血管紧张素Ⅱ对血管平滑肌细胞中抑癌基因PTEN的影响及分子机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
血管平滑肌细胞(vascular smoooth muscle cell, VSMC)位于动脉血管中膜,是血管中层唯一的细胞成分。VSMC的异常增殖,导致其由中膜迁移到内膜下间隙,是冠状动脉硬化、经皮穿刺腔内冠状动脉成形术再狭窄以及高血压血管肥厚等疾病的病理基础。因此找到VSMC异常增殖的机制,抑制VSMC异常增殖是治疗这些血管肥厚性疾病的重要途径。
     人第10号染色体缺失的磷酸酶及张力蛋白同源的基因(phosphatase and tensin homolog deleted on chromosome ten, PTEN)是近年来发现的一种新的抑癌基因,是具有双重磷酸酶活性的肿瘤抑制因子,在中枢神经系统、心脏、肝脏、肾脏、胃肠道、肺脏及皮肤等全身多器官均有表达,且参与多种生理过程,尤其是对肿瘤细胞的生长、增殖、分化、凋亡、粘附和迁移均具有重要影响。近年来,对PTEN的研究逐渐从肿瘤领域延伸到其他领域中,随着研究的深入人们发现PTEN在心肌肥大,高血压,动脉粥样硬化,支气管哮喘哮等疾病中也发挥重要的作用。本课题应用血管紧张素Ⅱ(AngiotensinⅡ, AngⅡ)诱导血管平滑肌细胞增殖和迁移,从细胞和分子水平深入探讨AngⅡ是否影响平滑肌细胞中抑癌基因PTEN的活性和表达以及其下游信号通路,发挥促血管平滑肌细胞异常增生和迁移的作用。并且初步探讨血管平滑肌细胞增殖中PTEN的表达如何被调控。
     一、血管紧张素Ⅱ促进平滑肌细胞增殖和迁移,抑制凋亡
     应用MTT法,CCK-8法及划痕实验,证实AngⅡ可以促进平滑肌细胞的增殖与迁移,并且确定了AngⅡ的最佳浓度和作用时间。经MTT法检测细胞活力,发现1μmol/L以及10μmol/L两个浓度的AngⅡ作用12小时和24小时后均能显著促进平滑肌细胞增殖,而0.1μmol/L AngⅡ作用不及另两个浓度。1μmol/L AngⅡ增殖促进率为12小时13.6%(p<0.001),24小时13.9(p<0.01),作用稳定。再经CCK-8法确证1μmol/L的AngⅡ在24小时内呈时间依赖性的促进平滑肌细胞增殖,12小时和24小时对平滑肌细胞增殖的促进率分别为10.4%(p<0.01)和9.8%(p<0.05)。划痕实验的结果显示,1μmol/L的AngⅡ在12小时内呈时间依赖性的促进平滑肌细胞迁移,12小时后AngⅡ组平滑肌细胞迁移的距离约为正常组的1.7倍(p<0.05)。在检测AngⅡ影响细胞活力的同时,应用免疫印记法检测了细胞中caspase-3的表达,来反映细胞凋亡水平。结果显示,12小时内1μmol/L的AngⅡ可使平滑肌细胞中Caspase-3蛋白的表达呈时间依赖性的减少,降低细胞的凋亡水平。
     二、血管紧张素Ⅱ对平滑肌细胞中PTEN及其通路的影响
     实验应用western blot检测法及非还原电泳法检测AngⅡ刺激细胞后,PTEN, phospho-PTEN (p-PTEN), reduced-PTEN (re-PTEN), oxidized-PTEN (ox-PTEN)及PTEN下游通路蛋白phospho-Akt (p-Akt)和phospho-FAK (p-FAK)表达的变化。同时应用Realtime-PCR法检测PTEN mRNA水平的变化。此外,应用还原型二氯荧光素(2',7'-Dichlorofluorescin diacetate, DCFH-DA)检测细胞内活性氧(reactive oxygen species, ROS)水平的变化,考察自由基水平与re-PTEN和ox-PTEN表达的关系。结果显示,0.1μmol/L, 1μmol/L以及10μmol/L的AngⅡ分别作用于血管平滑肌细胞24h时,细胞内PTEN蛋白的表达水平呈浓度依赖性降低。选用1μmol/L的AngⅡ作用于平滑肌细胞0-12h, PTEN的表达呈现时间依赖性的降低,12h时,其表达降低至正常对照组的1/4(p<0.001)o RT-PCR的检测结果显示lμmol/L AngⅡ刺激细胞2h后PTEN mRNA水平已降低至对照组的1/2(p<0.01)。说明AngⅡ可以从基因和蛋白水平降低PTEN的转录和表达。应用western blot方法检测到,AngⅡ刺激平滑肌细胞5min后可快速却短暂的升高p-PTEN的表达,2小时后趋于正常水平。向细胞内载入DCFH荧光探针,用Ang II刺激后不同时间检测到的细胞内荧光强度反映细胞内活性氧水平。结果显示,AngⅡ刺激平滑肌细胞可以快速升高细胞内活性氧的水平,1小时后达到对照组的1.5倍(p<0.01),持续升高2小时后逐渐降低,12小时后基本恢复正常氧化还原状态。这与1μmol/L的AngⅡ作用于平滑肌细胞2h,应用非还原电泳检测到的ox-PTEN的表达逐渐升高的结果具有一致性。1μmol/L的AngⅡ使平滑肌细胞内受PTEN负调控的Akt及FAK通路被激活,p-Akt及p-FAK的表达均呈时间依赖性的升高,AngⅡ作用12小时后p-Akt的表达升高至正常对照组的4.5倍(p<0.001); p-FAK的表达升高至正常对照组的3.5倍(p<0.001)。
