过氧化物酶体增殖物活化受体γ基因静默对肝癌生物学行为的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分PPARγ在肝细胞癌中的表达及其临床意义
     目的探讨过氧化物酶体增殖物活化受体γ(peroxisome proliferators activated receptorγ, PPARγ)在肝癌中的表达及其临床意义。方法半定量RT-PCR及Western blot法、免疫组织化学法检测肝癌细胞株HepG2、HepG2.2.15、HCCLM3、肝细胞株L-02和34例手术切除的肝癌及相对应的癌旁组织PPARγmRNA、蛋白表达,应用CD34染色和CD34联合过碘酸雪夫氏反应(PAS)复合染色检测微血管密度(MVD)和血管生成拟态(VM),结合细胞株生物学特性及患者临床特征探讨PPARγ表达的临床意义。结果PPARγmRNA在细胞株L-02、HepG2、HepG2.2.15及HCCLM3中均有表达,与GAPDH的相对灰度值比分别为0.905±0.028,1.547±0.071,1.887±0.085和1.497±0.061, L-02与肝癌细胞株之间存在显著性差异(F=118.84,P<0.01);HepG2.2.15与HepG2、HCCLM3之间亦有差异(F=25.33,P<0.01);Western blot法检测结果与RT-PCR结果一致。79.4% (27/34)的肝癌组织PPARγmRNA表达高于癌旁组织; PPARγ蛋白在肝癌组织中均呈阳性表达,为胞浆和/或胞核染色,而癌旁组织为阴性或弱阳性表达,为胞浆浅染色,阳性表达分级之间存在显著差异(x2=39.62,P<0.05)。PPARγmRNA表达水平与蛋白表达分级与肝癌大小、包膜完整、高转移复发倾向和HBsAg感染及肝硬化背景密切相关,(P<0.05);但与患者年龄、性别、Okuda分期、pTNM分期、组织分化程度、AFP阳性和随访转移结果无关。PPARγmRNA及蛋白高表达与患者的总生存期负相关,Kaplan-Meier曲线分析的Log-rank检验x2=3.953和11.406,P=0.047和0.003。癌组织中MVD高于癌旁组织(t=18.925,P<0.05);高MVD与肿瘤>5cm(P=0.010)、有无包膜(P=0.001)、转移复发倾向(P=0.004)、随访有无转移(P=0.008)和分化程度(P=0.001)有关;7/34的癌中发现VM存在,VM阳性组MVD高(t=16.373,P<0.05);VM阳性与临床分期(P=0.001)、复发倾向(P=0.029)和分化程度(P=0.004)相关。PPARγ阳性表达与高MVD成正相关(r=0.519);PPARγ阳性,高MVD和VM阳性可判断患者生存率,Log-rank检验P分别为0.013,0. 036和0. 022。COX风险模型分析PPARγ阳性和高MVD均是独立的预测HCC预后的因子。结论过氧化物酶体增殖物活化受体γ在肝癌中过表达,与肝癌的发生发展有关,可能是判断肝癌预后的预测指标。
     第二部分PPARγ短发夹状RNA的构建、鉴定及稳定克隆的筛选
     目的构建靶向过氧化物酶体增殖物活化受体γ(PPARγ)基因的shRNA-DNA表达载体,观察体外转染肝癌细胞株HCCLM3细胞后,其对PPARγ活性的抑制效率。方法以人PPARγ1为靶基因设计并合成两条DNA序列,克隆到载体pBAsi-hU6-DNA中构建重组体pshPPARγ,无内毒素抽提,并测序鉴定。DOTAP脂质体法转染重组体至HCCLM3细胞,优化G418浓度、筛选,以裸质粒转染为阳性对照,正常培养细胞为阴性对照,半定量RT-PCR及Western blot观察转染40h、筛选的阳性克隆细胞中PPARγ表达变化。结果pshPPARγ经测序鉴定与设计目的序列完全一致。pshPPARγ转染HCCLM3细胞后40h、应用600μg/ml的G418筛选的阳性克隆细胞中PPARγmRNA表达降低,与对照组比较存在显著性差异(F=29.47和75.22,P<0.01),对照组之间无差异(t=0.526和0.703,P>0.05),蛋白水平的静默效率与mRNA水平一致,抑制效率均在80%以上。结论成功构建无内毒素的靶向PPARγ基因的shRNA重组质粒表达载体,能稳定抑制HCCLM3细胞中PPARγ活性,为利用RNAi技术在细胞和在体水平研究PPARγ在肝癌中的作用机制、探索HCC的基因治疗打下了基础。
     第三部分PPARγ基因静默对肝细胞癌增殖与凋亡的影响
     目的体外和活体内观察pshPPARγ抑制PPARγ活性对HCCLM3细胞增殖和凋亡的影响,并探讨可能的作用机制。方法应用pshPPARγ瞬时转染HCCLM3细胞,MTT法检测细胞的生长曲线,TUNEL法观察凋亡细胞形态,流式细胞仪分析凋亡率;应用稳定表达pshPPARγ的HCCLM3细胞建立裸鼠动物模型,观察肿瘤生长状况,应用TUNEL法观察移植瘤肿瘤细胞凋亡形态;应用免疫组织化学法检测HCCLM3细胞和移植瘤PCNA、wt-P53和整合素β1变化,RT-PCR检测MMP2、TIMP2和整合素β1改变。结果pshPPARγ转染HCCLM3后40h,MTT检测显示细胞增殖抑制率达71.5%。流式细胞仪检测示pshPPARγ组凋亡率为23.2±4.2%,裸质粒组与对照组细胞凋亡率分别为3.3±0.9%和3.1±0.7%,pshPPARγ组凋亡明显增多,存在显著差异(F=48.32,P<0.01)。TUNEL法原位凋亡指数结果与流式细胞仪结果类似。pshPPARγ组移植瘤内PPARγ蛋白和mRNA均下调,成瘤潜伏期延长,移植瘤生长减慢,瘤体积为1.86±0.65 cm3,而对照组为4.86±1.15 cm3,成瘤潜伏期、生长曲线及瘤体积与对照组比较,P均<0.05;pshPPARγ组原位凋亡明显增多。在细胞和动物模型中,pshPPARγ组PCNA表达减少,而野生型P53增多,与对照组比较,P<0.05;RT-PCR显示pshPPARγ组MMP2、整合素β1表达下调,TIMP2表达上调。结论PPARγ基因静默能抑制HCCLM3细胞增殖,促进凋亡;此作用可能经由整合素信号通路,调节MMP2/TIMP2平衡,降低PCNA表达和促进wt-P53起作用。
     第四部分PPARγ基因静默对肝癌转移与移植瘤瘤内微循环的影响目的观察pshPPARγ抑制PPARγ活性对HCCLM3细胞转移和移植瘤瘤内微循环的影响,并探讨可能作用机制。方法应用Transwell小室建立肿瘤体外侵袭模型,观察pshPPARγ瞬时转染对HCCLM3细胞黏附、迁移、侵袭能力的影响,应用过河实验观察细胞移动能力的改变,应用HCCLM3细胞与ECV304细胞共培养,观察pshPPARγ对其形成管腔能力的影响。应用裸鼠肝癌皮下移植瘤模型的肺组织连续切片,HE染色和hepatocyte免疫组织化学鉴定肺转移灶并计数。应用免疫组织化学检测移植瘤VEGF、TSP1和肺转移灶中整合素β1蛋白表达,RT-PCR检测移植瘤VEGF、TSP1以及肺转移灶整合素β1 mRNA表达。结果pshPPARγ组跨过半透膜的细胞数为68±7,明显少于裸质粒组和对照组的280±10和302±14 (F=548.72,P<0.01);透过ECM的细胞数量为17±3,亦明显少于对照组(F=258.19,P<0.01);细胞越过划痕的时间为6.40±1.14d,与对照组存在显著性差异(F=17.58,P<0.01);细胞黏附能力亦显著下降,2h后pshPPARγ组粘附的细胞数为49±9,而对照组为83±13和88±11(F=17.39,P<0.01)。pshPPARγ明显降低ECV304细胞体外形成管腔样结构的能力。pshPPARγ组裸鼠肺转移灶小,整肺总转移灶数量显著少于对照组(t=18.69,P<0.05)。pshPPARγ组移植瘤的微血管(MV)少且多呈点状,而对照组密集且出现环形,两组MVD计数有显著性差异,P<0.05;移植瘤块中存在血管生成拟态现象(VM),pshPPARγ组稀疏分布,细小;VEGF在pshPPARγ组表达下调,而TSP1上调。整合素β1表达在肺转移灶无变化。结论PPARγ基因静默能抑制HCCLM3细胞侵袭及远处转移,减少肝癌血管生成;此作用亦可能经由整合素信号通路,调节MMP2/TIMP2平衡、调节VEGF/TSP分泌而起作用。
