploring secondary organ complications of spontaneously hypertensive rats [J]. Chin Med J(Engl),2008, 121(22):2305-2311.
    [108]Kitamura Y, Shimohama S, Koike H, et al. Increased expression of cyclooxygenases and peroxisome proliferator-activated receptor-gamma in Alzheimer's disease brains [J]. Biochem Biophys Res Commun,1999, 254(3):582-586.
    [109]Yi JH, Park SW, Brooks N, et al. PPARy agonist rosiglitazone is neuroprotective after traumatic brain injury via anti-inflammatory and anti-oxidative mechanisms [J]. Brain Res,2008,1244:164-172.
    [110]Victor NA, Wanderi EW, Gamboa J, et al. Altered PPARgamma expression and activation after transient focal ischemia in rats. Eur J Neurosci,2006, 24(6):1653-1663.
    [111]Bogazzi F, Russo D, Locci MT, et al. Peroxisome proliferators-activated receptor (PPAR) gamma is highly expressed in normal human pituitary gland [J]. J Endocrinol Invest,2005,28(10):899-904.
    [112]Lazar MA. PPAR gamma,10 years later [J]. Biochimie,2005,87(1):9-13.
    [113]Boyle PJ. Diabetes mellitus and macrovascular disease:mechanisms and mediators [J]. Am J Med,2007,120(9 suppl):S12-S17.
    [114]Han JL, Ding RY, Zhao L, et al. Rosiglitazone attenuates allergic inflammation and inhibits expression of galectin-3 in a mouse model of allergic rhinitis [J]. J Int Med Res,2008,36(4):830-836.
    [115]Hunter RL, Choi DY, Ross SA, et al. Protective properties afforded by pioglitazone against intrastriatal LPS in Sprague-Dawley rats [J]. Neurosci Lett,2008,432(3):198-201.
    [116]Kielian T, Syed MM, Liu S, et al. The synthetic peroxisome proliferators-activated receptor-gamma agonist ciglitazone attenuates neuroinflammation and accelerates encapsulation in bacterial brain abscesses [J]. J Immunol,2008,180(7):5004-5016.
    [117]Ko GJ, Kang YS, Han SY, et al. Pioglitazone attenuates diabetic nephropathy through an anti-inflammatory mechanism in type 2 diabetic rats [J]. Nephrol Dial Transplant,2008,23(9):2750-2760.
    [118]Randy LH, Guoying B. Agonism of peroxisome proliferators receptor-gamma may have therapeutic potential for neuroinflammation and Parkinson's disease [J]. Curr Neuropharmacol,2007,5(1):35-46.
    [119]Nakajima A, Wada K, Mik H, et al. Endogenous PPAR gamma mediates anti-inflammatory activity in murine ischemia-reperfusion injury [J]. Gastroenterology,2001,120(2):460-469.
    [120]Kumari R, Willing LB, Patel SD, et al. The PPAR-gamma agonist, darglitazone, restores acute-inflammatory responses to cerebral hypoxia-ischemia in the diabetic ob/ob mouse[J]. J Cereb Blood Flow Metab,2010,30(2):352-360.
    [121]孙莉,徐艳炜,梁浩,等.局灶性脑缺血再灌注大鼠PPARs亚型表达的改变[J].中华神经科杂志,2010,43(3):216-221.
    [122]Sobrado M, Pereira MP, Ballesteros I,et al. Synthesis of lipoxin A4 by 5-lipoxygenase mediates PPARgamma-dependent, neuroprotective effects of rosiglitazone in experimental stroke[J]. J Neurosci, 2009,29(12):3875-3884.
    [123]Zhao X, Strong R, Zhang J, et al. Neuronal PPARgamma deficiency increases susceptibility to brain damage after cerebral ischemia [J]. J Neurosci,2009,29(19):6186-6195.
    [124]Pazter A, Zhao Y, Stock I, et al. Peroxisome proliferator-activated receptorsgamma (PPARgamma) differently modulate the interleukin-6 expression in the peri-infarct cortical tissue in the acute and delayed phases of cerebral ischaemia[J]. Eur J Neurosci,2008,28(9):1786-1794.
    [125]Zhang HL, Gu ZL, Savitz SI, et al. Neuroprotective effects of prostaglandin A(1) in rat models of permanent focal cerebral ischemia are associated with nuclear factor-kappaB inhibition and peroxisome proliferator-activated receptor-gamma up-regulation[J]. J Neurosci Res,2008,86(5):1132-1141.
    [126]Victor NA, Wanderi EW, Gamboa J, et al. Altered PPARgamma expression and activation after transient focal ischemia in rats[J]. Eur J Neurosci, 2006,24(6):1653-1663.
    [127]Huang JT, Welch JS, Ricote M, et al. Interleukin-4-dependent production of PPAR-gamma ligands in macrophages by 12/15-lipoxygenase [J]. Nature, 1999,400(6742):378-382.
    [128]Shibuya A, Wada K, Nakajima A, et al. Nitration of PPARgamma inhibits ligand-dependent translocation into the nucleus in a macrophage-like cell line, RAW264 [J]. FEBS Lett,2002,525(1-3):43-47.
    [129]Khandoudi N, Delerive P, Berrebi-Bertrand I, et al. Rosiglitazone, a peroxisome proliferator-activated receptor-gamma, inhibits the Jun NH(2)-terminal kinase/activating protein 1 pathway and protects the heart from ischemia/reperfusion injury[J]. Diabetes,2002,51 (5):1507-1514.
    [130]Ito H, Nakano A, Kinoshita M, et al. Pioglitazone, a peroxisome proliferator-activated receptor-gamma agonist, attenuates myocardial ischemia/reperfusion injury in a rat model [J]. Lab Invest, 2003,83(12):1715-21.
    [131]Cuzzocrea S, Pisano B, Dugo L, etal. Rosiglitazone and 15-deoxy-Deltal2,14-prostaglandin J2, ligands of the peroxisome proliferator-activated receptor-gamma (PPAR-gamma), reduce ischaemia/reperfusion injury of the gut[J]. Br J Pharmacol,2003 140(2):366-76.
    [132]Ito K, Shimada J, Kato D, et al. Protective effects of preischemic treatment with pioglitazone, a peroxisome proliferator-activated receptor-gamma ligand, on lung ischemia-reperfusion injury in rats[J]. Eur J Cardiothorac Surg 2004,25(4):530-6.
    [133]Takagi T, Naito Y, Ichikawa HA, et al. PPAR-gamma ligand, 15-deoxy-Delta12,14-prostaglandin J(2), inhibited gastric mucosal injury induced by ischemia-reperfusion in rats[J]. Redox Rep,2004,9(6):376-81.
    [134]Kuboki S, Shin T, Huber N, et al. Peroxisome proliferator-activated r eceptor-gamma protects against hepatic ischemia/reperfusion injury in mice[J]. Hepatology,2008,47(1):215-24.
    [135]Burgermeister E, Chuderland D, Hanoch T, et al. Interaction with MEK causes nuclear export and downregulation of peroxisome proliferator-activated receptor gamma[J]. Mol cell biol,2007, 27(3):803-817.
    [136]Hao Y, Patzer A, Herdegen T, et al. Activation of cerebral peroxisome proliferator-activated receptors gamma promotes neuroprotection by attenuation of neuronal cyclooxygenase-2 overexpression after focal cerebral ischemia in rats [J]. FASEB J,2006,20(8):1162-1175.
    [137]Sun L, Gao YH, Tian DK, et al.Inflammation of different-tissues in spontaneously hypertensive rats [J]. Acta Physiologica Sinica, 2006, 58(4):318-323.
    [138]Pereira MP, Hurtado O, Cardenas A, et al. Rosiglitazone and 15-deoxy-Delta (12,14)-prostaglandin J(2) cause potent neuroprotection after experimental stroke through noncompletely overlapping mechanisms [J]. J Cereb Blood Flow Metab,2006,26(2):218-229.
    [139]Chu K, Lee ST, Koo JS, et al. Peroxisome proliferator-activated receptor-gamma-agonist, rosiglitazone, promotes angiogenesis after focal cerebral ischemia [J]. Brain Res,2006,1093(1):208-218.
    [140]Luo Y, Yin W, Signore AP, et al. Neuroprotection against focal ischemic brain injury by the peroxisome proliferator-activated receptor-gamma agonist rosiglitazone [J]. J Neurochem,2006,97(2):435-448.
    [141]Zhao Y, Patzer A, Gohlke P, et al. The intracerebral application of the PPARgamma-ligand pioglitazone confers neuroprotection against focal ischaemia in the rat brain [J]. J Neurosci,2005,22(1):278-282.
    [142]Remels AH, Langen RC, Gosker HR, et al. PPARgamma inhibits NF-kappaB-dependent transcriptional activation in skeletal muscle [J]. Am J Physiol Endocrinol Metab,2009,297(1):E174-E183.
    [143]Limor R, Sharon O, Knoll E, et al. Lipoxygenase-derived metabolites are regulators of peroxisome proliferator-activated receptor gamma-2 expression in human vascular smooth muscle cells[J]. Am J Hypertens, 2008,21(2):219-223.
    [144]Li Q, Cheon YP, Kannan A, et al. A Novel Pathway Involving Progesterone Receptor,12/15-Lipoxygenase-derived Eicosanoids, and Peroxisome Proliferator-activated Receptor gamma Regulates Implantation in Mice[J]. J Biol Chem,2004,279(12):11570-11581.
    [145]van Leyen K, Kim HY, Lee SR, Jin G, Arai K, Lo EH. Baicalein and 12/15-lipoxygenase in the ischemic brain [J]. Stroke,2006, 37(12):3014-3018.
    [146]Yamamoto S. Mammalian lipoxygenases:molecular structures and functions [J]. Biochim Biophys Acta,1992,1128(2-3):117-131.
    [147]Gillmor SA, Villasenor A, Fletterick R, et al. The structure of mammalian 15-lipoxygenase reveals similarity to the lipases and the determinants of substrate specificity[J]. Nat Struct Biol,1997,4(12):1003-1109.
    [148]Walther M, Anton M, Wiedmann M, et al. The N-terminal domain of the reticulocyte-type 15-lipoxygenase is not essential for enzymatic activity but contains determinants for membrane binding [J]. J Biol Chem, 2002,277(30):27360-27366.
    [149]Thiele BJ, Andree H, Hohne M, et al. Lipoxygenase mRNA in rabbit reticulocytes. Its isolation, characterization and translational repression[J]. Eur J Biochem,1982,129(1):133-141.
    [150]Ostareck-Lederer A, Ostareck DH, Standart N, et al. Translation of 15-lipoxygenase mRNA is inhibited by a protein that binds to a repeated sequence in the 3'untranslated region[J]. EMBO J,1994,13(6):1476-1481.
    [151]Ostareck DH, Ostareck-Lederer A, Wilm M, et al. mRNA silencing in erythroid differentiation:hnRNP K and hnRNP E1 regulate 15-lipoxygenase translation from the 3'end[J]. Cell,1997,89(4):597-606.
    [152]Chang WC. Identification of an endogenous inhibitor of arachidonate metabolism in human epidermoid carcinoma A431 cells[J]. J Biomed Sci, 2003,10(6Pt1):599-606.
    [153]Holzhutter HG, Wiesner R, Rathmann J, et al. A kinetic model for the interaction of nitric oxide with a mammalian lipoxygenase[J]. Eur J Biochem,1997,245(3):608-616.
    [154]O'Donnell VB, Taylor KB, Parthasarathy S, et al.15-Lipoxygenase catalytically consumes nitric oxide and impairs activation of guanylate cyclase[J]. J Biol Chem,1999,274(29):20083-20091.
    [155]Coffey MJ, Natarajan R, Chumley PH, et al. Catalytic consumption of nitric oxide by 12/15-lipoxygenase:inhibition of monocyte soluble guanylate cyclase activation[J]. Proc Natl Acad Sci USA,2001,98(14):8006-80011.
    [156]Kuhn H. Biosynthesis, metabolization and biological importance of the primary 15-lipoxygenase metabolites 15-hydro(pero)XY-5Z,8Z,11Z, 3E-eicosatetraenoic acid and.13-hydro(pero)XY-9Z,11E-octadecadienoic acid [J]. Prog Lipid Res,1996,35(3):203-226.
    [157]Heydeck D, Thomas L, Schnurr K, et al. Interleukin-4 and-13 induce upregulation of the murine macrophagel 2/15-lipoxygenase activity: evidence for the involvement of transcription factor TAT6 [J]. Blood,1998,92(7):2503-2510.
    [158]Berry A, Balard P, Coste A, et al. IL-13 induces expression of CD36 in human monocytes through PPARgamma activation [J]. Eur J Immunol, 2007,37(6):1642-1652.
    [159]Limor R, Sharon O, Knoll E, et al. Lipoxygenase-derived metabolites are regulators of peroxisome proliferator-activated receptor gamma-2 expression in human vascular smooth muscle cells[J]. Am J Hypertens, 2008,21(2):219-223.
    [160]孙莉,程焱.三苯氧胺抑制促动脉硬化基因CD36在单核/巨噬细胞表达[J].中华老年心脑血管病杂志,2004,6(4):267-269.
    [161]Yao Y, Clark CM, Trojanowski JQ, et al. Elevation of 12/15 Lipoxygenase Products in AD and Mild Cognitive Impairment [J]. Ann Neurol,2005, 58(4):623-626.
    [162]Altmann R, Hausmann M, Spottl T, et al.13-Oxo-ODE is an endogenous ligand for PPARgamma in human colonic epithelial cells [J]. Biochem Pharmacol,2007,74(4):612-622.
    [163]Merched AJ, Ko K, Gotlinger KH, et al. Atherosclerosis:evidence for impairment of resolution of vascular inflammation governed by specific lipid mediators [J]. FASEB J,2008,22(10):3595-3606.
    [1]Issemann I, Green S. Activation of a number of the steroid hormone receptor superfamily by peroxisome proliferators[J].Nature,1990,347(6294): 645-650.
    [2]Latruffe N, Vamecq J. Peroxisome proliferators and peroxisome proliferator activated receptors (PPARs) as regulators of lipid metabolism[J].Biochimie, 1997,79(2-3):81-94.
    [3]Marx N, Duez H, Fruchart JC, et al. Peroxisome proliferator-activated receptors and atherogenesis:regulators of gene expression in vascular cells[J]. Circ Res,2004,94(9):1168-1178.
    [4]Glass CK, Ogawa S. Combinatorial roles of nuclear receptors in inflammation and immunity[J]. Nat Rev Immunol,2006,6(1):44-45.
    [5]Nuclear Receptors Nomenclature Committee. A unified nomenclature system for the nuclear receptor superfamily[J]. Cell,1999,97(2):161-163.
    [6]Kainu T, Wikstrom AC, Gustafsson JA, et al. Localization of the peroxisome proliferator-activated receptor in the brain[J]. Neuroreport,1994, 5(18):2481-2485.
    [7]Braissant O, Wahli W. Differential expression of peroxisome proliferator-activated receptor-alpha,-beta,and-gamma duing rat embryonic development [J]. Endocrinology,1998,139(6):2748-2754.
    [8]Braissant O, Foufelle F, Scotto C, et al. Differential expression of peroxisome proliferator-activated receptors (PPARs):tissue distribution of PPAR-alpha,-beta, and-gamma in the adult rat [J]. Endocrinology,1996, 137(1):354-366.
    [9]Kremarik-Bouillaud P, Schohn H, Dauca M. Regional distribution of PPARbeta in the cerebellum of the rat[J]. J Chem Neuroanat,2000,19(4):225-232.
    [10]Moreno S, Farioli-Vecchioli S, Ceru MP. Immunolocalization of peroxisome proliferator-activated receptors and retinoid X receptors in the adult rat CNS [J]. Neuroscience,2004,123(1):131-145.
    [11]Martinez N, Capobianco E, White V, et al. Peroxisome proliferator-activated recptor alpha activation regulates lipid metabolism in the feto-placental unit from diabetic rats [J]. Reproduction,2008,136(1):95-103.
    [12]Ibabe A, Herrero A, Cajaraville MP. Modulation of peroxisome roliferator-activated receptors(PPARs) by PPAR(alpha)-and PPAR(gamma)-specific ligands and by 17beta-estradiol in isolated zebrafish hepatocytes [J]. Toxicol In Vitro.2005,19(6):725-735.
    [13]Colville-Nash P, Willis D, Papworth J, et al. The peroxisome proliferator-activated receptor alpha activator, Wyl 4,643,is anti-inflammatory in vivo [J]. Inflammopharmacology,2005, 12(5-6):493-504.
    [14]Reynolds WF, Kumar AP, Piedrafita FJ. The human myeloperoxidase gene is regulated by LXR and PPARalpha ligands [J]. Biochem Biophys Res Commun,2006,349(2):846-854.
    [15]Harrington WW, S Britt C, G Wilson J, et al.The effect of PPARalpha, PPARdelta, PPARgamma, and PPARpan Agonists on Body Weight, Body Mass, and Serum Lipid Profiles in Diet-Induced Obese AKR/J Mice [J]. PPAR Res,2007:97125.
    [16]Shaw N, Elholm M, Noy N. Retinoic acid is a high affinity selective ligand for the proxisome proliferator-activated receptor β/δ[J]. J Biol Chem,2003, 278(43):41589-41592.
    [17]Chawla A, Lee CH, Barak Y, et al. PPARdelta is a very low-density lipoprotein snesor in macrophages [J]. Proc Natl Acad Sci U.S.A,2003, 100(3):1268-1273.
    [18]Sznaidman ML et al. Novel selective small molecule agonists for peroxisome proliferator-activated receptor delta (PPARdelta)--synthesis and biological activity[J].Bioorg Med Chem Lett,2003,13(9):1517-1521.
    [19]Epple R, Russo R, Azimioara M,et al.1,3,5-Trisubstituted aryls as highly selective PPARdelta agonists[J].Bioorg Med Chem Lett,2006, 16(11):2969-2973.
    [20]Cantin LD, Liang S, Ogutu H, et al. Indanylacetic acid derivatives carrying aryl-pyridyl and aryl-pyrimidinyl tail groups--new classes of PPAR gamma/delta and PPAR alpha/gamma/delta agonists [J]. Bioorg Med Chem Lett.2007,17(4):1056-1061.
    [21]Negishi M, Shimizu H, Okada S,et al.9HODE stimulates cell proliferation and extracelllular matrix synthesis in human mesangial cells via PPARgamma [J]. Exp Biol Med(Maywood),2004,229(10):1053-1060.
    [22]Li Q, Cheon YP, Kannan A, et al. A novel pathway involving progesterone receptor,12/15-lipoxygenase-derived eicosanoids, and peroxisome proliferaotr-activated receptor gamma regulates implantation in mice [J]. J Biol Chem,2004,279(12):11570-11581.
    [23]Chabane N, Zayed N, Benderdour M, et al. Human articular chondrocytes express 15-lipoxygenase-l and-2:potential role in osteoarthritis. Arthritis Res Ther.2009,11(2):R44.
    [24]Ye Y, Nishi SP, Manickavasagam S, Lin Y, et al. Activation of peroxisome proliferator-activated receptor-gamma(PPAR-gamma) by atorvastatin is mediated by 15-deoxy-delta-12,14-PGJ2 [J]. Prostaglandins Other Lipid Mediat,2007,84(1-2):43-53.
    [25]Zhang F, Liu F, Yan M, et al Peroxisome proliferator-activated receptor-gamma agonists suppress iNOS exprssion induced by LPS in rat primary Schwann cells [J]. J Neuroimmunol,2010,218(1-2):36-47.
    [26]Panchapakesan U, Pollock CA, Chen XM. The effect of high glucose and PPAR-gamma agonist on PPAR-gamma expression and function in HK-2 cell [J]. Am J Physiol Renal Physiol,2004,287(3):F528-534.
    [27]Chen Y, Yang B, McNulty JA, et al. GI262570, a peroxisome proliferator-activated receptor(gamma) agonist, changes electrolytes and water reabsorption from the distal nephron in rats [J]. J Pharmacol Exp Ther, 2005,312(2):718-725.
    [28]Moore-Carrasco R, Figueras M, Ametller E,et al. Effects of the PPARgamma agonist GW1929 on muscle wasting in tumor-bearing mice [J]. Oncol Rep,2008,19(1):253-256.
    [29]Leesnitzer LM, Parks DJ, Bledsoe RK, et al. Functional consequences of cysteine modification in the ligand binding sites of peroxisome proliferator activated receptors by GW9662[J], Biochemistry,2002,41(21):6640-6650.
    [30]Mo C, Chearwae W, Bright JJ. PPARgamma regulates LIF-induced growth and self-renewal of mouse ES cells Tyk2-Stat3 pathway [J]. Cell Signal, 2010,22(3):495-500.
    [31]Trifilieff A, Bench A, Hanley M, et al. PPAR-alpha and-gamma but not-delta agonists inhit airway inflammation in a murine model of asthma:in vitro evidence for an NF-kappaB-independent effect [J]. Br J Pharmacol, 2003,139(1):163-171.
    [32]Yajima K, Hirose H, Fujita H, et al. Combination therapy with PPARgamma and PPARalpha agonists increases glucose-stimulated insulin secretion in db/db mice [J]. Am J Physiol Endocrinol Metab,2003,284(5):E966-E971.
    [33]Ferre P. The biology of peroxisome proliferators-activated receptors: relationship with lipid metabolism and insulin sensitivity [J]. Diabetes, 2004,53 Suppl 1:S43-50.
    [34]Willson TM, Brown PJ, Sternbach DD, et al. The PPARs:from orphan receptors to drug discovery [J]. J Med Chem,2000,43(4):527-550.
    [35]Patel NS, di Paola R, Mazzon E, et al. Peroxisome proliferator-activated receptor-alpha contributes to the resolution of inflammtion after renal ischemia/reperfusion injury [J]. J Pharmacol Exp Ther,2009, 328(2):634-643.
    [36]Pozzi A, Ibanez MR, Gatica AE, et al. Peroxisome proliferator-activated receptor-alpha-dependent inhibition of endothelial cell proliferation and tumorigenesis [J]. J Biol Chem,2007,282(24):17685-17695.
    [37]Kronke G, Kadl A, Ikonomu E, et al. Expression of heme oxygenase-1 in human vascular cells is regulated by peroxisome proliferator-activated receptors [J]. Arterioscler Thromb Vasc Biol,2007,27(6):1276-1282.
    [38]Berger JP, Akiyama TE, Meinke PT. PPARs:therapeutic targets for metabolic disease [J]. Trends Pharmacol Sci,2005,26(5):244-251.
    [39]Desvergne B, Michalik L, Wahli W. Be fit or be sick:peroxisome proliferaotr-activated receptors are down the road [J]. Mol Endocrinol, 2004,18(6):1321-1332.
    [40]Fredenrich A, Grimaldi PA. PPAR delta:an uncompletely known nuclear receptor [J]. Diabetes Metab,2005,31(1):23-27.
    [41]Fan Y, Wang Y, Tang Z, et al. Suppression of pro-inflammatory adhesion molecules by PPAR-δ in human vascular endothelial cells [J]. Arterioscler Thromb Vasc Biol,2008,28(2):315-321.
    [42]Galuppo M, Di Paola R, Mazzon E, et al. Role of PPAR-δin the development of zymosan-induced multiple organ failure:an experimental mice study [J]. J Inflamm (Lond),2010,7:12.
    [43]Kota BP, Huang TH, Roufogalis BD. An overview on biological mechanisms of PPARs [J]. Pharmacol Res,2005,51(2):85-94.
    [44]Olefsky JM. Treatment of insulin resistance with peroxisome proliferator-activated receptor y agonists [J]. J Clin Invest,2000,106(4): 467-472.
    [45]Zingarelli B, Cook JA. Peroxisome proliferators-activated receptor-gamma is a new therapeutic target in sepsis and inflammation [J]. Shock,2005, 23(5):393-399.
    [46]Baron J. Mapping the ischemic penumbra with PET:implications for acute stroke treatment [J]. Cerebrovasc Dis 1999,9:193-201.
    [47]Schaller B, Graf R. Cerebral ischemia and reperfusion:the pathophysiologic concept as a basis for clinical therapy [J]. J Cereb Blood Flow Metab,2004, 24:351-371.
    [48]Albers GW, Thijs VN, Wechsler L, Kemp S, Schlaug G, Skalabrin E, et al. Magnetic resonance imaging profiles predict clinical response to early reperfusion:the diffusion and perfusion imaging evaluation for understanding stroke evolution (DEFUSE) study [J]. Ann Neurol,2006,60: 508-517.
    [49]Hazell AS. Excitotoxic mechanisms in stroke:an update of concepts and treatment strategies[J]. Neuro Inter,2007,50(7-8):941-953.
    [50]Dirnagl U, Iadecola C, Moskowitz MA. Pathobiology of ischaemic stroke: an integrated view [J]. Trends Neurosci,1999,22(9):391-397.
    [51]Chen M, Lu TJ, Chen XJ, et al. Differential roles of NMDA receptor subtypes in ischemic neuronal cell death and ischemic tolerance [J]. Stroke, 2008,39(11):3042-3048.
    [52]Kelly PJ, Morrow JD,Ning M, et al. Oxidative stress and matrix metalloproteinase-9 in acute ischemic stroke:the Biomarker Evaluation for Antioxidant Thherapies in Stroke (BEAT-Stroke) study [J]. Stroke,2008, 39(1):100-104.
    [53]Cui J, Holmes EH, Greene TG, et al. Oxidative DNA damage precedes DNA fragmentation after experimental stroke in rat brain [J]. FASEB J, 2000,14(7):955-967.
    [54]Cherubini A, Ruggiero C, Polidori MC, et al. Potential marker of oxidative stress in stroke [J]. Free Radic Biol Med,2005,39(7):841-52.
    [55]Ridnour LA, Thomas DD, Mancardi D, et al. The chemistry of nitrosative stress induced by nitric oxide and reactive nitrogen oxide species. Putting perspective on stressful biological situations [J]. Biol Chem,2004, 385(1):1-10.
    [56]Stamler JS, Simon DI, Osborne JA, et al. S-nitrosylation of proteins with nitric oxide:synthesis and characterization of biologically active compounds [J]. Proc Natl Acad Sci USA,1992,89(1):444-448.
    [57]Saeed SA, Shad KF, Saleem T, et al. Some new prospects in the understanding of the molecular basis of the pathogenesis of stroke [J]. Exp Brain Res,2007,182(1):1-10.
    [58]Jing FC, Chen H, Li CL. Rapid determination of dopamine and its metabolites during in vivo cerebral microdialysis by routine high performance liquid chromatography with electrochemical detection [J]. Biomed Environ Sci,2007,20(4):317-320.
    [59]Rameau GA, Tukey DS, Garcin-Hosfield ED et al. Biophasic coupling of neuronal nitric oxide synthase phosphorylation to the NMDA receptor regulates AMPA receptor trafficking and neuronal cell death [J]. J Neurosci 2007,27(13):3445-3455.
    [60]Hamada J, Greenberg JH, Croul S, et al. Effects of central inhibition of nitric oxide synthase on focal cerebral ischemia in rats [J]. J Cereb Blood Flow Metab.1995,15(5):779-786.
    [61]Castillo J, Rama R, Davalos A. Nitric oxide-related brain damage in acute ischemic stroke [J]. Stroke 2000,31(4):852-857.
    [62]Danton GH, Dietrich WD. Inflammatory mechanisms after ischemia and stroke [J]. J Neuropathol Exp Neurol,2003,62(2):127-136.
    [63]Emsley HC, Tyrrell PJ. Inflammation and infection in clinical stroke [J]. J Cereb Blood Flow Metab,2002,22(12):1399-1419.
    [64]Chamorro A, Hallenbeck J. The harms and benefits of inflammatory and immune responses in vascular disease [J]. Stroke,2006,37(2):291-293.
    [65]Wang Q, Tang XN, Yenari MA. The inflammatory response in stroke [J]. J Neuroimmunol,2007,184(1-2):53-68.
    [66]Dong Y, Benveniste EN. Immune function of astrocytes [J]. Glia,2001, 36(2):180-190.
    [67]Che X, Ye W, Panga L, Wu DC, Yang GY. Monocyte chemoattractant protein-1 expressed in neurons and astrocytes during focal ischemia in mice [J]. Brain Res,2001,902(2):171-177.
    [68]Mander P, Borutaite V, Moncada S, et al. Nitric oxide from inflammatory-activated glia synergizes with hypoxia to induce neuronal death [J]. J Neurosci Res,2005,79(1-2):208-215.
    [69]Pan J, Konstas AA, Bateman B, et al. Reperfusion injury following cerebral ischemia:pathophysiology, MR imaging and potential therapies [J]. Neuroradiology,2007,49(2):93-102.
    [70]Buck BH, Liebeskind DS, Saver JL, et al. Early neutrophilia is associated with volume of ischemic tissue in acute stroke [J]. Stroke,2008,39(2): 355-360.
    [71]Tang Y, Xu H, Du X, et al. Gene expression in blood changes rapidly in neutrophils and monocytes after ischemic stroke in humans:a microarray study [J]. J Cereb Blood Flow Metab,2006,26(8):1089-1102.
    [72]Zeller JA, Lenz A, Eschenfelder CC, et al. Platelet-leukocyte interaction and platelet activation in acute stroke with and without preceding infection [J]. Arterioscler Thromb Vasc Biol,2005,25(7):1519-1523.
    [73]Chong ZZ, Xu QP, Sun JN. Effects and mechanisms of triacetylshikimic acid on platelet adhesion to neutrophils induced by thrombin and reperfusion after focal ischemia in rats [J]. Acta Pharmacol Sin,2001,22(8): 679-684.
    [74]Wong CH, Crack PJ. Modulation of neuro-inflammation and vascular response by oxidative stress following cerebral ischemia-reperfusion injury [J]. Curr Med Chem,2008,15(1):1-14.
    [75]Huang J, Choudhri TF, Winfree CJ, et al. Postischemic cerebrovascular E-selectin expression mediates tissue injury in murine stroke [J]. Stroke, 2000,31(12):3047-3053.
    [76]Ehrensperger E, Minuk J, Durcan L, et al. Predictive value of soluble intercellular adhesion molecule-1 for risk of ischemic events in individuals with cerebrovascular disease [J]. Cerebrovasc Dis,2005,20(6):456-462.
    [77]Simundic AM, Basic V, Topic E, Demarin V, Vrkic N, Kunovic B, et al. Soluble adhesion molecules in acute ischemic stroke [J]. Clin Invest Med, 2004,27(2):86-92.
    [78]Blann AD, Ridker PM, Lip GY. Inflammation, cell adhesion molecules, and stroke:tools in pathophysiology and epidemiology? [J]. Stroke,2002, 33(9):2141-2143.
    [79]Matarin M, Brown WM, Hardy JA, et al. Association of integrin alpha2 gene variants with ischemic stroke [J]. J Cereb Blood Flow Metab,2008, 28(1):81-89.
    [80]Vial N, Castillo J, Davalos A, Esteve A, Planas AM, Chamorro A. Levels of anti-inflammatory cytokines and neurological worsening in acute ischemic stroke [J]. Stroke,2003,34(3):671-675.
    [81]Mao M, Hua Y, Jiang X, et al. Expression of tumor necrosis factor a and neuronal apoptosis in the developing rat brain after neonatal stroke[J]. Neurosci Lett,2006,403(3):227-232.
    [82]Stamatovic SM, Keep RF, Kunkel SL,et al. Potential role of MCP-1 in endothelial cell tight junction'opening':signaling via Rho and Rho kinase [J]. J Cell Sci,2003,116(pt22):4615-4628.
    [83]Dimitrijevic OB, Stamatovic SM, Keep RF, et al. Effects of the chemokine CCL2 on blood-brain barrier permeability during ischemia-reperfusion injury [J]. J Cereb Blood Flow Metab,2006,26(6):797-810.
    [84]Adibhatla RM, Hatcher JF, Larsen EC, et al. CDP-choline significantly restores phosphatidylcholine levels by differentially affecting phospholipase A2 and CTP:phosphocholine cytidylyltransferase after stroke [J]. J Biol Chem,2006,281(10):6718-6725.
    [85]Schwab JM, Schluesener HJ. Cyclooxygenases and central nervous system inflammation:conceptual neglect of cyclooxygenase 1 [J]. Arch Neurol, 2003,60(4):630-632.
    [86]Kawano T, Anrather J, Zhou P, et al. Prostaglandin E2 EP1 receptors: downstream effectors of COX-2 neurotoxicity [J]. Nat Med,2006,12(2): 225-229.
    [87]Manabe Y, Anrather J, Kawano T, et al. Prostanoids, not reactive oxygen species, mediate COX-2-dependent neurotoxicity [J]. Ann Neurol,2004, 55(5):668-675. [88] Tomimoto H, Shibata M, Ihara M, et al. A comparative study on the expression of cyclooxygenase and 5-lipoxygenase during cerebral ischemia in humans [J]. Acta Neuropathol,2002,104(6):601-607. [89] Gidday JM, Gasche YG, Copin JC, et al. Leukocyte-derived matrix metalloproteinase-9 mediates blood-brain barrier breakdown and is proinflammatory after transient focal cerebral ischemia [J]. Am J Physiol Heart Circ Physiol,2005,289(2):H558-568. [90] Xu H, Tang Y, Liu DZ, et al. Gene expression in peripheral blood differs after cardioembolic compared with large-vessel atherosclerotic stroke: biomarkers for the etiology of ischemic stroke [J]. J Cereb Blood Flow Metab,2008,28(7):1320-1328. [91] Collion M, Aragno M, Castiglia S, et al. Insulin reduces cerebral ischemia/reperfusion injury in the hippocampus of diabetic rats:a role for glycogen synthase kinase-3beta[J]. Diabetes,2009,58(1):235-242.
    [92]Graham SH, Chen J. Programmed cell death in cerebral ischemia [J]. J Cereb Blood Flow Metab,2001,21 (2):99-109.
    [93]Koh JY. Zinc and disease of the brain [J]. Mol Neurobiol,2001,24(1-3): 99-106.
    [94]Cho BB, Toledo-Pereyra LH. Caspase-independent programmed cell death following ischemic stroke [J]. J Invest Surg,2008,21(3):141-147.
    [95]Wang ZQ. Research development on aquaporins and cerebral edema[J].Chin Clin Neurosurg,2006,11(2):119-122.
    [96]Nurmi A, Lingsberg PJ, Koistinaho M. Nuclear Factor-[kappa]B contributes to infarction after permanent focal ischemia[J]. Stroke,2004,35(4):987-991.
    [97]Deplanque D, Gele P, Petrault O, et al. Perxisome proliferators-activated receptor-alpha activation as a mechanism of preventive neuroprotection induced by chronic fenofibrate treatment [J]. Neurosci,2003, 23(15):6264-6271.
    [98]Inoue H, Jiang XF, Katayama T, et al. Brain protection by resveratrol and fenofibrate against stroke requires peroxisome proliferators-activated receptor alpha in mice [J]. Neurosci Lett,2003,352(3):203-206.
    [99]Collino M, Aragno M, Mastrocola R, et al. Oxidative stress and inflammatory response evoked by transient cerebral ischemia/reperfusion: effects of the PPAR-alpha agonist WY14643 [J]. Free Radical Biol Metab, 2006,41(4):579-589.
    [100]Buyukuysal RL. Protein S100B release from rat brain slices during and after ischemia:comparison with lactate dehydrogenase leakage[J]. Neurochem Int,2005,47(8):580-588.
    [101]Pialat JB, Cho TH, Beuf O, et al. MRI monitoring of focal cerebral ischemia in peroxisome proliferators-activated receptor (PPAR)-deficient mice [J]. NMR Biomed,2007,20(3):335-342.
    [102]Arsenijevic D, de Bilbao F, Plamondon J, et al. Increased infarct size and lack of hyperphagic response after focal cerebral ischemia in peroxisome proliferators-activated receptor beta-deficient mice [J]. J Cereb Blood Flow Metab,2006,26(3):433-445.
    [103]Iwashita A, Muramatsu Y, Yamazaki T, et al. Neuroprotective efficacy of peroxisome proliferators-activated receptor delta (PPAR-{delta}) selective agonists, L-165041 and GW501516, in vitro and in vivo [J]. J Pharmacol Exp Ther,2007,320(3):1087-1096.
    [104]Allahtavakoli M, Shabanzadeh AP, Sadr SS, et al. Rosiglitazone, a peroxisome proliferators-activated receptor-gamma ligand, reduces infarction volume and neurological deficits in an embolic model of stroke [J]. Clin Exp Pharmacol Physiol,2006,33(11):1052-1058.
    [105]Allahtavakoli M, Shabanzadeh A, Roohbakhsh A, et al. Combination therapy of rosiglitazone, a peroxisome proliferator-activated receptor-gamma ligand, and NMDA receptor antagonist (MK-801) on experimental embolic stroke in rats [J]. Basic Clin Pharmacol Toxicol,2007, 101(5):309-314.
    [106]Collino M, Aragno M, Mastrocola R, et al. Modulation of the oxidative stress and inflammatory response by PPAR-gamma agonists in the hippocampus of rats exposed to cerebral ischemia/reperfusion [J]. Eur J Pharmacol,2006,530(1-2):70-80.
    [107]Shimazu T, Inoue I, Araki N, et al. A peroxisome proliferators-activated receptor-gamma agonist reduces infarct size in transient but not in permanent ischemia [J]. Stroke,2005,36(2):353-359.
    [108]Sundararajan S, Gamboa JL, Victor NA, et al. Peroxisome proliferator-activated receptor-gamma ligands reduce inflammation and infarction size in transient focal ischemia [J]. Neuroscience,2005,130(3): 685-696.
    [109]Victor NA, Wanderi EW, Gamboa J, et al. Altered PPARgamma expression and activation after transient focal ischemia in rats. Eur J Neurosci,2006, 24(6):1653-1663.
    [110]Zhao Y, Patzer A, Gohlke P, et al. The intracerebral application of the PPARgamma-ligand pioglitazone confers neuroprotection against focal ischaemia in the rat brain [J]. J Neurosci,2005,22(1):278-282.
    [111]Ou Z, Zhao X, Labiche LA, et al. Neuronal expression of peroxisome proliferator-activated receptor-gamma (PPARgamma) and 15d-prostaglandin J2-mediated protection of brain after experimental cerebral ischemia in rat [J]. Brain Res,.2006,1096 (1):196-203.
    [112]Zhao Y, Patzer A, Herdegen T, et al. Activation of cerebral peroxisome proliferator-activated receptors..gamma promotes neuroprotection by attenuation of neuronal cyclooxygenase-2 overexpression after focal cerebral ischemia in rats [J]. FASEB J,2006,20(8):1162-1175.
    [113]Zhang HL, Gu ZL, Savitz SI,et al. Neuroprotective effects of prostaglandin A(1) in rat models of permanent focal cerebral ischemia are associated with nuclear factor-kappaB inhibition and peroxisome proliferator-activated receptor-gamma up-regulation [J]. J Neurosci Res,2008,86(5):1132-1141.
    [114]Yan-wei Xu, Li Sun, Hao Liang, et al.12/15-Lipoxygenase inhibitor baicalein suppresses PPARy expression and nuclear translocation induced by cerebral ischemia/reperfusion [J]. Brain Res,2010,1307:149-157.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700