     三、血管紧张素Ⅱ影响平滑肌细胞内PTEN表达的机制研究
     预先用某些信号通路或因子的抑制剂、激动剂对平滑肌细胞进行预处理1小时,再加入1μmol/L的AngⅡ共同作用12小时,应用western blot和CCK-8法考察各种调节剂对细胞内PTEN表达水平的影响及对平滑肌细胞增殖的影响,以此分析AngⅡ影响PTEN表达水平的调控机制。western blot检测结果显示,AngⅡ受体抑制剂洛沙坦(losartan, Losa),过氧化物酶体增殖物激活受体γ(peroxisome proliferator-activated receptor-y, PPARγ)激动剂罗格列酮(rosiglitazone, Rosi)及细胞核因子-κB (nuclear factor-KB, NF-κB)抑制剂BAY11-7082可以使PTEN的表达恢复甚至高于正常组PTEN的表达; c-jun氨基末端激酶(c-jun NH2-terminal kinase, JNK)抑制剂SP600125组PTEN的表达较AngⅡ组也略有提高;抗氧化剂α-硫辛酸(alpha-lipoic acid, a-LA)组细胞PTEN的表达与AngⅡ组相比无明显变化;而磷脂酰肌醇3激酶(phosphoinositide 3-kinase, PI3K)抑制剂LY294002,促分裂素原活化蛋白激酶(MAPK kinase 1/2 or ERK kinase 1/2, MEK1/2)抑制剂U0126及p38 MAPK抑制剂SB203580三组细胞PTEN的表达较AngⅡ组有不同程度的减少。细胞经相同的处理后,应用CCK-8法检测各种调节剂均对细胞的生长具有抑制作用。NF-κB抑制剂对细胞的生长抑制作用最为明显,抑制率达50%;P13K抑制剂,JNK抑制剂及p38 MAPK抑制剂对细胞生长的抑制率在20%左右;洛沙坦,罗格列酮及MEK1/2抑制剂对细胞生长的抑制率在10%左右;而α-硫辛酸(α-LA)对细胞生长的抑制率为4.23%,不具有统计学差异。
     本课题用AngⅡ作为诱因,证实在血管平滑肌细胞过度增殖和迁移的病理过程中抑癌基因PTEN活性和表达下降,因此受其负调控的下游Akt及FAK通路被激活,促使平滑肌细胞增殖和迁移。洛沙坦,罗格列酮以及NF-κB抑制剂可以逆转AngⅡ引起的PTEN表达的下降。抑癌基因PTEN可能成为治疗血管肥厚性疾病的重要靶点之一,具有深入研究的价值。
Vascular smooth muscle cell (VSMC) is the only cellular component of vascular middle layer. Under physiological conditions, vascular smooth muscle regulates angiotasis by contraction and relaxation, and smooth muscle cells release some regulatory factors to maintain normal functions of blood vessels. Abnormal proliferation of VSMC, resulting in VSMC migration from media to intima, is critical event in the development of some vascular hypertrophy diseases such as coronary artery disease, percutaneous transluminal coronary angioplasty (PTCA) restenosis and vascular hypertrophy in hypertension. So finding the mechanisms and inhibiting abnormal proliferation of VSMC are important for the treatment of vascular hypertrophy diseases.
     Phosphatase and tensin homolog deleted on chromosome ten (PTEN), a new tumor suppressor, is a dual phosphatase tumor suppressor which expressed in central nervous system, heart, liver, kidney, gastrointestinal tract, lungs and skin as a constitutive secretion protein. PTEN involved in a variety of physiological processes, especially in cancer cells proliferation, differentiation, apoptosis, adhesion and migration. Recently, researchs about PTEN extended gradually from the cancer to some other fields such as cardiac hypertrophy, hypertension, atherosclerosis and bronchial asthma.
     Previous works have shown that as a dual phosphatase, PTEN can regulate phosphatidylinositol-3-kinase (PI3K), extracellular signal-regulated kinase (ERK) and focal adhesion kinase (FAK) to inhibit tumor cell proliferation, migration and invasion. We suppose that PTEN have a similar effect on VSMC proliferation. In this study, we using AngⅡas stimulator to promote VSMC proliferation and migration, focused on the effects of PTEN and its pathways on AngⅡ-induced VSMC proliferation and migration and explored how to regulate the expression of PTEN.
     We confirmed AngⅡcould promote VSMC proliferation and migration, and identified the best concentration as well as effect time of AngⅡusing MTT, CCK-8 method and scratch experiments. The reslts of MTT assay confirmed 1μmol/L Ang II induced significant increase of VSMC proliferation. The proliferation rate was respectively 13.6% (p<0.001) after 12h and 13.9 (p<0.01) after 24h. Then CCK-8 assay had the similar results, proliferation rate was respectively 10.4% (p<0.01) after 12h and 9.8% (p<0.05) after 24h. Compared with the control cells, AngⅡcaused nearly 2 folds (P<0.05) increase of cell migration after 12h. Moreover, the expression of caspase-3 which can reflect the level of apoptosis was detected by western blot. The presence of AngⅡshowed to suppress the expression of caspase-3 in a time-dependent manner.
     To determine whether PTEN was involved in AngⅡ-mediated cell proliferation and migration, the expressions of PTEN, p-PTEN, re-PTEN, ox-PTEN after AngⅡstimulated were detected using western blot and nonreducing immunoblotting assay. And PTEN mRNA level was detected by RT-PCR. Intracellular free radicals were detected by DCFH-DA fluorescent probe. PTEN expression and PTEN mRNA decreased in response to AngⅡtreatment in a time-dependent manner. PTEN expression was reduced to only 1/4 compared with the control cells, and PTEN mRNA was decreased significantly after 2h of AngⅡtreatment. The level of p-PTEN was initially elevated after AngⅡstimulated 5min which was continued till 30min and then decreased gradually. Ox-PTEN level on the other hand was increased after exposure to AngⅡfrom 30min to 120min which was coincidence with intracellular reactive oxygen species (ROS) level. Collectively, these results indicate that AngⅡnot only decreased PTEN transcription and expression but also reduced PTEN activity by phosphorylation and oxidation PTEN protein. To assess whether the activity reduction of PTEN in response to AngⅡis linked to Akt and FAK signaling pathways, which are known to be involved in cell proliferation and migration, we examined the phosphorylation of Akt and FAK. The p-Akt and p-FAK levels were shown to be elevated initially from 30min and 5min respectively after AngⅡtreatment. And the expressions of p-Akt and p-FAK were shown to be increased as time dependent manner during 12h.
     Furthermore, VSMCs were pre-incubated with various pharmacological factors of signaling pathways for 1 h before AngⅡtreatment. Western blot and CCK-8 methods were used to examine PTEN expression and cell proliferation. The AT1 inhibitor losartan (20μmol/L), the PPARy agonist rosiglitazone (100μmol/L) and the NF-κB inhibitor BAY11-7082 (10μmol/L) significantly reversed the down-regulateion of PTEN expression induced by AngⅡ. And JNK inhibitor SP600125 (10μmol/L) could increased the expression of PTEN to some extent. All factors inhibited the proliferation of VSMC induced by AngⅡ. The growth suppression effect of NF-κB inhibitor BAY 11-7082 (10μmol/L), the PI3K inhibitors LY294002 (10μmol/L), the JNK inhibitor SP600125 (10μmol/L) and the p38 inhibitor SB203580 (10μmol/L) reached 20% or more.
     In the study, two major problems have been clarified. Firstly, the expression of tumor suppressor gene PTEN decreased over the pathological process of VSMC abnormal proliferation and migration was confirmed, using AngⅡas an incentive. Meanwhile, the expressions of inactive forms of PTEN, p-PTEN and ox-PTEN, increased rapidly but transiently after AngⅡstimulation. So that Akt and FAK pathways which are downstreams negative regulated by PTEN were activated. Secondly, results indicated losartan, rosiglitazone and NF-κB inhibitors could reverse down-regulation of PTEN expression caused by AngⅡ. PTEN may be an important target for the treatment of vascular hypertrophy diseases and is valuable to be in-depth studied and adequately understood.
引文
[1]董军奎,刘慧敏.血管平滑肌细胞的增殖凋亡与高血压[J].辽宁中医药大学党报.2009,11(6):75-77.
    [2]Chen KH, Guo X, Ma D, et al. Dysregulation of HSG triggers vascular proliferative disorders[J]. Nat Cell Bio.2004,6(9):872-883.
    [3]郭艳红,李黔,于海奕等.增殖抑制基因诱导血管平滑肌细胞凋亡[J].北京大学学报(医学版),2007,39(4),394-398.
    [4]严志强,衣听,马红萍.肿瘤抑制因子PTEN蛋白在自发性高血压大鼠主动脉平滑肌中的表达[J].南通医学院学报.2002,22(2):130-131.
    [5]吴兴利,王士雯,杨中苏等.氧化型低密度脂蛋白对血管平滑肌细胞磷酸酶PTEN活性的影响[J].中国动脉硬化杂志.2002,10(6):505-508.
    [6]吴兴利,杨丁友,杨中苏等.胰岛素样生长因子-1对血管平滑肌细胞PI3K/PTEN信号通路的影响[J].中国应用生理学杂志.2004,20(3):259-262.
    [7]董学员,陈慰峰.肿瘤抑制基因PTEN的研究进展[J].自然科学进展.2004,14(6):601-605.
    [8]刘思源,张玉想.PPO在MAPK通路中一个新癌基因[J].中国肿廇临床.2006,33(23):1342-1345.
    [9]程瑞雪,冯德云,郑晖等.乳腺癌组织中p-MAPK活化对c-fos和c-jun的激活作用[J].湖南医科大学学报.2001,26(1):10-12.
    [10]Li J, Yen C, Liaw D et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer[J]. Science.1997,275(5308): 1943~1947.
    [11]Weng L, Brown J, Eng C. PTEN induces apoptosis and cell cycle arrest through phosphoinositol-3-kinase/Akt-dependent and-independent pathways[J]. Hum Mol Genet.2001,10(3):237~242.
    [12]Steelman LS, Bertrand FE, McCubrey JA. The complexity of PTEN:mutation, marker and potential target for therapeutic intervention[J]. Expert Opin Ther Targets. 2004,8(6):537~550.
    [13]Liu W, Zhou Y, Reske SN, et al. PTEN mutation:many birds with one stone in tumorigenesis[J]. Anticancer Res.2008,28(6A):3613-3619.
    [14]陈樑,张红锋,杨帆.Akt抗凋亡机制与癌症治疗[J].生命的化学.2004,24(5):431-433.
    [15]兰岚,孙铁英,杨纯正 等.磷脂酰肌醇-3激酶抑制剂LY294002增加紫杉醇对肺癌裸鼠移植瘤的治疗作用[J].中国肺癌杂志.2008,11(2):165-171.
    [16]Maehama T, Dixon JE. PTEN:a tumor suppressor that functions as a phospholipid phosphatase[J]. Trends Cell Biol.1999,9(4):125~128.
    [17]Cantley LC, Neel BG. New insights into tumor suppression:PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway[J]. Proc Natl Acad Sci USA.1999,96(8):4240~4245.
    [18]林观平,黄金文,李祥勇等.抑癌基因PTEN抑制乳腺癌ZR-75-1细胞转移作用机制的探讨[J].实用癌症杂志.2008,23(4):334-342.
    [19]张丹丹,郭琳,王强.肿瘤抑制基因PTEN的研究现状[J].现代肿瘤医学.2007,15(1):108-111.
    [20]刘小利,陈日玲.FAK与肿瘤关系的研究进展[J].医学研究杂志.2009,38(9):5-8.
    [21]Chung JH, Ostrowski MC, Romigh T, et al. The ERK1/2 pathway modulates nuclear PTEN-mediated cell cycle arrest by cyclin D1 transcriptional regulation[J]. Hum Mol Genet.2006,15(17):2553~2559.
    [22]周裔忠,祝善俊PTEN与心血管疾病研究进展[J].中华高血压杂志.2007,15(7):535-537.
    [23]Patel L, Pass I, Coxon P, et al. Tumour suppressor and anti-inflammatory actions of PPAR γ agonists are mediated via upregulation of PTEN[J]. Curr Biol.2001,11(10):764-768.
    [24]Zhang W, Wu N, Li Z, et al. PPARgamma activator rosiglitazone inhibits cell migration via upregulation of PTEN in human hepatocarcinoma cell line BEL-7404[J]. Cancer Biol Ther.2006,5(8):1008~1014.
    [25]Xia D, Srinivas H, Ahn YH, et al. Mitogen-activated protein kinase kinase-4 promotes cell survival by decreasing PTEN expression through an NF kappa B-dependent pathway[J]. JBiol Chem.2007,282(6):3507~3519.
    [26]Tamguney T, Stokoe D. New insights into PTEN[J]. J Cell Sci.2007,120(pt 23): 4071~4079.
    [27]Das S, Dixon JE, ChoW. Membrane-binding and activation mechanism of PTEN[J]. Proc Natl Acad Sci USA.2003,100(13):7491~7496.
    [28]Vazquez F, Ramaswamy S, Nakamura N, et al. Phosphorylation of the PTEN tail regulates protein stability and function. Mol Cell Biol.2000,20(14): 5010~5018.
    [29]Mutter GL, Lin MC, Fitzgerald JT, et al. Altered PTEN expression as a diagnostic marker for the earliest endometrial precancers[J]. J Natl Cancer Inst. 2000,92(11):924-930.
    [30]Furnari FB, Lin H, Huang HS, et al. Growth suppression of gliomacells by PTEN requires a functional phosphatase catalytic domain[J]. Proc Natl Acad Sci.1997,94(23):12479~12484.
    [31]Takeo M, Toshiki M, Yasunobu K, et al. Growth suppression of human ovarian cancer cells by adenovirusmediated transfer of the PTEN gene[J]. Cancer Res.1999, 59(24):6063~6067.
    [32]Davies MS, Koul D, Dhesi H, et al. Regulation ofAkt/PKB activity, cellular growth, and apoptosis in prostate carcimoma cells by MMAC/PTEN[J]. Cancer Res. 1999,59(11):2551~2556.
    [33]Matsushima-Nishiu M, Unoki M, Ono K, et al. Growth and gene expression Profileanalyses of endometrial cancer cells expressing exogenous PTEN[J]. Cancer Res.2001,61(9):3741~3749.
    [34]Tamura M, Gu J, Takino T, et al. Tumor suppressor PTEN inhibition of cellinvasion, migration, and growth:differential involvement of focal adhesion kinase and p130 cas[J]. Cancer Res.1999,59(2):442~449.
    [35]Lu Y, Lin YZ, Lapushin R, et al. The PTEN/MMAC1/TEP tumor suppressor gene decreases cell growth and induces apoptosis and anoikis in breast cancer cells[J]. Oncogene.1999,18(50):7034-7045.
    [36]Davies MP, Gibbs FE, Halliwell N, et al. Mutation in the PTEN/MMAC1 gene in archivallow grade and hige grade gliomas[J]. Br J Cancer.1999,79(9-10): 1542~1548.
    [37]Kotelevets L, van Hengel J, Bruyneel E, et al. The lipid phosphatase activity of PTEN is critical for stabilizing inter cellular junctions and reverting invasiveness[J]. J Cell Biol.2001,155(7):1129~1135.
    [38]Cheney IW, Johnson DE, VaillancourtMT. Suppression of tumorigenicity of glioblastoma cells by adenovirus-mediated MMAC1/PTEN gene transfer[J]. Cancer Res.1998,58(11):2331~2334.
    [39]Oudit GY, Penninger JM. Cardiac regulation by phosphoinositide 3-kinases and PTEN[J]. Cardiovasc Res.2009,82(2):250~260.
    [40]Crackower MA, Oudit GY, Kozieradzki Ⅰ, et al. Regulation of myocardial contractility and cell size by distinct PI3K-PTEN signaling pathways[J]. Cell.2002, 110(6):737~749.
    [41]Schwartzbauer G, Robbins J. The tumor suppressor gene PTEN can regulate cardiac hypertrophy and survival[J]. JBiol Chem.2001,276(38):35786-35793.
    [42]Mourani PM, Garl PJ, Wenzlau JM, et al. Unique, highly proliferative growth phenotype expressed by embryonic and neointimal smooth muscle cells is driven by constitutive Akt, mTOR, and p70S6K signaling and is actively repressed by PTEN[J]. Circulation.2004,109(10):1299~1306.
    [43]Garl PJ, Wenzlau JM, Walker HA, et al. Perlecan-induced suppression of smooth muscle cell proliferation is mediated through increased activity of the tumor suppressor PTEN[J]. Circ Res.2004,94(2):175~183.
    [44]程刚,徐耕,单江等.辛伐他汀抑制胎牛血清及PDGF-BB诱导的血管平滑肌细胞增殖及对抑癌基因PTEN表达的影响[J].中国病理生理杂志.2002,18(7):830-833.
    [45]单江,程刚,傅国胜等.辛伐他汀抑制血管平滑肌细胞增殖及对PTEN、p27蛋白表达的影响[J].中华心血管病杂志.2002,30(10):622-625.
    [46]严志强,胡亚娥,刘波等.卡托普利对主动脉缩窄性高血压大鼠主动脉PTEN表达的影响[J].生物医学工程学杂志.2004,21(6):884-887.
    [47]Hao LS, Zhang XL, An JY, et al. PTEN expression is down-regulated in liver tissues of rats with hepatic fibrosis induced by biliary stenosis[J]. APMIS.2009, 117(9):681~691.
    [48]. Qian ZJ, Jung WK, Byun HG, et al. Protective effect of an antioxidative peptide purified from gastrointestinal digests of oyster, Crassostrea gigas against free radical induced DNA damage[J]. Bioresour Technol.2008,99(9):3365-3371.
    [49]Lee SR, Yang KS, Kwon J, et al. Reversible inactivation of the tumor suppressor PTEN by H2O2[J]. J Biol Chem.2002,277(23):20336~20342.
    [50]Kim JH, Na HJ, Kim CK, et al. The non-provitamin A carotenoid, lutein, inhibits NF-icB-dependent gene expression through redox-based regulation of the phosphatidylinositol 3-kinase/PTEN/Akt and NF-KB-inducing kinase pathways:Role of H2O2 in NF-κB activation[J]. Free Radic Biol Med.2008,45(6):885~896.
    [51]杜乃立.肾素血管紧张素系统和血管紧张素Ⅱ信号转导机制的研究进展[J].心血管病学进展.2000,21(3):157-159.
    [52]彭宁,刘俊田.血管紧张素Ⅱ诱导活性氧簇的产生及其在血管损伤的信号机制[J].生理科学进展.2006,37(4):362-364.
    [53]桑慧,王家富.活性氧介导血管紧张素Ⅱ促血管平滑肌细胞增殖的作用[J].中国临床康复.2006,10(25):147-149.
    [54]周莹,刘沛.血管紧张素Ⅱ引起血管平滑肌细胞内Ca2+浓度变化机制的研究[J].中国医科大学学报.2008,37(3):299-301.
    [55]刘雅,温绍君,赵莉敏等.血管紧张素Ⅱ与血管紧张素-(1-7)对人血管平滑肌细胞内游离钙浓度的影响[J].中国监床复.2005,9(35):44-46.
    [56]董波.血管紧张素Ⅱ参与动脉粥样硬化发病机制的新观点:炎症机制[J].心血管病学进展.2002,23(1):46-48.
    [57]王向宇,吴可贵,晋学庆等.自发性高血压大鼠主动脉平滑肌细胞异常增殖和自身肾素-血管紧张素系统的关系[J].中国动励硬化杂志.1997,5(3):212-216.
    [58]林春龙,张珍祥,徐永健.血管紧张素Ⅱ对人肺血管平滑肌细胞增殖及黏着斑激酶表达的影响[J].中国应用生理学杂志.2006,22(3):351-353.
    [59]景涛,何国祥,刘建平等.血管紧张素Ⅱ及其受体在血管平滑肌细胞迁移中的作用[J].中国病理生理杂志.2002,18(2):143-146.
    [60]Mitra AK, Jia GH, Gangahar DM, et al. Temporal PTEN inactivation causes proliferation of saphenous vein smooth muscle cells of human CABG conduits[J]. J Cell Mol Med.2009,13(1):177~187.
    [61]Shi DY, Liu HL, Stern JB, et al. Alpha-lipoic acid induces apoptosis in hepatoma cells via the PTEN/Akt pathway[J].FEBS Lett.2008,582(12):1667~1671.
    [62]Connor KM, Subbaram S, Regan KJ, et al. Mitochondrial H2O2 regulates the angiogenic phenotype via PTEN oxidation[J]. J Biol Chem.2005,280(17): 16916~16924.
    [63]Seo JH, Ahn Y, Lee SR, et al. The major target of the endogenously generated reactive oxygen species in response to insulin stimulation is phosphatase and tensin homolog and not phosphoinositide-3 kinase (PI-3 kinase) in the PI-3kinase/Akt Pathway[J]. Mol Biol Cell.2005,16(1):348~357.
    [64]Parsons JT. Focal adhesion kinase:the first ten years[J]. J Cell Sci.2003, 116(pt8):1409~1416.
    [65]李志强,郑慧哲.整合素、黏着斑激酶与动脉粥样硬化研究进展[J].医学前般2009,38(5):22-24.
    [66]李荥娟,任利群.PPARs与动脉粥样硬化关系的研究进展[J].医学综述.2006,1(17):1037-1039.
    [67]朱莹,张文高,郑广娟等.PPARγ与动脉粥样硬化及中医药干预研究[J].中西医结合心脑血管病杂志.2007,5(3):225-227.
    [68]Hattori Y, AkimotoK, Kasai K. The effects of thiazolidinediones on vascular smooth muscle cell activation by angiotensin II [J]. Biochem Biophys Res Commun.2000,273(3):1144~1149.
    [69]董少红,李鹏,曾春苗等.过氧化物酶体增殖物激活受体γ激动剂对球囊损伤血管平滑肌细胞PTEN蛋白表达的影响[J].中国组织工程研究与监床康复.2009,13(22):4218-4222.
    [70]Hettinger K, Vikhanskaya F, Poh MK, et al. C-Jun promotes cellular survival by suppression of PTEN[J]. Cell Death Differ.2007,14(2):218~229.
    [71]Shen YH, Zhang L, Gan Y, et al. Up-regulation of PTEN (phosphatase and tensin homolog deleted on chromosome ten) mediates p38 MAPK stress signal-induced inhibition of insulin signaling. A cross-talk between stress signaling and insulin signaling in resistin-treated human endothelial cells. J Biol Chem.2006,281(12):7727~7736.
    [72]于长青,张晔, 傅春江等.PI3K-ERK信号在胰岛素诱导的血管平滑肌细胞增殖中的作用[J].中国病理生理杂志.2009,25(11):2105-2108.
    [73]卢次勇,凌文华,马静等.ERK1/2在氧化型低密度脂蛋白诱导血管平滑肌细胞增殖中的作用[J].中国公共卫生.2002,18(11):1286-1288.
    [74]冯友梅,陈娟,周洁等.瘦素对大鼠主动脉血管平滑肌细胞增殖和移行的影响[J].中国组织化学与细胞化学杂志,2006,15(4):361-365.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700