The First Section: The expression and significance of PPARγin hepatocellular carcinoma Objective To study the expression of peroxisome proliferators-activated receptor gamma (PPARγ) mRNA and protein in hepatocellular carcinoma (HCC) and its association with clinicopathologic features, angiogenesis, and prognosis of HCC. Methods PPARγmRNA and protein were detected with half quantitative reverse transcription PCR (RT-PCR) and Western blot in hepatocyte line L02 and hepatoma carcinoma cell lines HepG2, HepG2.2.15 and HCCLM3. Furthermore, PPARγmRNA and protein in 34 cases of HCC, including HCC tissues and corresponding peri-tumor tissues, were detected with RT-PCR and immunohistochemical method, anti-CD34 and multiplicity staining of anti-CD34 combined with periodic acid-schiff (PAS) were utilized to stain these specimens, and the significance of PPARγin HCC were analyzed. Results PPARγmRNA express in all cell lines, its relative gray scale score is 0.905±0.028, 1.547±0.071, 1.887±0.085 and 1.497±0.061 in L-02, HepG2, HepG2.2.15 and HCCLM3, respectively. It is statistically significant difference between L02 and hepatoma carcinoma cell lines (F=118.84, P<0.05), the expression of PPARγin HepG2.2.15 is highest, comparisons between the other HCC lines, it is statistically significant (F=25.33, P<0.05). PPARγprotein levels are coincidence with mRNA. 27 cases, PPARγmRNA in HCC tissues is higher than their paired non-tumor tissues; all of the HCC tumor cells were positive stained for PPARγprotein, expressed in cytoplasm and/or nucleus of hepatocytes. Hepatocytes of peri-tumor stained negative or weakly positive in cytoplasm, grade of positive staining in two groups is significant (x2=39.62, P<0.05). The clinical characteristic of HCC, such as tumor size, tumor capsule, tendency to recurrence, the background of HBV infection and cirrhosis, is correlated with PPARγmRNA levels and the grade of positive staining; but the patients’ages, gender, Okuda and pTNM stages, serum AFP levels, degrees of histological differentiation and metabasis by follow ups, is not associated with the expression of PPARγ. There is negative correlation between the expression of PPARγand the total life span in HCC patients, it is significant, P value tested by Log rank of Kaplan-Meier curve analysis in various mRNA levels and protein grading is 0.047 and 0.003, respectively. MVD (Microvessel density) in tumor tissues are higher than non-tumor tissues, it is statistically significance (t=18.925, P<0.05). High MVD is correlated with tumor size (P=0.010), tumor capsule breakdown (P=0.001), tendency to recurrence (P=0.004), metastases during follow up (P=0.008) and low differentiation type (P=0.001). The expression of VM (Vascularization mimicry) exists in 7/34 specimens of HCC, MVD in positive specimens of VM are higher (t=16.373, P<0.05). The expression of VM is correlated with clinical TNM stage (P=0.001), tendency to recurrence (P=0.029), and low differentiation type (P=0.001). There was a significant positive correlation between PPARγand high MVD expression (r=0.519, P<0.05), but there was no correlation between PPARγand MV expression (r=0.169, P<0.05). Kaplan-Meier analysis indicated that PPARγoverexpression, high MVD and VM expression were associated with patient’s worse disease-free survival; P value tested by Log-rank is 0.013, 0.036 and 0.022, respectively. According to Cox multivariate survival analysis, PPARγand MVD were the independent prognostic factors of HCC (both Pmuti<0.05). Conclusions PPARγover-expressed in HCC, it may be associated with the carcinogenesis and development of HCC; it may be an index to judge prognosis of HCC. [Key Words] PPARγ; Hepatocellular carcinoma; Survival analysis; Biological characteristic; Angiogenesis; Vascularization mimicry The Second Section: Construction, identification and screening of shRNA targeted on PPARγgene Objective To construct shRNA targeted on PPARγgene with pBAsi-hU6-DNA plasmids, and to observe the inhibition efficacy of PPARγactivation after HCCLM3 cells were transfected by shRNA. Methods Duplicate bands DNA sequence were synthesized in accordance with human PPARγ1 gene cDNA sequence, to construct recombinant of PPARγ(pshPPARγ) with pBAsi-hU6-DNA plasmids, then free endotoxin extracted, and assessed by sequencing. pshPPARγrecombinants were transfected into HCCLM3 cells by DOTAP hangosome methods, RT-PCR and Western blot was used to detect the inhibition efficacy of PPARγactivation in 40h and 4w post-transfection. Results pshPPARγis coincidence with targeted sequence, after 40h pshPPARγwere transfected into HCCLM3 cells, the expression of PPARγmRNA and protein were inhibited comparing with normal cells and cells transfected by neo-DNA plasmids (F=29.47, P<0.01). In positive clone cells selcted with 600μg/ml G418 (in 4w), PPARγmRNA and protein also were inhibited significantly by pshPPARγ(F=75.22, P<0.01), their inhibition rate in RT-PCR test is 80.5% and 82.3%, respectively. Conclusions pshPPARγcan lastingly inhibit PPARγactivation in HCCLM3 cells; it may be a tool to study the mechanisms of PPARγof hepatocellular carcinoma in vitro or in vivo. [Key Words] RNA interference; short hairpin RNA; transfection; expression; recombinant The Third Section: Gene silencing targeted on PPARγaffect proliferation and apoptosis of hepatocellular carcinoma Objective To observe the effect on proliferation and apoptosis of HCCLM3 cells with short hair-pin RNA targeted on PPARγgene in vitro and in vivo, and to explore the potential mechanisms. Methods After HCCLM3 cells were transient transfected with pshPPARγplasmid, growth curves were detected by MTT methods, apoptosis rate were analyzed by flow cytometry, and morphocytology of apoptotic HCCLM3 cells were observed by TUNEL methods. Then, animal models were constructed with HCCLM3 cells stable transfected with pshPPARγ, PPARγmRNA and protein in tumor tissues were detected with RT-PCR and Western blot or immuocytochemistry (ICC) methods, growth curves and volumes of tumor were observed, and morphocytology of apoptotic cells were detected by TUNEL method. Moreover, the expression of PCNA and wt-P53 were stained by ICC methods, and MMP2, TIMP2 andβ1 integrin were detected by RT-PCR in vitro and in vivo. Results Cell growth was inhibited in pshPPARγgroup by 71.5%, apoptosis also increased significantly, FCM show the apoptosis ratio is 23.2±4.2%, it is statistically significance between pshPPARγgroup and control group (3.3±0.9% vs 3.1±0.7 %) (F=48.32, P<0.01), morphocytology test is the same as FCM. PPARγmRNA and protein decreased significantly in tumor tissues of pshPPARγgroup, inhibition rate reach to 82%. Stage of latency lengthen, and growth were inhibited, volumes of tumors in pshPPARγgroups are 1.86±0.65 cm3, but 4.86±1.15 cm3 in control groups, apoptosis in situ of tumors increased, it is statistically significance, P<0.05. In vitro and in vivo, PCNA protein decreased, and wt-P53 protein increased. In HCCLM3 cells of pshPPARγgroup, MMP2 and integrinβ1 mRNA decreased significantly, but TIMP2 increased. Conclusions Inhibition of PPARγactivation can decrease the proliferation in HCC. It maybe regulate the balance of MMP2 and TIMP2 via integrin signal way, then decrease the expression of PCNA, and promote wild-type P53 to induce the apoptosis of HCCLM3 cells. Key Words Proliferation; Apoptosis; Proliferating cell nuclear antigen; Wild-type P53; Matrix metalloproteinase; Tissue inhibitor of metalloproteinase; Integrin The Fourth Section: Gene silencing targeted on PPARγinfluence metastasis and angiogenesis of hepatocellular carcinoma Objective To observe the effect on invasion, metastasis, and angiogenesis in HCC when PPARγactivation was inhibited by shRNA targeted at PPARγgene of HCCLM3 cells in vitro and in vivo, and to explore the potential mechanisms. Methods Boyden chambers were utilized to observe the effect on cell adhesion, migration, invasion and locomotion of HCCLM3 cells, meanwhile, the effect on lumens formed by ECV 304 cells was observed in models which HCCLM3 cells co-cultivated with ECV 304 cells post-transient transfected in vitro. Animal models of cancerometastasis were established by HCCLM3 cells stable expressed pshPPARγor not with nude mouse, pulmonary metastasis (PM) was assessed by HE staining and immuocytochemistry (ICC) staining with hepatocyte, graded and counted in serial sections of lung tissues. MVD and VM in transplantation tumor were stained by immuocytochemistry staining of CD34 and multiplicity staining with CD34 combined with periodic acid-schiff (PAS). Integrinβ1 expression in lung tissues, VEGF and TSP1 expression in tumors was detected by ICC staining and RT-PCR methods. Results Cells crawled over semipermeable membrane of boyden chambers were 68±7 in pshPPARγgroups, it is less than control groups (281±10 and 302±14), it is statistical significance (F=548.72, P<0.01). Cells permeated through ECM were 17±3; it is also less than control groups (F=258.19, P<0.01). Time when cells healed the wound were 6.40±1.14d, it is longer than control groups (F=17.58, P<0.01). Ability of cell adhesion decreased significantly, after 2h, cell counts are 49±9, 83±13 and 88±11 in pshPPARγgroup and two control groups, respectively, it is statistical significance (F=17.39, P<0.01). Lumens formed by ECV 304 cells were weakened in pshPPARγgroup. PM in pshPPARγgroup were smaller than in control group, and total amounts in lung tissues were also less (t=18.69, P<0.05). MVD in transplantation tumors are scarce and punctiform, while in control group, MVD are intensive and annuliform, it is statistically significance between two groups, P<0.05. VM exist in transplantation tumor, sparse and tiny in pshPPARγgroup, meanwhile, VEGF mRNA and protein decreased significantly, TSP1 increased. Integrinβ1 expression in lung tissues was not difference between two groups. Conclusions PPARγinhibition can decrease the ability of invasion, metastasis and angiogenesis in HCC; it may be via integrin signal way, to regulate the balance of MMP2 and TIMP2, and affect the secretion of VEGF/TSP1.
引文
1. Perz JF, Armstrong GL, Farrington LA, et al. The contributions of hepatitis B virus and hepatitis C virus infections to cirrhosis and primary liver cancer worldwide. J Hepatol, 2006, 45(4):529-38.
    2.陆嘉德,吴孟超。肝细胞癌分子靶向治疗临床进展。见吴孟超、廖美琳、陆嘉德主编:常见肿瘤治疗进展。2006年,第一版。上海科技教育出版社,上海。
    3. Rosen ED, Spiegelman EM. PPAR gamma: a nuclear regulator of metabolism, differentiation, and cell growth. J BiolChem, 2001, 276(3): 37731-34.
    4. Bae M A, Song B Y. Critical role of c-Jun N-terminal protein kinase activation in troglitazone-induced apoptosis of human hepG2 hepatoma cells. Mol pharmacol, 2003, 64(2): 401-08.
    5. Auwerx J. Nuclear Receptors I, PPAR gamma in the gastrointestinal tract: gain or pain? Am J Physiol Gastrointest Liver Physiol, 2002, 282(11): 581-85.
    6. Saez E, Tontonoz P, Nelson MC, et al. Activators of the nuclear receptor PPAR gamma enhance colon polyp formation. Nat Med, 1998, 4(9): 1058-61.
    7. Lefebvre AM, Chen I, Desreumaux P, et al. Activation of the peroxisome proliferator-activated receptor gamma promotes the development of colon tumors in C57BL/6J-APCMin/+ mice. Nat Med, 1998, 4(9):1053-7.
    8. Saez E, Rosenfeld J, Livolsi A, et al. PPAR gamma signaling exacerbates mammary gland tumor development. Genes Dev, 2004, 18(5): 528-40.
    9. Konturek PC, Kania J, Kukharsky V, et al. Implication of peroxisome proliferator-activatedγproinflammatory cytikines in gastric carcinogenesis: Link to Helicobacter pylori-infection. J Pharmacol Sci, 2004, 96(2): 134-43.
    10. Chintalgattu V, Harris G S, Akula S M, et al. PPAR-γagonists induce the expression of VEGF and its receptors in cultured cardiac myofibroblasts. Cardiovascular Res, 2007, 74(1): 140-50.
    11. Yasuda E, Tokuda H, Ishisaki A, et al. PPAR-γligands up-regulate basic fibroblast growth factor-induced VEGF release through amplifying SAPK/JNK activation in osteoblasts. Biochemical and Biophysical Research Communications, 2005, 328 (1): 137-43.
    12.何晓燕,张敏,陈智超,等。PPARγ在肺癌中的表达及在肺癌凋亡中的作用研究。中国肺癌杂志,2006,9(1):35-39。
    13.邹颖刚,崔满华,于小艳。PPARγ在卵巢上皮性肿瘤组织中的表达及意义。中国实验诊断学,2006,10(9):1052-1054。
    14.沈丹,邓长生。PPARγ、MMP-7和TIMP-1在大肠癌的表达及意义。中华内科杂志,2005,44(8):609-610。
    15. Masuda T, Wada K, Nakajima A, et al. Critical role of proliferators proliferator-activated receptorγon anoikis and invasion of squamous cell carcinoma. J Clinic Can, 2005, 11(11): 4012-21.
    16.郭鸣雷,李锦军,李宏年,等。过氧化物酶体增殖激活性受体γ在肝癌组织中的差异性表达。肿瘤,2005,25(5):413-415。
    17. Schaefer K L, Wada K, Takahashi H, et al. Peroxisome proliferator-activated receptor: Inhibition prevents adhesion to the extracellular matrix and induces anoikis in Hepatocellular Carcinoma Cells. Cancer Res, 2005, 65(6): 2251-59.
    18. Tang H, McLachlan A. Transcriptional regulation of hepatitis B virus by nuclear hormone receptors is a critical determinant of viral tropism. Proc Natl Acad Sci USA, 2001, 98(4): 1841-46.
    19. Yu X, Mertz J E. Promoters for synthesis of the pre-C and pregenomic mRNAs of human hepatitis B virus are genetically distinct and differentially regulated. J Virol, 1996, 70(12): 8719-26.
    20. Yu XM, Mertz J. Critical roles of nuclear receptor response elements in replication of hepatitis B virus. J Virol, 2001, 75(23): 11354-64.
    21. Choi YH, Kim H, Seong JK, et al. Heptitis B virus X protein modulates peroxisome proliferator-activated receptorγthrough protein-protein interaction. FEBS Let, 2004, 557(1-3): 73-80.
    22. Brummelkamp T R, Bemards R, Agami R. A system for stable expression of short interfereing RNAs in mammalian cells. Science, 2002, 296(5567): 550-53.
    23. Fewell G D, Schmitt K. Vector-based RNAi approaches for stable, inducible and genome-wide screens. Drug Discovery Today, 2006, 11(21/22): 975-83.
    24. Katayama K, Wada K, Miyoshi H, et al. RNA interfering approach for clarifying the PPARγpathway using lentiviral vector expressing short hairpin RNA. FEBS Letters, 2004, 560(1-3): 178-82.
    25. Liu C M, Liu D P, Dong W J, et al. Retrovirus vector-mediated stable gene silencing in human cell. Biochemical and Biophysical Research Communications, 2004, 313(3): 716-20.
    26. Miyagishi M, Hayashi M, Taira. Comparison of the suppressive of antisense oligonucleotides and siRNAs directed against the same targets in mammalian cells. Antisense Nucleic Acid Drug Dev, 2003, 13(1): 1-7.
    1. Na H K, Surh Y J. Peroxisome proliferator-activated receptorγ(PPARγ) ligands as bifunctional regulators of cell proliferation. Biochemical Pharmacology, 2003, 66(8): 1381-91.
    2. Wang TT, Xu J, Yu XF, et al. peroxisome proliferator-activated receptorγin malignant diseases. Oncology/Hematology, 2006, 58(1): 1-14.
    3. Lefebvre AM, Chen I, Desreumaux P, et al. Activation of the peroxisome proliferators- activated receptorγpromotes the development of colon tumors in C57BL/6J-APCmin/+mice. Nat Med, 1998, 4(9):1053-57.
    4. Hawcroft G, Gardner SH, Hull MA. Activation of peroxisome proliferator-activated receptorγdoes not explain the antiproliferative activity of the nonsteroidal anti-inflammatory drug indomethacin on human colorectal cancer cells. The Journal of Pharmacology and Experimental Theraputics, 2003, 305(11): 632-37.
    5. Konturek PC, Kania J, Kukharsky V, et al. Implication of peroxisome proliferator-activatedγproinflammatory cytikines in gastric carcinogenesis: Link to Helicobacter pylori-infection. J Pharmacol Sci, 2004, 96(2): 134-143.
    6.何晓燕,张敏,陈智超,等。PPARγ在肺癌中的表达及在肺癌凋亡中的作用研究。中国肺癌杂志,2006,9(1):35-39。
    7.邹颖刚,崔满华,于小艳。PPARγ在卵巢上皮性肿瘤组织中的表达及意义。中国实验诊断学,2006,10(9):1052-1054。
    8.康谊,李修龄,杨玉秀,等。过氧化物酶体增殖物激活受体(PPARγ)在不同肝病组织中的检测及意义。中国组织化学与细胞化学杂志,2006,15(5):550-553。
    9. Bradford M M. A rapid sensitive method for the quantation of microgram quantities of protein utilizing the principle of protein-dye binding. Circ Res, 1996, 78(1): 954-61.
    10. Issemann I, Green S. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature, 1990, 347(6294): 645-50.
    11. Lazer M. PPARγ10 years later. Biochimie, 2005, 87(1): 9-13.
    12. Toyoda M, Takagi H, Horiguchi N, et al. A ligand for peroxisome proliferators activated receptor gamma inhibits cell growth and induces apoptosis in human liver cancer cells. Gut, 2002, 50(4):563-67.
    13. Hiroshi O, Katsuya S, Hidekazu I, et al. Peroxisome proliferator-activated receptor [gamma] augments tumor necrosis factor family-induced apoptosis in hepatocellular carcinoma. Anti-Cancer Drugs, 2002, 13(1): 59-65.
    14. Knight B,Yeap B B, Yeoh G C, et al. Inhibition of adult liver progenitor (oval) cell growth and viability by an agonist of the peroxisome proliferator activated receptor (PPAR) family member [gamma], but not [alpha] or [delta]. Carcinogenesis, 2005, 26(10):1782-92.
    15. Lupberger J, Mund A, Kock J, et al. Cultivation of HepG2.2.15 on Cytodex-3: Higher yield of hepatitis B virus and less subviral particles compared to conventional culture methods. Journal of Hepatology, 2006, 45(4): 547-52.
    16. Tang H, McLachlan A. Transcriptional regulation of hepatitis B virus by nuclear hormone receptors is a critical determinant of viral tropism. Proc Natl Acad Sci USA, 2001, 98(4): 1841-46.
    17. Yu XM, Mertz J. Critical roles of nuclear receptor response elements in replication of hepatitis B virus. J Virol, 2001, 75(23): 11354-64.
    18. Yang J, Qin LX, Li Y, et al. Molecular cytogenetic characteristics of the human hepatocellular carcinoma cell line HCCLM3 with high metastatic potential: comparative genomic hybridization and multiplex fluorescence in situ hybridization [J]. Cancer Genetics and Cytogenetics, 2005, 158(2): 180-83.
    19. Tian B, Li Y, Ji XN, et al. Basement membrane proteins play an active role in the invasive process of human hepatocellular carcinoma cells with high metastasis potential. J Cancer Res Clin Oncol, 2005, 131(2): 80-6.
    20.孙孙孙。肿瘤的孙孙与孙孙。见:肿瘤孙孙学。吴孙主编。孙孙:科学出版社,2004。135-162。
    21.李升平,王辉云.原发性肝癌全基因组杂合性缺失的研究.中华医学杂志,2000,80(8):577-581。
    1. Tang Z, Qin L, Wang X, et al. Alterations of oncogenes, tumor suppressor genes and growth factors in hepatocellular carcinoma: with relation to tumor size and invasiveness. Chin Med J, 1998, 114(4):313-19.
    2. Cillo U, Bassanello M, Vitale A, et al. The critical issue of hepatocellular carcinoma prognostic classification: which is the best tool available? Journal Hepatol, 2004, 40(1): 124-31.
    3. Jung T I, Baek W K, Suh S I, et al. Down-regulation of peroxisome proliferator-activated receptor gamma in human cervical carcinoma. Gynecologic Oncology, 2005, 97(2): 365-73.
    4.郭鸣雷,李锦军,李宏年,等。过氧化物酶体增殖激活性受体γ在肝癌组织中的差异性表达。肿瘤,2005,25(5):413-415。
    5. Schaefer K L, Wada K, Takahashi H, et al. Peroxisome proliferator-activated receptor: Inhibition prevents adhesion to the extracellular matrix and induces anoikis in Hepatocellular Carcinoma Cells. Cancer Res, 2005, 65(6): 2251-59.
    6. Chen C J, Yang H I, Su J, et al. Risk of hepatocellular carcinoma across a biologic gradient of serum hepatitis B virus DNA Level. J. AM. MED. ASSOC., 2006, 295(1):65-73.
    7. Choi YH, Kim H, Seong JK, et al. Heptitis B virus X protein modulates peroxisome proliferator-activated receptorγthrough protein-protein interaction. FEBS Let, 2004, 557(1-3): 73-80.
    8. Pola R, Gaetani E, Flex A, et al. comparative analysis of the in vivo angiogenic properties of stable prostacyclin analogs: a possible reole for peroxisome proliferator-activated receptors. J Mol and Cel. Card., 2004, 36(3): 363-70.
    9.沈丹,邓长生。PPARγ、MMP-7和TIMP-1在大肠癌的表达及意义。中华内科杂志,2005,44(8):609-610。
    10. Masuda T, Wada K, Nakajima A, et al. Critical role of proliferators proliferator-activated receptorγon anoikis and invasion of squamous cell carcinoma. J Clinic Can, 2005, 11(11): 4012-21.
    1. Kim S, Park H S, Son H J, et al. The role of angiostatin, vascular endothelial growth factor, matrix metalloproteinase 9 and 12 in the angiogenesis of hepatocellular carcinoma. Korean J Hepatol, 2004, 10(1): 62-72.
    2. Yancopoulos G D, Davis S, Gale N W, et al. Vascular-specific growth factors and blood vessel formation. Nature, 2000, 407(6801): 242-48.
    3. Maniotis A J, Folberg R, Hess A, et al. Vascular channel formation by human melanoma cells in vivo and vitro: vasculogenic mimicry. AMJ Pathol, 1999, 155(3): 739-52.
    4.赵秀兰,杜静,张诗武,等。肝细胞肝癌中血管生成拟态的研究。中华肝脏病杂志,2006,14(1): 41-44.
    5. Xin X, Yang S, Kowalski J, et al. Peroxisome proliferator-activated eceptor gamma ligands are potent inhibitors of angiogenesis in vitro and in vivo. J Biol Chem, 1999, 274(13): 9116-21.
    6. Chintalgattu V, Harris G S, Akula S M, et al. PPAR-γagonists induce the expression of VEGF and its receptors in cultured cardiac myofibroblasts. Cardiovascular Research, 2007, 74(1): 140-50.
    7. Yasuda E, Tokuda H, Ishisaki A, et al. PPAR-γligands up-regulate basic fibroblast growth factor-induced VEGF release through amplifying SAPK/JNK activation in osteoblasts. Biochemical and Biophysical Research Communications, 2005, 328 (1): 137-43.
    8. Tanigawa N, Lu C, Mitsui T, et al. Quantitation of sinu-soid-like vessels in hepatocellular carcinoma: its clinical and prognostic significance. Hepatology, 1997, 26(5): 121-23.
    9. Weidner N, Carroll P R, Flux J, et al. Tumor angiogenesis correlates with metastasis in invasive prostate carcinoma. Am J Pathol, 1993, 143 (2): 401-09.
    10. Frachon S, Gouysse G, Dumortier J, et al. Endothelial cell marker expression in dysplastic lesions of the liver: an immunohistochemical study. J Hepatol, 2001, 34(6): 850-57.
    11. Miller D W, Graulich W, Karges B, et al. Elevated expression of endoglin, a component of the TGF-bata-receptor complex, correlates with proliferation of tumor endothelial cells. Int J Cancer, 1999, 81(4): 568-72.
    12. Ohmori S, Shiraki K, Sugimoto K, et al. Expression of CD34-positive sinusoidal endothelial cells in patients with HBV-associated chronic liver disease. Int J Mol Med, 2003, 14(2): 179-84.
    13. Funovics P, Brostjan C, Nigisch A, et al. Effects of 15d-PGJ2 on VEGF-induced angiogenic activities and expression of VEGF receptors in endothelial cells. Prostaglandins & Other Lipid Mediators, 2006, 79(3-4): 230-44.
    14. Roberta P, Ronnie T.P. Poon. Angiogenesis and antiangiogenic therapy in hepatocellular carcinoma. Cancer Lett, 2006, 242(2): 151-67.
    15. Ruf W, Seftor E A, Petrovan R J, et al. Differential role of tissue factor pathway inhibitors 1 and 2 inhibitors 1 and 2 in melanoma vasculogenic mimicy. Cancer Res, 2003, 63(17): 5381-89.
    16. Holash J, Maisonpierre P C, Compton D, et al. Vessel cooption, regression, and growth in tumors mediated by angiopoientins and VEGF. Science, 1999, 284(5422): 1994-98.
    17.陈新国,钱峰,张力,等。检测抗CD34抗体标记的肿瘤微血管密度预测肝癌肝孙植术后复发。中华器官孙植杂志,2006,27(10):615-617。
    18. Hess A R, Seftor E A, Gardner L M, et al. Molecular regulation of tumor cell vasculogenic mimicry by tyrosine phosphorylation: role of epithelial cell kinase (Eck/EphA2). Cancer Res, 2001, 61(8): 3250-55.
    19. Zhang D, Brodt P. Type 1 insulin-like growth regulates MT1-MMP synthesis and tumor invasion via PI3-kinase/Akt signaling. Oncogene, 2003, 22(7): 974-82.
    1. David B B, Jessica W. Peroxisome proliferator-activated receptors: a critical review on endogenous pathways for ligand generation. Prostaglandins & other Lipid Mediators, 2003, 71 (1-2): 1-22.
    2. Perera R J, Marcusson E G, Koo S, et al. Identification of novel PPARγtarget genes in primary human adipocytes. Gene, 2006, 369(15): 90-99.
    3. Schaefer K L, Wada K, Takahashi K, et al. Peroxisome Proliferator-Activated Receptor Inhibition Prevents Adhesion to the Extracellular Matrix and Induces Anoikis in Hepatocellular Carcinoma Cells. Cancer Res, 2005, 65(6): 2251-59.
    4. Katayama K, Wada K, Miyoshi H, et al. RNA interfering approach for clarifying the PPARγpathway using lentiviral vector expressing short hairpin RNA. FEBS Lett, 2004, 560(1-3): 178-82.
    5. Hosono T, Mizuguchi H, Katayama K, et al. RNA interference of PPARγusing fiber-modified adenovirus vector efficiently suppresses preadipocyte-to-adipocyte differentiation in 3T3-L1 cells. Gene, 2005, 348(28): 157-65.
    6. Bernstein E, Caudy A A, Hammond S M, et al. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature, 2001, 409(6818): 363-66.
    7. Hammond S M, Bernstein E, Beach D, et al. An RNA-directed nuclease mediates post- transcriptional gene silencing in Drosophila cells. Nature, 2000, 404(6775): 293-96.
    8. Brummelkamp T R, Bemards R, Agami R. A system for stable expression of short interfereing RNAs in mammalian cells. Science, 2002, 296(5567): 550-53.
    9. Fewell G D, Schmitt K. Vector-based RNAi approaches for stable, inducible and genome-wide screens. Drug Discovery Today, 2006, 11(21/22): 975-83.
    10. Miyagishi M, Hayashi M, Taira. Comparison of the suppressive of antisense oligonucleotides and siRNAs directed against the same targets in mammalian cells. Antisense Nucleic Acid Drug Dev, 2003, 13(1): 1-7.
    11. Liu C M, Liu D P, Dong W J, et al. Retrovirus vector-mediated stable gene silencing in human cell. Biochemical and Biophysical Research Communications, 2004, 313(3): 716-20.
    12.刘云海,钟英丽,任凯群,等。细胞孙染条件的优化。湖南师范大学自然科学学报,2004,27(2):84-88。
    13. Cornelis S, Vandenbranden M, Ruysschacrt J M. Role of intracellular cationic liposome-DNA complex dissociation in transfection mediated by cationic lipids. DNA Cell Biol, 2002, 21(2):
    91-97.
    14. Dalby B, Cates S, Harris A, et al. Advanced transfection with Lipofectamine 2000 reagent: Primary neurons, siRNA, and high-througuput applications. Methods, 2004, 33(2): 95-103.
    15. Wall N R, Shi Y. Small RNA: can RNA interference be exploited for therapy? Lancet, 2003, 362(9393): 1401-09.
    1.李雁,汤钊猷,叶胜龙,等。体内连续筛选法建立自发性肺孙孙人肝癌细胞系。中华医学杂志,2002,82(9):601-605。
    2. Schaefer K L, Wada K, Takahashi H, et al. Peroxisome proliferator-activated receptor: Inhibition prevents adhesion to the extracellular matrix and induces anoikis in Hepatocellular Carcinoma Cells. Cancer Res, 2005, 65(6): 2251-59.
    3. Masuda T, Wada K, Nakajima A, et al. Critical role of proliferators proliferator-activated receptorγon anoikis and invasion of squamous cell carcinoma. J Clinic Can, 2005, 11(11): 4012-21.
    4. Friedrich B, Wollersheim M, Brandenburg B, et al. Induction of anti-proliferative mechanisms in hepatitis B virus producing cells. J Hepatol, 2005, 43(4): 696-03.
    5. Schuler M, Maurer U, Goldstein J C, et a1. P53 triggers apoptosis in oncogene expressing fibroblasts by the induction of Noxa and mitochondrial BaX translocation. Cell Death Differ, 2003, l0 (4): 45l-60.
    6. Nakano A, Watanabe N, Nishizaki Y, et al. Immunohistochemical studies on the expression of P-glycoprotein and p53 in relation to histological differentiation and cell proliferation in hepatocellular carcinoma. Hepatol Res, 2003, 25(2): 158-65.
    7. Niu J, Xu Z H, Li X N, et al. siRNA-mediated type 1 insulin-like growth factor receptor silencing induces chemosensitization of a human liver cancer cell line with mutant P53. Cell Biology International, 2007, 31(2): 156-64.
    8. McKenna G J, Chen Y L, Smith R M, et al. A role for matrix metalloproteinases and tumor host interaction in hepatocellular carcinomas. The American Journal of Surgery, 2002, 183(5): 588-94.
    9.何萍,张雁瑞,车丽洪,等。大小肝癌中相关因子的表达差异及其意义。中国肿瘤临床,2006,33(2):77-79。
    10.张志,方石岗,高毅,等。大鼠肝细胞癌形成过程中MMP-2mRNA的表达及应用BB-94的影响。世界华人消化杂志,2003,11(6):716-718。
    11. Peng P L, Hsieh Y S, Wang C J, et al. Inhibitory effect of berberine on the invasion of human lung cancer cells via decreased productions of urokinase -plasminogen activator and matrix metalloproteinase-2. Toxicology and Applied Pharmacology, 2006, 214 (1): 8-15.
    12.傅遍红,吴泽志,董澄,等。整合素betal亚单位对肝癌细胞与IV型胶原黏附与趋化行为的影响。生物医学工程学杂志,2004,21(5):741-745。
    13. Chen T Y, Hsieh Y S, Yang C C, Wang CP, Yang SF, Cheng YW, Chiou HL. Relationship between matrix metalloproteinase-2 activity and cystatin C levels in patients with hepatic disease. Clinical Biochem, 2005, 38 (7): 632-38.
    14. Wu X F, Fan J, Wang X Y, Zhou J, Qiu S, Yu Y, Liu Y, Tang Z. Downregulation of CCR1 inhibits human hepatocellular carcinoma cell invasion. Biochem Biophys Res Commun, 2007, 355(4): 866-71.
    15. Taras D L, Blanc J F, Rullier A, et al. Pravastatin reduces lung metastasis of rat hepatocellular carcinoma via a coordinated decrease of MMP expression and activity. J Hepatol, 2007, 46(6): 69-76.
    16. Zucker S, Hymowitz M, Conner C, DeClerck Y, Cao J. TIMP-2 is released as an intact molecule following binding to MT1-MMP on the cell surface. Exp Cell Res, 2004, 293 (1): 164-74.
    17. Yang C Q, Zeisberg M, Lively J C, Nyberg P, Afdhal N, Kalluri R. Integrinα1β1 andα2β1 are the key regulators of hepatocarcinoma cell invasion across the fibrotic matrix microenvironment. Cancer Res., 2003, 63 (23): 8312-17.
    1. Kim S, Park H S, Son H J, et al. The role of angiostatin, vascular endothelial growth factor, matrix metalloproteinase 9 and 12 in the angiogenesis of hepatocellular carcinoma. Korean J Hepatol, 2004, 10(1): 62-72.
    2. Aramaki M, Kawano K, Kai T, et al. Treatment for extrahepatic metastasis of hepatocellular carcinoma following successful hepatic resection. Hepato Gastroenterol, 1999, 46(29): 2931-34.
    3.仇毓东,丁义涛。原发性肝癌孙孙、复发的研究和治疗进展。肝胆外科杂志,2001,9(1):6-7。
    4. Xin X, Yang S, Kowalski J, et al. Peroxisome proliferator-activated eceptor gamma ligands are potent inhibitors of angiogenesis in vitro and in vivo. J Biol Chem, 1999, 274(13): 9116-21.
    5. Chintalgattu V, Harris G S, Akula S M, et al. PPAR-γagonists induce the expression of VEGF and its receptors in cultured cardiac myofibroblasts. Cardiovascular Research, 2007, 74(1): 140-50.
    6. Yasuda E, Tokuda H, Ishisaki A, et al. PPAR-γligands up-regulate basic fibroblast growth factor-induced VEGF release through amplifying SAPK/JNK activation in osteoblasts. Biochemical and Biophysical Research Communications, 2005, 328 (1): 137-43.
    7. Valster A, Tran N L, Nakada M, et al. Cell migration and invasion assays. Methods , 2005, 37 (1) : 208–15.
    8. Wu X Z, Shi P C, Hu P, et al. N-all-trans-retinoyl-L-proline inhibits metastatic potential of hepatocellular carcinoma cells. Cell Biology International, 2006, 30(8): 672-80.
    9. Torimura T, Ueno T, Kin M, et al. Autocrine motility factor enhances hepatoma cell invasion acrossthe basement membrane through activation ofβ1 integrins. Hepatology, 2001, 34(1): 62-71.
    10.张黎军,王则胜,张黎峰。碱性成纤维细胞生长因子对三维培养内皮细胞血管样结构形成的作用研究。武汉大学学报(医学版),2004,25(6):638-641。
    11. Nagatoro T, Fujita K, Murata E, et al. Angiogenesis and fibroblast growth factors (FGFs) in a three-dimensional collagen gel culture. Okajimas Folia Anat Jpn, 2003, 80(1): 7-11.
    12. Masuda T, Wada K, Nakajima A, et al. Critical role of peroxisome proliferator-activated receptorγon anoikis and invasion of squamous cell carcinoma. Clin Cancer Res, 2005, 11(11): 4012-4021.
    13. Kohno M, Hasegawa H, Miyake M, et al. CD151 enhances cell motility and metastasis of cancer cells in the presence of focal adhesion kinase.Int J Cancer, 2002, 97(3):336-43.
    14. Fitter S, Sincock P M, Jolliffe C N, et al. Transmembrane 4 superfamily protein CD151 (PETA-3) associates withβ1 andαIIbβ3 integrins in haemopoietic cell lines and modulates cell-cell adhesion. Biochem J, 1999, 338(7):61-70.
    1. Katyal S, Oliver J H, Peterson M S, et al. Extrahepatic metastases of hepatocellular carcinoma. Radiol, 2000, 216(3): 698-03.
    2. Lam C M, Lo C M, Yuen W K, et al. