应激影响肉仔鸡脂肪沉积的分子生物学机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究利用外源糖皮质激素(地赛米松,DEX)导入的方法建立肉仔鸡的应激模型,从肉仔鸡的生长前期和后期两个阶段探讨应激对肉仔鸡脂肪代谢的影响。通过研究应激对肉仔鸡脂肪沉积规律影响的基础上,重点考察了应激对肝脏脂肪从头合成的影响机制。
     应激对肉仔鸡生长前期脂肪代谢的影响选取7日龄体重相近的Arbor Acres雄性肉鸡108只,随机分为三个处理:应激组(DEX)、对照组(Control)和采食量配对组(Pair-fed)。应激组每天早8:00腹部皮下注射地塞米松(1mg/ml),剂量为2.0mg/Kg体重,自由采食和饮水;对照组注射与应激组相同体积的生理盐水,自由采食和饮水;采食量配对组注射与应激组相同体积的生理盐水,同时饲喂应激组前一天的采食量。结果发现,应激显著降低了14日龄肉仔鸡的平均日增重和饲料转化率,增加了颈脂、腹脂、腿脂以及肝脏的脂肪沉积;应激显著增加了血浆中胰岛素水平,VLDL(极低级密度脂蛋白)也有增加的趋势,这表明血液中脂类的流量增加;应激还提高肝脏FAS(脂肪酸合成酶)以及ME(苹果酸酶)的活性,促进肝脏ACC(乙酰辅酶A羧化酶)、FAS以及ME mRNA的表达。但颈脂和腹脂中LPL(脂蛋白脂酶)、PPARγ(过氧化物酶体增殖物激活受体)以及ATGL(脂肪细胞甘油三酯酶) mRNA的水平没有受到应激的影响。这表明,应激导致脂肪沉积增加的主要原因是肝脏脂肪酸从头合成的增强以及血浆中脂类流量的增加。
     应激对肉仔鸡生长后期脂肪代谢的影响选取35日龄体重相近的Arbor Acres雄性肉仔鸡196只,随机分为三个处理:应激组(DEX,剂量为2.0mg/Kg体重)、对照组(Control)和采食量配对组(Pair-fed),自由采食、饮水。注射3d后,于38日龄分别随机选取8只鸡于饲喂和空腹状态下采集血液、腹脂、皮下脂肪(腿部、颈部皮下)和肝脏样品。结果发现,DEX处理极显著增加肝脏和颈脂的相对重量,DEX处理有增加腹脂和腿脂相对重量的趋势;在禁食状态下,DEX处理显著增加血浆中TG(甘油三酯)、VLDL、尿酸和胰岛素的含量,使肝素后血浆中LPL活性升高;在饲喂状态下,DEX处理显著增加血糖、TG、VLDL、尿酸和胰岛素含量;DEX处理显著增加38日龄肉仔鸡在禁食状态下ME的活性,肝脏FAS的活性也有增加的趋势,但DEX对饲喂状态下肝脏FAS和ME的活性没有影响。DEX处理极显著地增加38日龄肝脏禁食状态下ACC和FAS的mRNA水平,与配对组相比,DEX处理也有增加ME的mRNA表达量的趋势,在饲喂状态下,与配对组相比,DEX处理显著增加肝脏ACC和ME mRNA的水平;与配对组相比,DEX处理促进禁食状态下腹脂FAS的mRNA水平,但对禁食状态下腹脂ME的mRNA水平以及饲喂状态下FAS、ME的mRNA水平都没有显著影响;DEX处理显著增加饲喂状态下腹脂LPL mRNA的水平,在禁食状态下,LPL mRNA也有增加的趋势,而腹脂ATGL和PPARγ不论是禁食还是饲喂状态都没有受到DEX处理的影响。这表明,肝脏脂肪酸从头合成能力增加以及血浆中脂肪流量增多是38日龄应激肉仔鸡脂肪沉积增加的主要原因,这与应激对肉仔鸡生长前期的影响也是一致的;血浆LPL活性增加以及腹脂LPL mRNA表达量的上调是应激肉仔鸡脂肪沉积增加的另一个原因,这一点与应激对肉仔鸡生长前期的影响不同,这可能与生长后期腹脂明显增多有关系。
     DEX和胰岛素对离体培养的肉仔鸡肝细胞脂肪酸合成的影响分离并培养6日龄肉仔鸡肝细胞,培养15h后开始正式试验,分为4个处理,每个处理6个重复。对照组:基础培养液,为含5%新生牛血清的Williams’E培养基;DEX组:基础培养液中含DEX 200nmol/L;INS组:基础培养液中含胰岛素100nmol/L;DEX+INS组:在基础培养液中含DEX 200nmol/L、胰岛素100nmol/L。在CO2培养箱中37℃静置培养24h。结果发现,DEX和胰岛素共同作用于肝细胞时,能显著增加其FAS、ME以及ACC mRNA的表达量,而DEX或胰岛素单独处理没有改变FAS、ME以及ACC mRNA的表达量。DEX或胰岛素单独处理没有改变肉仔鸡肝细胞LXRα和SREBP-1c mRNA的水平,但DEX和胰岛素共同作用于肝细胞时,LXR(P=0.0036)的mRNA的水平显著增加了,对于SREBP-1c mRNA的水平,两种激素共同作用与对照组或DEX组相比有增加的趋势(P=0.0719),而与胰岛素处理相比没有显著差别。这表明,是DEX和胰岛素的协同作用促进了肝脏脂肪酸的从头合成,这与活体试验即DEX处理以及由此导致的高胰岛素血症促进了肝脏脂肪酸合成的结果是一致的。而生脂基因mRNA表达量的上调可能受到核转录因子LXRα和/或SREBP-1的调控。
The effects of dexamethasone on lipid metabolism were studied in vivo and in primary culture of hepatocytes in broiler chickens.
     Effect of dexamethasone (DEX, a synthetic glucocorticoid) on lipid metabolism in broiler chickens (Gallus gallus domesticus) was investigated in the early growing stage. Male Arbor Acres chickens (1 wk old, n=30) were injected with DEX or saline for 1 wk, and a pair-fed group was included. DEX administration resulted in enhanced lipid deposition in adipose tissues. Plasma insulin increased about 3.3 fold in DEX injected chickens as against the control and hepatic triglyceride was higher as compared with the pair-fed chickens. In DEX injected chickens, the hepatic activities of malic enzyme (ME) and fatty acid synthetase (FAS) was significantly increased, while the mRNA levels of acetyl CoA carboxylase (ACC), ME, and FAS was significantly up-regulated, compared with the control. Although the mRNA levels of lipoprotein lipase (LPL), peroxisome proliferator-activated11 receptor-γ(PPARγ) and adipose triglyceride lipase (ATGL) genes in adipose tissue were not affected by DEX injection, ME activity and mRNA levels in abdominal fat pad of chickens treated with DEX is higher than those of control chickens. The results indicated that the increased hepatic de novo lipogenesis and in turn, the increased circulating lipid flux contributes to the augmented fat deposition in adipose tissues and liver in DEX-challenged chickens. The results suggest that glucocorticoids together with the induced hyperinsulinemia should be responsible for the up-regulated hepatic lipogenesis.
     Effects of DEX on lipid metabolism in broiler chickens (Gallus gallus domesticus) were investigated in the late growing stage. Male Arbor Acres chickens (35 d of age, n=30) were injected with DEX or saline for 3d, and a pair-fed group was included. When the samples were collected at 38 d of age, one half of chickens were in the fed status, another half were fasted for 12h. DEX administration resulted in enhanced lipid deposition in cervical fat, abdomnal fat and thigh fat also had increased trend. DEX injection increased plasma TG, VLDL and insulin concentration not only in fasted status but also in fed status. DEX administration led to higher post-heparin LPL activity and plasma glucose level in fasted status. In fasted status, DEX administration resulted in increased ME activity in liver, liver FAS activity tended to increase in DEX injected chicken. But the FAS and ME activity in DEX chickens had no significant change in fed status. DEX injection resulted in enhanced ACC and FAS mRNA levels in liver in fasted status. Compared to pair-fed, ME mRNA level in liver tended to increase in DEX chickens in fasted status. In fed status, DEX administration led to enhanced liver ACC and ME mRNA expressions compared to pair-fed chickens. DEX administration up-regulated FAS mRNA expression in abdominal fat in fasted status, but the ME and FAS mRNA levels of abdominal fat in fed status were not altered by DEX injection. DEX injection resulted in LPL mRNA expression of abdominal fat in fed status, and in fasted status LPL mRNA level trended to increase by DEX injection. We also measured the mRNA levels of PPARγand ATGL in abdominal fat in fasted and fed status. Neither of these two genes’mRNA expression was altered by DEX injection. The results suggested that the increased hepatic de novo lipogenesis and in turn, the increased circulating lipid flux contributes to the augmented fat deposition in adipose tissues in DEX-challenged chickens which agreed to the former experiments. Up-regulation of LPL mRNA level in abdominal fat and increased plasma LPL activity also contribute to the enhanced fat deposits which were not accordant with results in the early growing stage of chickens perhaps because of more abdominal fat deposit. The results indicated that glucocorticoids together with the induced hyperinsulinemia should be responsible for the up-regulated hepatic lipogenesis.
     The effects of DEX and insulin on the fatty acid synthesis of hepatocytes cultured in vitro were investigated in the third experiment. Hepatocytes were isolated from livers of 6 day old chick. Cells were incubated in Williams’Medium E containing 10% serum. After 15 h incubation, the medium was changed to contain 5% serum. There were four treatments, one of which had the same composition supplemented with DEX (200nmol/L), insulin (100nmol/L) or both. The control group contained neither of the hormones. Afer 24h of treatment, total RNA was isolated and lipogenic genes were measured by real-time PCR. The results found that in combination with DEX, insulin increased significantly FAS, ACC and ME mRNA level, but when added alone, DEX or insulin had no effent on these lipogenic genes. The effects of the two hormones on nucleus transcriptional factors were also evaluated. DEX and insulin synergically promoted LXRαmRNA level. When DEX plus insulin were added to the medium, SREBP-1c tended to increase compared to DEX or control group. The results suggested that it was insulin plus DEX that enhanced hepatic de novo lipogenesis. The transcription of lipogenic genes perhaps were modulated by LXRαand/or SREBP-1.
引文
陈代文,张克英.AMPK对动物营养代谢的调节作用.动物营养学报,2002,14(3):1~6
    陈黎龙等.成年鸡肝细胞的分离与原代培养.江西农业大学学报,2008,30(3):385-389
    符庆瑛,高钰琪.蛋白激酶AMPK的研究进展.生命科学,2005,17(2):147-152
    陆元善等.高脂饮食大鼠肝脏硬脂酰CoA去饱和酶表达及罗格列酮的干预作用.肝脏,2004,9(9):159-162.
    余冰.AMPK对应激状态下仔猪脂质代谢的调节作用.博士论文,四川农业大学,2003.
    张金伟.AMPK活性变化对产蛋鸡肝细胞胆固醇合成的影响研究.四川农业大学,2005
    郑萍等.热应激对体外仔猪肝细胞AMPK活性及脂质代谢产物的影响.营养学报,2007,29(1)::23-26,30.
    Abumrad N, Coburn C, Ibrahimi A. membrane proteins implicated in long-chain fatty acid uptake by mammalian cells: CD36, FATP and FABPm. Biochim Biophys Acta, 1999,1441:4-13.
    Ailhaud G, Grimaldi P & Negrel R. Hormonal regulation of adipose differentiation. Trends Endocrinol. Metab., 1994; 5: 132–136.
    Appel B., Fried S. K. Effects of insulin and dexamethasone on lipoprotein lipase in human adipose tissue. Am. J. Physiol. Endocrinol. Metab, 1992,262: E695-E699.
    Ashby P, Robinson DS. Effects of insulin, glucocorticoids and adrenaline on the activity of rat adipose tissue lipoprotein lipase. Biochem J. 1980, 188, 185-192.
    Azzout-Marniche D, Becard D, Guichard C, Foretz M, Ferre P, Foufelle F. Insulin effects on sterol regulatory-element-binding protein-1c (SREBP-1c) transcriptional activity in rat hepatocytes. Biochem J 2000;350:389–93.
    Bagdade JD, Yee E Albers J, Pykalisto O. Glucocorticoids and triglyceride transport: effect on triglyceride secretion rates lipoprotein lipase and plasma lipoproteins in the rats: Metabolism, 1976, 25:533-542.
    Baggen MGA, Lammers R, Jansen H, Birkenhager JC. The effect of synacthen administration on lipoprotein lipase activity in the epididymal fat pad of the rat. Metabolism, 1985, 34: 1053-1056.
    Barak Y, Nelson MC, Ong ES, Jibes YZ, Ruiz-lozano P, Chien KR, Koder A, and Evans RM. PPAR gamma is required for placental, cardiac, and adipose tissue development. Mol Cell, 1999, 4:585–595.
    Bartov, I., Jensen, L.S., Veltmann, J.R. Effect of corticosterone and prolactin on fattening in broiler chicks. Poult. Sci. 1980a. 59, 1328-34.
    Bartov, I., Jensen, L.S., Veltmann, J.R. Effect of dietary protein and fat levels on fattening of corticosterone-injected broiler chicks. Poult. Sci. 1980b, 59, 1864-72.
    Bartov, I. Effects of dietary protein concentration and corticosterone injections on energy and nitrogen balances and fat deposition in broiler chicks. Br. Poult. Sci. 1985, 26, 311-24.
    Bass NM. The cellular fatty acid binding proteins: aspects of structure,regulation and function. Int Rev Cytol 1988,3: 143–184.
    Baccarani U, Sanna A, Cariani A, et al. Isolation of human hepatocytes from livers rejected for liver transplantation on a national basis : results of a 2-year experience [J]. Liver transpl, 2003,9 (5):506-512.
    Back, D.W., M. J. Goldman, J. E. Fisch, R. S. Ochs, and A. G.Goodridge. The fatty acid synthase gene in avian liver: two mRNAs are expressed and regulated in parallel by feeding, primarily at the level of transcription. J. Biol. Chem. 1986, 261:4190–4197.
    Bedu, E., Chainier, F., Sibille, B., Meister, R., Dallevet, G., Garin, D., Duchamp, C. Increased lipogenesis in isolated hepatocytes from cold-acclimated ducklings. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2002, 283, R1245-53.
    Bell, M.E., Bhatnagar, S., Liang, J., Soriano, L., Nagy, T.R., Dallman, M.F. Voluntary sucrose ingestion, like corticosterone replacement, prevents the metabolic deficits of adrenalectomy. J. Neuroendocrinol. 2000, 12, 461-70.
    Beneke Sascha and Seamus A. Rooney. Glucocorticoids regulate expression of the fatty acid synthase gene in fetal rat typeⅡcells. Biochimica et Biophysica Acta 2001,1534: 56-63.
    Bensadoun, A., Kompiang, I. P. Role of lipoprotein lipase in plasma triglyceride removal. Fed. Proc. 1979, 38, 2622-2626.
    Berdanier, C.D. Role of glucocorticoids in the regulation of lipogenesis. FASEB J. 1989, 3, 2179-83.
    Bergen, W. G.; Mersmann, H. J. Comparative aspects of lipid metabolism: impact oncontemporary research and use of animal models. Journal of Nutrition 2005, 135, 2499–2502.
    Bergot M.-O., Diaz-Guerra M.-J.M., Puzenat N., Raymondjean M., Kahn A. cis-regulation of the L-type pyruvate kinase gene promoter by glucose, insulin and cyclic AMP. Nucleic Acids Res. 1992, 20, 1871–1878.
    Blanquert C., BarbIer O., Fruchart J.C., Staels B., and Glineur C. Peroxisome Proliferator-activated Receptors: Regulation of Transcriptional Activities and Roles in
    Inflammation. J. Steroid Biochem. Mol. Biol., 2003, 85 (225): 267– 273. Bradbury MW. Lipid metabolism and liver inflammation. Hepatic fatty acid uptake: possible role in steatosis. Am. J. Physiol. Gastrointest. Liver Physiol., 2006, 290: G194–8.
    Bragdon, J.H., Gordon, R.S. Jr., Tissue distribution of C14 after the intravenous injection of labeled chylomicrons and unesterified fatty acids in the rat. J. Clin. Invest., 1958, 37, 574-8.
    Braun, E.J., Sweazea, K.L. Glucose regulation in birds. Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 2008, 151(1), 1-9.
    Cairo, S., Merla, G., Urbinati, F., Ballabio, A. and Reymond, A. WBSCR14, a gene mapping to the Williams–Beuren syndrome deleted region, is a new member of the Mlx transcription factor network. Hum. Mol. Genet., 2001, 10, 617–627.
    Calabotta DF, Cherry JA, Siegel PB, Jones DE. Lipogenesis and lipolysis in fed and fasted chicks from high and low body weight lines. Poult. Sci., 1995,64 (4):700-4.
    Carmen GY, and Victor SM. Signalling mechanisms regulating lipolysis. Cell Signal, 2006, 18: 401-408,
    Choe SS, Choi AH, Lee JW, Kim KH, Chung JJ, Park J, Lee KM, Park KG, Lee IK, Kim JB.. Chronic activation of liver X receptor induces beta-cell apoptosis through hyperactivation of lipogenesis: liver Xreceptor-mediated lipotoxicity in pancreatic beta-cells.Diabetes 2007;56(6):1534–43.
    Chen G, Liang G, Ou J, Goldstein JL, Brown MS. Central role for liver X receptor in insulin-mediated activation of Srebp-1c transcription and stimulation of fatty acid synthesis in liver. Proc Natl Acad Sci USA 2004; 101:11245–50.
    Choi DH, Choi JH, Whang SK and Kim YS. Regulation of acetyl CoA carboxylase mRNA inrat liver by high carbohydrate diet and insulin.Yonsel Medical Journal, 1989, 30(3):235-245.
    Chu K, Miyazaki M, Man WC, Ntambi JM. Stearoylcoenzyme A desaturase 1 deficiency protects against hypertriglyceridemia and increases plasma high-density lipoprotein cholesterol induced by liver X receptor activation. Mol Cell Biol 2006;26 (18):6786–98.
    Cigolini M, Smith U. Human adipose tissue in culture.Ⅷ. Studies on the insulin-antagonistic effect of glucocorticoids. Metabolism, 1979, 28, 502-510.
    Close, B., Banister, K., Baumans, V., Bernoth, E.M., Bromage, N., Bunyan, J., Erhardt, W., Flecknell, P., Gregory, N., Hackbarth, H., Morton, D., Warwick, C. Recommendations for euthanasia of experimental animals: Part 2. DGXT of the European Commission. Lab Anim. 1997, 31, 1-32.
    Coburn C T, Knapp FF Jr , Fabbraio M., Beets AL, Silverstein RL. Abumrad NA. Defective uptake and utilization of long chain fatty acids in muscle and adipose tissues of CD36 knockout mice. J Biol Chem., 2000, 275 ( 42) : 32523-9.
    Commerford SR, Peng L, Dube JJ, O’Doherty RM. In vivo regulation of SREBP-1c in skeletal muscle: effects of nutritional status, glucose, insulin, and leptin. Am J Physiol Regul Integr Comp Physiol 2004; 287:R218–27.
    Cozzone D, Debard C, Dif N, Ricard N, Disse E, Vouillarmet J, Rabasa LR, Laville M, Pruneau D. Rieusset J. Lefai E. Vidal H. Activation of liver X receptors promotes lipidaccumulation but does not alter insulin action in human skeletal muscle cells. Diabetologia 2006, 49(5):990–9.
    Dallman MF, Akana SF, Strack AM, Hanson ES, Sebastian RJ. The neural network that regulates energy balance is responsive to glucocorticoids and insulin and also regulates HPA axis responsitivity at a site proximal to RCF neurons. Ann N Y Acad Sci., 1995, 29(771), 730-742.
    Dallman, M.F., Pecoraro, N.C., la Fleur, S.E. Chronic stress and comfort foods: self-medication and abdominal obesity. Brain. Behav. Immun. 2005, 19, 275-80.
    Dani, C., Doglio, A., Grimaldi, P., Ailhaud, G. Expression of the phosphoenolpyruvate carboxykinase gene and its insulin regulation during differentiation of preadipose cell lines. Biochem. Biophys. Res. Commun. 1986, 138, 468–475.
    Daniel Z. C. T. R., Richards S. E., Salter A. M. and Buttery P. J. Insulin and dexamethasone regulate stearoyl-CoA desaturase mRNA levels and fatty acid synthesis in ovine adipose tissue explants. J. Anim. Sci. 2004, 82:231-237
    David Ricart-Jané, Pilar Cejudo-Martín, Julia Peinado-Onsurbe, M. Dolores López-Tejero, Miquel Llobera. Changes in lipoprotein lipase modulate tissue energy supply during stress. J Appl Physio., 2005, 99:1343-1351.
    de la Hoz, L., and R. G. Vernon.. Endocrine control of sheep adipose tissue fatty acid synthesis: Depot specific differences in response to lactation. Horm. Metab. Res.1993, 25:214–218.
    Denechaud PD., Dentin R., Girard J., Postic C. Role of ChREBP in hepatic steatosis and insulin resistance. FEBS Letters, 2008, 582:68-73.
    Dentin, R., Benhamed, F., Hainault, I., Fauveau, V., Foufelle, F., Dyck, J.R., Girard, J., Postic, C.. Liver-specific inhibition of ChREBP improves hepatic steatosis and insulin resistance in ob/ob mice. Diabetes, 2006,55, 2159–2170.
    Diamant, S. and E. Shafrir. Modulation of the activity of insulin-dependent enzymes of lipogenesis by glucocorticoids. Eur. J. Biochem. 1975, 53:541-546.
    Dimitriadis, G., Leighton, B., Parry-Billings, M., Sasson, S., Young, M., Krause, U., Bevan, S., Piva, T., Wegener, G., Effects of glucocorticoid excess on the sensitivity of glucose transport and metabolism to insulin in a rat skeletal muscle. Biochem. J. 1997, 321,707-12.
    Doege H, Baillie RA, Ortegon AM, Tsang B., Wu Q., Punreddy S., Hirsch D., Watson N., Gimeno RE., Stahl A. Targeted deletion of FATP5 reveals multiple functions in liver metabolism: alterations in hepatic lipid homeostasis. Gastroenterology 2006, 130(4):1245–58.
    Dong, H., Lin, H., Jiao, H.C., Song, Z.G., Zhao, J.P., Jiang, K.J. Altered development and protein metabolism in skeletal muscles of broiler chickens (Gallus gallus domesticus) by corticosterone. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2007, 147, 189-95.
    Donkin SS, Chiu PY, Yin D, Louveau I, Swencki B, Vockroth J,Evock-Clover CM, Peters JL & Etherton TD Porcine somatotropin differentially down-regulates expression of the GLUT4 and fatty acid synthase genes in pig adipose tissue. Journal of Nutrition, 1996,126: 2568–2577.
    Douaire M, Belloir B, Guillemot J C, Fraskub JM, Langlois P and Mallard J. Lipogenic enzyme and apoprotein messenger RNAs in long-term primary culture of chicken hepatocytes. J Cell Sci, 1993,104(3):713-718.
    Ducluzeau PH, Perretti N, Laville M, Andreelli F, Vega N, Riou JP. Regulation by insulin of gene expression in human skeletal muscle and adipose tissue- Evidence for specific defects in type 2 diabetes. Diabetes 2001, 50:1134–42.
    Dupont, J., Dagou, C., Derouet, M., Simon, J., Taouis, M., Early steps of insulin receptor signaling in chicken and rat: apparent refractoriness in chicken muscle. Domest. Anim. Endocrinol. 2004, 26, 127-42.
    Dupont, J., Derouet, M., Simon, J., Taouis, M. Corticosterone alters insulin signaling in chicken muscle and liver at different steps. J. Endocrinol. 1999, 162, 67-76.
    Dupont, J., Tesseraud, S., Simon, J. Insulin signaling in chicken liver and muscle. Gen. Comp. Endocrinol. Doi:10.1016/j.ygcen.2008.10.016.
    Eckel RH, Prassad JE, Kern PA, Marshall S. Insulin regulation of adipose tissue lipoprotein lipase in cultured rat adipocytes. Endocrinology, 1984, 114:1665-1671.
    Fischer, P. W. F., and A. G. Goodridge. Coordinate regulation of acetyl coenzyme A carboxylase and fatty acid synthase in liver cells of the developing chick in vivo and in culture. Arch. Biochem. Biophys. 1978, 190 332-344.
    Flatt J P ,Ball E G. Studies on the metabolism of adipose tissue : XV. An evaluation of the major pathways of glucose catabolism as influenced by insulin and epinephrine. J Biol Chem ,1964 ,239 :675~685.
    Fleischmann M, Iynedjian PB. Regulation of sterol regulatory-element binding protein 1 gene expression in liver: role of insulin and protein kinase B/cAkt. Biochem J 2000;349:13–7
    Foretz M, Guichard C, Ferre P, Foufelle F. Sterol regulatory element binding protein-1c is a major mediator of insulin action on the hepatic expression of glucokinase and lipogenesis-related genes. Proc Natl Acad Sci U S A 1999; 96:12737-12742.
    Foretz, M., Pacot, C., Dugail, I., Lemarchand, P., Guichard, C., Le Liepvre, X., erthelier-Lubrano, C., Spiegelman, B., Kim, J. B., Ferre! , P. and Foufelle, F.DD1/SREBP-1c is required in the activation of hepatic lipogenic gene expression by lucose. Mol. Cell. Biol. 1999, 19, 3760-3768
    Foucaud, L., Niot, I., Kanda, T., Besnard, P. Indirect dexamethasone down-regulation of the liver fatty acid-binding protein expression in rat liver. Biochim. Biophys. Acta,1998, 1391, 204-12.
    Franco Colin M , Tellez Lopez, A M , Quevedo Corona, L , Racotta, R. Effects of long-term high-sucrose and dexamethasone on fat depots, liver fat, and lipid fuel fluxes through the retroperitoneal adipose tissue and splanchnic area in rats: Metabolism. 2000, 49(10): 1289-94.
    Fraslin JM., Touquette L., Douaire M., Menozo Y., Guillemot J-C., and Mallard J. Isolation and long-term maintenance of differentiated adult chicken hepatocytes in primary culture. In vitro Cell Dev Bioo, 1992, 28A:615-612
    Freedman, M.R., Horwitz, B.A., Stern, J.S. Effect of adrenalectomy and glucorticoid replacement on development of obesity. Am. J. Physiol. 1986, 250 (4 Pt 2), R595-607.
    Fried, S.K., Russell, C.D., Grauso, N.L., Brolin, R.E. Lipoprotein lipase regulation by insulin and glucocorticoid in subcutaneous and omental adipose tissues of obese women and men. J. Clin. Invest. 1993, 92, 2191-8.
    Fruhbeck G, Aguado M, Gomez-Ambrosi J, Martinez JA. Lipolytic effect of in vivo leptin administration on adipocytes of lean and ob/ob mice, but not db/db mice. Biochem. Biophys. Res. Commun. 1998, 250:99–102.
    Fukuda N, Ontko JA. Interactions between fatty acid synthesis, oxidation, and esterification in the production of triglyceride-rich lipoproteins by the liver. J. Lipid Res. 1984, 25:831–42.
    Fukuda Hitomi, Akihiko Katsurada and Nobuko Iritani.Nutritional and hormonal regulation of mRNA levels of lipogenic enzymes in primary cultures of rat hepatocytes. J. Biochem, 1992, 111:25-30.
    Gasquet P, Pequignot E. Changes in adipose tisssue and heart lipoprotein lipase activity and in serum glucose, insulin and corticosterone concentrations in rats adapted to a daily meal. Horm Metab Res. 1973, 5:440-443.
    Geraert, P.A., Padilha, J.C., Guillaumin, S. Metabolic and endocrine changes induced bychronic heat exposure in broiler chickens: biological and endocrinological variables. Br. J. Nutr. 1996, 75: 205-16.
    Gertow K, Rosell M, Sjogren P, Eriksson P, Vessby. Fatty acid handling protein expression in adipose tissue, fatty acid composition of adipose tissue and serum, and markers of insulin resistance. Eur J Clin Nutr 2006; 60: 1406–13.
    Gettys TW, Harkness PJ, Watson PM. The beta 3-adrenergic receptor inhibits insulin-stimulated leptin secretion from isolated rat adipocytes. Endocrinology, 1996, 137:4054–57.
    Gharbi-Chihi, J., Grimaldi, P., Torresani, J., Ailhaud, G.. Triiodothyronine and adipose conversion of Ob17 preadipocytes: binding to high affinity sites and effects on fatty acid synthesizing and esterifying enzymes. J. Recept. Res. 1981, 2:153–173.
    Giffhorn S, Katz NR. Glucose-dependent induction of acetyl-CoA carboxylase in rat hepatocyte cultures. Biochem. J. 1984, 221:343.
    Glatz JFC, Vork MM, Cistola DP, van der Vusse GJ. Cytoplasmic fatty acid binding protein: significance for intracellular transport of fatty acids and putative role on signal transduction pathways. Prostaglandins Leukotrienes Essent Fatty Acids 1993, 48:33–41.
    Glorian, M., Franckhauser, S.V., Robin, D., Robin, P., Forest, C. Glucocorticoids repress induction by thiazolidinediones, fibrates, and fatty acids of phosphoenol–pyruvate carboxykinase gene expression in adipocytes. J. Cell. Biochem. 1998, 68, 298–308.
    Goldberg, I.J. Lipoprotein lipase and lipolysis: central roles in lipoprotein metabolism and atherogenesis. J. Lipid Res. 1996, 37, 693-707.
    Gotoh, T., Chowdhury, S., Takiguchi, M., Mori, M. The glucocorticoid-responsive gene cascade: activation of the rat arginase gene through induction of C/EBP?. J. Biol. Chem. 1997, 272: 3694–3698.
    Grefhorst A, Elzinga BM, Voshol PJ, Plosch T, Kok T, Bloks VW, Sluijs FH. Van der, Havekes LM., Romijn JA., Verkade HJ. And Kuipers F. Stimulation of lipogenesis by pharmacological activation of the liver X receptor leads to production of large, triglyceride-rich very low density lipoprotein particles. J Biol Chem 2002, 277(37):34182–90
    Griffin, H.D., Whitehead, C.C. Plasma lipoprotein concentration as an indicator of fatness in broilers: development and use of a simple assay for plasma very low density lipoproteins. Br. Poult. Sci. 1982, 23: 307-13.
    Griffin, H. D., Guo, K., Windsor, D., Butterwith, S. C. Adipose tissue lipogeneis and fat deposition in leaner broiler chickens. J. Nutri. 1992,122: 363-368.
    Guan HP, Li Y, Jensen MV, Newgard CB, Steppan CM, Lazar MA. A futile metabolic cycle activated in adipocytes by antidiabetic agents.. Nat. Med., 2002, 8(10): 1122-1128.
    Guillet-Deniau I, Mieulet V, Le Lay SL, Achouri Y, Carre D, Girard J, Foufelle F. and Ferre P. Sterol regulatory element binding protein-1c expression and action in rat muscles: insulin- like effects on the control of glycolytic and lipogenic enzymes and UCP3 gene expression. Diabetes 2002, 51:1722–8.
    Haemmerle G, Zimmermann R, Hayn M, Theussl C, Waeg G, Waqner E, Sattler W, Maqin TM, Waqner EF, Zechner R. Hormone-sensitive lipase deficiency in mice causes diglyceride accumulation in adipose tissue, muscle, and testis. J. Biol. Chem. 2002, 277(7):4806–15.
    Halestrap, A.P., Denton, R.M., Insulin and the regulation of adipose tissue acetyl-coenzyme A carboxylase. Biochem. J. 1973, 132: 509-17.
    Hardie, D. G., and D. Carling. The AMP-activated protein kinase: fuel gauge of the mammalian cell? Eur. J. Biochem. 1997, 246:259–273.
    Hermier, D. Lipoprotein metabolism and fattening in poultry. J. Nutr. 1997, 127: 805s-808s.
    Heverin M, Meaney S, Brafman A, Shafir M, Olin M, Shafaati M, von Bahr S, Larsson L, Lovqren-Sandblom A, Diczfalusy U, Parini P, Feinstein E and Bjorkhem I. Studies on the cholesterol-free mouse: strong activation of LXR-regulated hepatic genes when replacing cholesterol with desmosterol. Arterioscler Thromb Vasc Biol 2007, 27(10):2191–7.
    Hillgartner, F. B., L. M. Salati, and A. G. Goodridge. Physiological and molecular mechanism involved in nutritional regulation of fatty acid synthesis. Physiol. Rev. 1995, 75:583-595.
    Hillgartner, F. B., T. Charron, and K. A. Chesnut. Triiodothyronine stimulates and glucagon inhibits transcription of the acetyl-CoA carboxylase gene in chick embryo hepatocytes. Glucose and insulin amplify the effect of triiodothyronine. Arch. Biochem. Biophys.1997, 337: 159-168,
    Hillgartner F. Bradley and Tina Charron. Glucose stimulates transcription of fatty acid synthase and malic enzyme in avian hepatocytes.Am. J.Physio Endocrinol Metab.1998, 274:493-501.
    Holm C. Molecular mechanisms regulating hormone-sensitive lipase and lipolysis. Biochem. Soc. Trans. 2003, 31:1120–24.
    Horton JD, Bashmakov Y, Shimomura I, Shimano H. Regulation of sterol regulatory element binding proteins in livers of fasted and refed mice. Proc Natl Acad Sci USA 1998, 95:5987–92.
    Hood, R.L. and Gallian, E.Relationships among growth, adipose cell size and lipid metabolism in ruminant adipose tissue. Federation Proc., 1982,41: 2555-2561.
    Horton, J.D., Goldstein, J.L., and Brown, M.S. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver.. J. Clin. Invest.2002,109: 1125–1131.
    Hsu, R.Y., Lardy, H.A. Malic enzyme. In: Lowenstein, J.M. (editor), Methods in Enzymology. Academic, New York, 1969, pp. 230-5.
    Iizuka, K., Bruick, R.K., Liang, G., Horton, J.D., and Uyeda, K. Deficiency of carbohydrate response element-binding protein (ChREBP) reduces lipogenesis as well as glycolysis. Proc.Natl. Acad. Sci. USA, 2004, 101, 7281–7286.
    Ingle D L ,Bauman D E ,Garrigus U S. Lipogenesis in the ruminant :in vivo site of fatty acid synthesis in sheep. J Nutr ,1972 ,102 :617~624.
    Jiang, K.J., Jiao, H.C., Song, Z.G., Yuan, L., Zhao, J.P., Lin, H. Corticosterone Administration and Dietary Glucose Supplementation Enhance Fat Accumulation in Broiler Chickens. Br. Poult. Sci. 2008, 49, 625-31.
    John m. ong, Rosa B. Simsolo, Bahman Saffari and Philip A. Kern. The regulation of lipoprotein lipase gene expression by dexamethasone in isolated rat adipocytes: Endocrinology 1992, 130: 2310-2316.
    Joseph SB, Laffitte BA, Patel PH, Watson MA, Matsukuma KE, Walczak R, Collins JL, Osborne TF and Tontonoz P. Direct and indirect mechanisms for regulation of fatty acid synthase gene expression by liver X receptors. J Biol Chem 2002, 277(13):11019–25.
    Joshi, V. C., and Aranda, L. P. Hormonal regulation of the terminal enzyme of microsomal stearoyl coenzyme A desaturase in cultured avian liver explants. J. Biol. Chem., 1979, 254: 11779–11782.
    Kafri, I., Rosebrough, R.W., McMurtry, J.P., Steele, N.C., Corticosterone implants and supplemental dietary ascorbic acid effects on lipid metabolism in broiler chicks. Poult. Sci., 1988, 67, 1356-9.
    Katz J ,Landau B R ,Bartsch G E. The pentose cycle ,triose phosphate isomerization ,and lipogenesis in rat adipose tissue . J Biol Chem ,1966 ,241 :727~740.
    Kawaguchi, T., Takenoshita, M., Kabashima, T., Uyeda, K. Glucose and cAMP regulate the L-type pyruvate kinase gene by phosphorylation/dephosphorylation of the carbohydrate response element binding protein.Proc. Natl. Acad. Sci. U.S.A. 2001, 98: 13710–13715.
    Kershaw, E. E., J. K. Hamm, L. A. Verhagen, O. Peroni, M. Katic,and J. S. Flier. Adipose triglyceride lipase: function, regulation by insulin, and comparison with adiponutrin. Diabetes. 2006, 55:148–157.
    Kiec-Wilk B, Dembinska-Kiec A, Olszanecka A, Bodzioch M, Kawecka-Jaszcz K. The selected pathophysiological aspects of PPARs activation. J Physiol Pharmacol 2005, 56:149–62.
    Kim, K. H., F. Lopez-Casillas, D. H. Bai, X. Luo, and M. E.Pape. Role of reversible phosphorylation of acetyl-CoA carboxylasein long-chain fatty acid synthesis. FASEB J. 1989, 3: 2250–2256.
    Kim JB, Sarraf P, Wright M, Yao KM, Mueller E, Solanes G, Lowell BB, Spieqelman BM. Nutritional and insulin regulation of fatty acid synthetase and leptin gene expression throughDD1/SREBP1. J Clin Invest 1998, 101(1):1–9.
    Kletzien RF, Harris PKW, Foellmi LA. Glucose-6-phosphate dehydrogenase: A“housing keeping”enzyme subject to tissue-specific regulation by hormones, nutrients and oxidant stress. FASEB J. 1994, 8:174-181,
    Krempler, F., Breban, D., Oberkofler, H., Esterbauer, H., Hell, E., Paulweber, B., Patsch, W., Leptin, peroxisome proliferator-activated receptor-gamma, and CCAAT/enhancer binding protein-alpha mRNA expression in adipose tissue of humans and their relation tocardiovascular risk factors. Arterioscler. Thromb. Vasc. Biol. 2000, 20: 443-9.
    Koonen DP, Jacobs RL, Febbraio M, Yong ME, Soltys CL, Ong H, Vance DE, Dyck JR. Increased hepatic CD36 expression contributes to dyslipidemia associated with diet-induced obesity. Diabetes.2007, 56(12): 2863–71.
    Kornacker MS, Lowenstein JM. Citrate and conversion of carbohydrate into fat. Biochem. J.1965, 95:832.
    Kouba M, Hermier D, Le Dividich J. Influence of a high ambient temperature onstearoyl-CoA-desaturase activity in the growing pig. Comp. Biochem. Physiol. Biochem. Mol. Biol.1999, 124(1): 7–13.
    Kouba M., Hermier D. and Le Dividich J. Influence of a high ambient temperature on lipid metabolism in the growing pig. J.Anim Sci.2001, 79(1):81-87.
    Kubota N, Terauchi Y, Miki H, Tamemoto H, Yamauchi T, Komeda K, Satoh S, Nakano R, Ishii C, Suqiyama T, Eto K, Tsubamoto Y, Okuno A, Murakami K, Sekihara H, Haseqawa G, Naito M, Toyoshima Y, Tanaka S, Shiota K, Kitamura T, Fujita T, Ezaki O, Aizawa S, Kadowaki T. PPAR gamma mediates high-fat dietinduced adipocyte hypertrophy and insulin resistance. Mol Cell , 1999, 4(4):597–609
    Krotkiewski M, Bjorntorp P, Smith U. The effect of long-term dexamethasone treatment on lipoprotein lipase activity in rat fat cells. Horm Metab Res 1976, 8:245-246.
    Langin D. Adipose tissue lipolysis as a metabolic pathway to define pharmacological strategies against obesity and the metabolic syndrome. Pharmacol Res, 2006, 53: 482-491,
    Lavoie JM, Gauthier MS. Regulation of fat metabolism in the liver: link to non- alcoholic hepatic steatosis and impact of physical exercise. Cell Mol Life Sci 2006, 63:1393–409.
    Lefevre P, Diot C, Legrand P, and Douaire M. Hormonal regulation of stearoyl Coenzyme-A desaturase 1 activity and gene expression in primary cultures of chicken hepatocytes. Arch Biochem Biophys.1999, 368(2):329-337.
    Legrand, P., J. Mallard, M. A. Bernard-Griffiths, M. Douaire, and P. Lemarchal. Hepatic lipogenesis in genetically lean and fat chickens: in vitro studies. Comp. Biochem. Physiol. B. 1987a, 87: 789–792.
    Legrand, P., and Bensadoun, A. Stearyol-CoA desaturase activity in cultured rat hepatocytes.Biochim. Biophys. Acta. 1991,1086(1): 89–94.
    Legrand, P., Catheline, D., Hannetel, J. M., and Lemarchal, P. Stearyl-CoA desaturase activity in primary culture of chicken hepatocytes. Influence of insulin, glucocorticoid, fatty acids and cordycepin. Int. J. Biochem. 1994, 26(6): 777–785.
    Lehmann JM, Kliewer SA, Moore LB, Smith-Oliver TA, Oliver BB, Su JL, Sundseth SS, Wineqar DA, Blanchard DE, Spencer TA, Willson TM. Activation of the nuclear receptor LXR byoxysterols defines a new hormone response pathway. J Biol Chem 1997, 272(6):3137–40.
    Leveille, G.A. In vitro hepatic lipogenesis in the hen and chick. Comp. Biochem. Physiol. 1969, 28: 431-5.
    Leveille, G. A., Romsos, D. R., Yeh, Y., O’Hea, E. K. Lipid biosynthesis in the chick. A consideration of site of synthesis, influence of diet and possible regulatory mechanisms. Poult Sci. 1975, 54(4): 1075–1093.
    Liang G, Yang J, Horton JD, Hammer RE, Goldstein JL, Brown MS. Diminished hepatic response to fasting/refeeding and liver X receptor agonists in mice with selective deficiency of sterol regulatory element-binding protein-1c. J Biol Chem 2002, 277(11):9520–8.
    Lin, FT., and Lane MD. Antisense CCAAT/enhancer-binding protein RNA suppresses coordinate gene expression and triglyceride accumulation during differentiation of 3T3-L1 preadipocytes. Genes Dev. 1992, 6(4):533–544.
    Lin H., Decuypere, E., Buyse, J. Oxidative stress induced by corticosterone administration in broiler chickens(Gallus gallus domesticus):1 Chronic exposure. Comp. Biochem. Physiol., B. 2004a, 139: 737-744.
    Lin, H., Sui, S.J., Jiao, H.C., Buyse, J., Decuypere, E. Impaired development of broiler chickens by stress mimicked by corticosterone exposure. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2006, 143: 400-5.
    Linda carlsson, Ida nilsson and Jan oscarsson. Hormonal regulation of liver fatty acid-binding protein in vivo and in vitro: effect of growth hormone and insulisn.Endo.1998, 139(6):2699-2709.
    Liu ML, Mars WM, Zamegar R, Michalopoulos GK. Collagenase pretreatment and themitogenic effects of hepatocyte growth factor and transforming growth factor-alpha in adult rat liver. Hepatology. 1994,19(6):1521-1527
    Livak KJ., Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C (T)) Method. Methods. 2001,25(4): 402-8.
    Mabrouk GM., Helmy IM., Thampy KG., and Wakil SJ. Acute hormonal control of acetyl-CoA carboxylase. The roles of insulin, glucagon, and epinephrine. J. Biol. Chem. 1990.265(11): 6330–6338.
    MacDougald OA., and Lane MD. Transcriptional regulation of gene expression during adipocyte differentiation. Annu. Rev. Biochem. 1995, 64: 345-373.
    Madappally MM., Paquet RJ., Mehlman MA., Tobin RB. Gluconeogenic and lipogenic enzyme activities in growing chicks fed high fat and high carbohydrate diet. J Nutr. 1971 ,101 :755~760.
    Malheiros, R.D., Moraes, V.M., Collin, A., Decuypere, E., Buyse, J. Free diet selection by broilers as influenced by dietary macronutrient ratio and corticosterone supplementation. 1. Diet selection, organ weights, and plasma metabolites. Poult. Sci. 2003. 82:123-31.
    Matteri, R.L., Carroll, J.A., Dyer, C.J. Neuroendocrine responses to stress. In: Moberg, G.P., Mench, J.A. (Eds.). The biology of animal stress, CAB International, Wallingford, 2000. pp. 43-76.
    Ryu MH, Daily JW 3rd, Cha YS. Effect of starvation on hepatic acyl-CoA synthetase, carnitine palmitoyltransferase-1, and acetyl-CoA carboxylase mRNA levels in rats. Nutrition. 2005, 21(4):537-542.
    Mossab, A., Lessire, M., Guillaumin, S., Kouba, M., Mourot, J., Peiniau, P., Hermier, D. Effect of dietary fats on hepatic lipid metabolism in the growing turkey. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2002. 132: 473-83.
    Nakanishi S, Numa S. Purification of rat liver acetyl coenzyme A carboxylase and immunochemical studies on its synthesis and degraduation. Eur. J. Biochem.1970, 16(1):161-73.
    Newberry EP, Xie Y, Kennedy S, Han X, Buhman KK, Luo J, Gross RW, Davidson NO. Decreased hepatic triglyceride accumulation and altered fatty acid uptake in mice withdeletion of the liver fatty acid-binding protein gene. J. Biol. Chem. 2003, 278 (51): 51664-51672.
    Nguyen P., Leray V, Diez M, Serisier S, Le Bloc’h J, Sillart B, Dumon H. Liver lipid metabolism. J. Anim. Physiol. Anim. Nutr. 2008, 92(3):272-283.
    O'Hea, E.K., Leveille, G.A. Lipogenesis in isolated adipose tissue of domestic chick (Gallus domesticus). Comp. Biochem. Physiol. 1968, 26: 111-20.
    O’Hea EK, Leveille GA. Significance of adipose tissue and liver as sites of fatty acid synthesis in the pig and the efficiency of utilization of various substrates for lipogenesis. J. Nutr. 1969, 99(3): 338–344.
    Olivecrona, T., Bengtsson-Olivecrona, G., Lipoprotein lipase and hepatic lipase. Curr. Opin. Lipidol. 1993, 4:187-96.
    Ong JM, Kirchgessner TG, Schotz MC, Kern PA. Insulin increases the synthetic rate and messenger RNA level of lipoprotein lipase in isolated rat adipocyte. J Biol Chem.1988, 263:12933-12938.
    Ong JM, Simsolo RB, Saffari B, Kern PA. The regulation of lipoprotein lipase gene expression by dexamethasone in isolated rat adipocytes. Endocrinology, 1992, 130(4): 2310-2316.
    Osuga, J., S. Ishibashi, T. Oka, H. Yagyu, R. Tozawa, A. Fujimoto, F. Shionoiri, N. Yahagi, F.B. Kraemer, O. Tsutsumi, and N. Yamada. Targeted disruption of hormone-sensitive lipase results in male sterility and adipocyte hypertrophy, but not in obesity. Proc. Natl. Acad. Sci. USA. 2000, 97(2):787–792.
    Ottosson M., Vikman-Adolfsson K, S. Enerback S, Olivecrona G, and Bjrorntorp P. The effects of cortisol on the regulation of lipoprotein lipase activity in human adipose tissue. J. Clin. Endocrinol. Metab. 1994, 79(3): 820-825.
    Patel MS, Owen OE, Goldman LI, Hanson RW. Fatty acid synthesis by human adipose tissue. Metabolism.1975, 24(2): 161–173.
    Peet DJ, Turley SD, Ma W, Janowski BA, Lobaccaro JM, Hammer RE, Mangelsdorf DJ. Cholesterol and bile acid metabolism are impaired in mice lacking the nuclear oxysterol receptor LXR alpha. Cell. 1998, 93(5): 693-704.
    Pilo B., Etches RJ., George JC. Effects of corticosterone infusion on the lipogenic activity andultrastructure of the liver of laying hens. Cytobios. 1985.44(179S): 273-85.
    Prasad MR., and Joshi VC. Regulation of rat hepatic stearoyl coenzyme A desaturase. The roles of insulin and carbohydrate J. Biol. Chem. 1979, 254(4):997–999.
    Pullen DL, Liesman JS, Emery RS. A species comparison of liver slice synthesis and secretion of triacylglycerol from nonesterified fatty acids in media. J. Anim. Sci. 1990, 68(5):1395–1399.
    Puvadolpirod S., Thaxton JP. Model of physiological stress in chickens 1. Response parameters. Poult. Sci. 2000a , 79(3):363-9.
    Puvadolpirod, S., Thaxton, J.P., 2000b. Model of physiological stress in chickens 2. Dosimetry of adrenocorticotropin. Poult. Sci. 79, 370-6.
    Ramos, R.A., Nishio, Y., Maiyar, A.C., Simon, K.E., Ridder, C.C., Ge, Y., Firestone, G.L., 1996.Glucocorticoid-stimulated CCAAT/enhancer-binding protein alpha expression is required for steroid-induced G1 cell cycle arrest of minimal-deviation rat hepatoma cells. Mol. Cell. Biol. 16, 5288–5301.
    Ramsay, T.G., Rosebrough, R.W., 2003. Hormonal regulation of postnatal chicken preadipocyte differentiation in vitro. Comp. Biochem. Physiol., B136, 245–253.
    Raynolds MW, Award PD, Gordon DF, Gutiezrrez-Hartamann A, Rule DC, Wood WM, Echel RH 1990 Lipoprotein lipase gene expression in rat adipocytes is regulated by isoproterenol and insulin through different mechanisms. Mol Endocrinol 4:416-1422.
    Reaven EP, Kolterman OG, Reaven GM. Ultrastructural and physiological evidence for corticosterone-induced alterations in hepatic production of very low density lipoprotein particles [J]. J Lipid Res ,1974(5):74-79.
    Rebuffé-Scrive, M., Walsh, U.A., McEwen, B., Rodin, J., 1992. Effect of stress and exogenous glucocorticoids on regional fat distribution and metabolism. Physiol. Behav. 52, 583-90.
    Richard, M. J.; Holck, J. T.; Beitz, D. C., 1989: Lipogenesis in liver and adipose tissue of the domestic cat (Felis domestica). Comparative Biochemistry and Physiology B93, 561–564.
    Rinaldo D, Le Dividich J. Effects of warm exposure on adipose tissue and muscle metabolism in growing pigs. Comp Biochem Physiol 1991;100A:995–1002.
    Riserus U, Tan G D, Fielding B A, et al. Rosiglitazone increases indexes of stearoyl-CoA desaturase activity in humans: link to insulin sensitization and the role of dominant2negative mutation in peroxisome p roliferatoractivated recep tor - gamma [ J ]. Diabetes, 2005,54 (5) : 1379-1384.
    Roncreo, C., and A. G. Goodridge. 1992. Regulation of the malic enzyme and fatty acid synthase genes in chick embryo hepatocytes in culture: corticosterone and carnitine regulate responsiveness to triiodothyronine. Arch. Biochem. Biophys. 295:258-267
    SAS Institute. 1998. User's guide. SAS Institute, Carry, NC. Salt I, Celler J W, Hawley S A, et al. AMP-activated protein kinase: greater AMP dependence ,and preferential nuclear localization, of complexes containing theα2 isoform. Biochem J,1998,334(Pt1):177-187.
    Sato K., Akiba Y., Chida Y., Takahashi K. Lipoprotein hydrolysis and fat accumulation in chicken adipose tissues are reduced by chronic administration of lipoprotein lipase monoclonal antibodies. Poult. Sci. 1999, 78(9): 1286-91.
    Schultz JR, Tu H, Luk A, Repa JJ, Medina JC, Li L, Schwendner S, Wang S, Thoolen M, Mangelsdorf DJ, Lustig Kd, Shan B. Role of LXRs in control of lipogenesis. Genes. Dev. 2000, 14(22):2831–8.
    Seglen PO. Preparation of isolated rat liver cells. Methods Cell Biol.1976, 13:29-83. Semenkovich CF., Chen SH., Wims M., Luo CC., Li WH., Chan L. Lipoprotein lipase and hepatic lipase mRNA tissue specific expression, developmental regulation, and evolution. J. Lipid Res. 1989, 30(3): 423-31.
    Shih HM., Liu Z. and Towle HC. Two CACGTG motifs with proper spacing dictate the carbohydrate regulation of hepatic gene transcription. J. Biol.Chem. 1995, 270(37): 21991–21997.
    Shimano H, Horton JD, Shimomura I, Hammer RE, Brown MS, Goldstein JL. Isoform 1c of sterol regulatory element binding protein is less active than isoform 1a in livers of transgenic mice and in cultured cells. J. Clin. Invest. 1997, 99(5):846-854.
    Shimomura I, Shimano H, Horton JD, Goldstein JL, Brown MS. Differential expression of exons1a and 1c in mRNAs for sterol regulatory element binding protein-1 in human and mouse organs and cultured cells. J. Clin. Invest. 1997, 99(5):838–45.
    Shimomura I, Bashmakov Y, Horton JD. Increased levels of nuclear SREBP-1c associated with fatty livers in two mouse models of diabetes mellitus. J. Biol. Chem. 1999, 274(42):30028-30032.
    Shimomura I, Bashmakov Y, Ikemoto S, Horton JD, Brown MS and Goldstein JL. Insulin selectively increases SREBP-1c mRNA in the livers of rats with streptozotocin-induced diabetes. Proc. Natl. Acad. Sci. U S A. 1999, 96(24):13656-13661.
    Simon J., Freychet P., Rosselin G.. Chicken insulin: radioimmunological characterization and enhanced activity in rat fat cells and liver plasma membranes. Endocrinology. 1974, 95(5):1439-49.
    Simon J. and Leclercq B. Longitudinal study of adiposity in chickens selected for high or low abdominal fat content: Further evidence of a glucose-insulin imbalance in the fat line.J. Nutri. 1982,112(10):1961-1973.
    Spence JT. and Pitot HC. Induction of lipogenic enzymes in primary cultures of rat hepatocytes. Relationship between lipogensis and carbohydrate metabolism. Eur. J. Biochem. 1982, 128(1):15–20.
    Stangassinger, M.; Kaspar, W.; Giesecke, D.The role of adipose and hepatic tissues in the lipogenesis of the dog. Comparative Biochemistry and Physiology B 1986, 85:67–69.
    Strack, A.M., Bradbury, M.J., Dallman, M.F. Corticosterone decreases nonshivering thermogenesis and increases lipid storage in brown adipose tissue. Am. J. Physiol. 1995a, 268 (1 Pt 2), R183-91.
    Strack AM., Horsley C.J., Sebastian R.J., Akana S.F., Dallman M.F. Glucocorticoids and insulin: complex interaction on brown adipose tissue. Am. J. Physiol. 1995b, 268 (5 Pt 2), R1209-16.
    Sundvold H, Grindflek E, Lien S. Tissue distribution of porcine peroxisome proliferator-activated receptor alpha: detection of an alternatively spliced mRNA.Gene. 2001,273(1):105-113.
    Suryawan, A., Swanson, L.V., Hu, C.Y., Insulin and hydrocortisone, but not triiodothyronine, are required for the differentiation of pig preadipocytes in primary culture. J. Anim. Sci. 1997, 75:105–111.
    Takahashi S, Tanaka T, Kodamat T, Sakai J. peroxisome proliferator-activated receptor delta(PPARdelta) , a novel target site for drug discovery in metabolic syndrome. Pharmacol. Res. 2006, 53(6): 501– 507.
    Takai T, Yokoyama C, Wada K, Tanabe T. Primary structure of chicken liver acetyl-CoA carboxylase deduced from cDNA sequence. J Biol Chem. 1988, 263(6):2651–2657.
    Talukdar Saswata and Hillgartner F. Bradley. The mechanism mediating the activation of acetyl-coenzyme A carboxylase-αgene transcription by the liver X receptor agonist T0-901317. Journal of lipid research, 2006, 47:2451-2461.
    Tanaka K I ,Takagi N O ,Ohtani S ,et al. Effect of dietrgy energy increase with the addition of various levels of carbohydrate on hepatic lipogenesis in growing chicks[J ] . Jpe J Zootech Sci ,1982 ,53 (1) :50~55.
    Tanaka, T., Yoshida, N., Kishimoto, T. and Akira, S. Defective adipocyte differentiation in mice lacking the C/ EBPbeta and/or C/EBPdelta gene. EMBO J. 1997,16:7432–7443.
    Tang, QQ, and Lane MD. Activation and centromeric localization of CCAAT/enhancer-binding proteins during the mitotic clonal expansion of adipocyte differentiation. Genes Dev. 1999, 13(17): 2231–2241.
    Taouis, M., Derouet, M., Chevalier, B., Simon, J. Corticosterone effect on insulin receptor number and kinase activity in chicken muscle and liver. Gen. Comp. Endocrinol. 1993, 89(2): 167-75.
    Tempel DL, Leibowitz SF. Adrenal steroid receptors: interactions with brain neuropeptied systems in relation to nutrient intake and metabolism. J. Neuroendocrinol. 1994, 6(5): 479-501.
    Thompson J, Winter N, Terwey D, Bratt J, Banaszak L. The crystal structure of liver fatty acid-binding protein. A complex with two bound oleates. J Biol Chem 1997, 272(11):7140–7150.
    Tokushima Y., Takahashi K., Sato K., Akiba Y. Glucose uptake in vivo in skeletal muscles of insulin-injected chicks. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2005, 141(1): 43-8.
    Tomita K, Tamiya G, Ando S, Kitamura N, Koizumi H, Kato S, Horie Y, Kaneko T, Azuma T, Nagata H, Ishii H, Hibi T. AICAR, an AMPK activator, has protective effects onalcohol-induced fatty liver in rats. Alcohol Clin. Exp. Res. 2005, 29(12 Suppl):240S–245S.
    Towle HC., Kaytor E.N. and Shih H.M. Regulation of the expression of lipogenic enzyme genes by carbohydrates. Annu. Rev. Nutr. 1997,17: 405–433.
    Travers MT., Vernon RG., Barber MC. Repression of the acetyl-CoA carboxylase gene in ovine adipose tissue during lactation: the role of insulin responsiveness. J. Mol. Endocrinol.1997, 19(2): 99–107.
    Vaulont S., Vasseur-Cognet M., Kahn A. Glucose regulation of gene transcription. J. Biol. Chem. 2000, 275(41): 31555-31558.
    Ulven SM, Dalen KT, Gustafsson JA, Nebb HI. LXR is crucial in lipid metabolism. Prostaglandins Leukot Essent Fatty Acids. 2005, 73(1):59–63.
    Veerkamp JH, van Kuppevelt TH, Maatman RG, Prinsen CF. Structural and functional aspects of cytosolic fatty acid-binding proteins. Prostaglandins Leukot Essent Fatty Acids.1993, 49(6):887–906.
    Vernon RG., and Finley E. Roles of insulin and growth hormone in the adaptations of fatty acid synthesis in white adipose tissue during the lactation cycle in sheep. Biochem. J. 1988, 256(3): 873–878.
    Vernon RG., Barber MC, and Finley E. Modulation of the activity of acetyl-coA carboxylase and other lipogenic enzymes by growth hormone, insulin and dexamethasone in sheep adipose tissue and relationship to lactation. Biochem. J. 1991, 274(Pt2):543–548.
    Villena JA., Roy S., Sarkadi-Nagy E., Kim KH., Sul HS. Desnutrin, an adipocyte gene encoding a novel patatin domain-containing protein, is induced by fasting and glucocorticoids: ectopic expression of desnutrin increases triglyceride hydrolysis. J. Biol. Chem. 2004, 279(45): 47066-75.
    Wang, ND., Finegold, MJ., Bradley A., Ou CN., Abdelsayed, SV., Wilde, MD., Taylor, LR., Wilson, DR., and Darlington, GJ. Impaired energy homeostatsis in C/EBP alpha knockout mice. Science, 1995, 269(5227):1108–1112.
    Wang D, Sul HS. Upstream stimulatory factor binding to t he E-box at -65 is required for insulin regulation of the fatty acid synthase promoter. J. Biol. Chem. 1997, 272(42): 26367– 26374.
    Wang H. and Wollheim, C.B. ChREBP rather than USF2 regulates glucose stimulation of endogenous L-pyruvate kinase expression in insulin-secreting cells. J. Biol. Chem. 2002,277(36): 32746–32752.
    Weiskirchen R, Gressner AM. Isolation and culture of hepatic stellate cells. Methods Mol Med, 2005, 117: 99-113.
    Wang Q, Li H, Li N, Leng L, Wang Y. Tissue Expression and Association with Fatness traits of liver fatty acid-binding protein gene in chicken. Poult Sci, 2006, 85 (11): 1890-1895.
    Williams GM, Gunn JM. Long-term cell culture of adult rat liver epithelial cells. Exp Cell Res, 1974, 89(1):139-142.
    Wilson SB., Back, DW., Morris SM. Jr., Swierczynski J., and Goodridge AG. Hormonal regulation of lipogenic enzymes in chick embryo hepatocytes in culture. Expression of the fatty acid synthase gene is regulated at both translational and pretranslational steps. J. Biol. Chem. 1986, 261(32):15179-15182.
    Wolf G. The molecular mechanism of the stimulation of adipocyte differentiation by a glucocorticoid. Nutr. Rev. 1999, 57(10): 324–326.
    Wolfrum C, Buhlmann C, Rolf B, Borchers T, Spener F. Variation of liver-type fatty acid binding protein content in the human hepatoma cell line HepG2 by peroxisome proliferators and antisense RNA affects the rate of fatty acid up take. Biochim Biophys Acta, 1999, 1437(2) : 194-201..
    Yalcin, S., Ozkan, S., Turkmut, L. Responses to heat stress in commercial and local broiler stocks. Developmental stability of bilateral traits. J. Br Poult. Sci., 2001, 42 (2):153-160.
    Yamashita H, Takenoshita M, Sakurai M, Bruick RK, Henzel WJ, Shillinglaw W, Arnot D, Uyeda K. A glucose-responsive transcription factor that regulates carbohydrate metabolism in the liver. Proc Natl Acad Sci USA. 2001, 98:9116–21.
    Yang C, McDonald JG, Patel A, Zhang Y, Umetani M, Xu F, Westover EJ, Covey DF, Manqelsdorf DJ, Cohen JC, Hobbs HH. Sterol intermediates from cholesterol biosynthetic pathway as liver X receptor ligands. J Biol Chem. 2006, 281(38):27816–26.
    Yeh Y Y,Leveille G A ,Wiley J H. Influence of dietary lipid on lipogesesis and on the activity of malic enzyme and citrate cleavage enzyme in liver of growing chick. JNutr ,1970 ,100 :917~924.
    Yin D ,Clarke SD, Peters JL, Etherton TD. Somatotropin - dependent decrease in fatty acid synthase mRNA abundance in 3T3 -F422A adipocytes is the result of a decrease in both gene transcription and mRNA stability. Biochem. J. 1998, 331(3):815– 820.
    Yin D, Griffin MJ & Etherton TD. Analysis of the signal pathways involved in the regulation of fatty acid synthase gene expression by insulin and somatotropin. Journal of Animal Science 2001, 79: 1194–1200.
    Yoshikawa T, Shimano H, Amemiya-Kudo M, Yahagi N, Hasty AH, Matsuzaka T, Okazaki H, Tamura Y, Iizuka Y, Ohashi K, Osuqa J, Harada K, Gotoda T, Kimura S, Ishibashi S, Yamada N. Identification of liver X receptor-retinoid X receptor as an activator of the sterol regulatory element-binding protein 1c gene promoter. Mol Cell Biol 2001, 21(9):2991–3000.
    Youssef J, Badr M. Role of Peroxisome Proliferator-activated Receptors in Inflammation Control [ J ]. Journalof biomedicine & biotechnology, 2004, (3) : 156– 166.
    Yuan, L., Lin, H., Jiang, K.J., Jiao, H.C., Song, Z.G., 2008. Corticosterone administration and high-energy feed results in enhanced fat accumulation and insulin resistance in broiler chickens. Br. Poult. Sci. 49, 487-95.
    Zhao, J.P., Lin, H., Jiao, H.C., Song, Z.G., 2009. Corticosterone suppresses insulin- and NO-stimulated muscle glucose uptake in broiler chickens (Gallus gallus domesticus). Comp. Biochem. Physiol. C Toxicol. Pharmacol. 149, 448-54.
    Zimmermann R, Haemmerle G, Wagner EM, Strauss JG, Kratky D, Zechner R.. Decreased fatty acid esterification compensates for the reduced lipolytic activity inhormone-sensitive lipase-deficient white adipose tissue. J. Lipid Res. 2003, 44: 2089–99.
    Zimmermann, R., Strauss, J.G., Haemmerle, G., Schoiswohl, G., Birner-Gruenberger, R., Riederer, M., Lass, A., Neuberger, G., Eisenhaber, F., Hermetter, A., Zechner, R., 2004. Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science. 306: 1383-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700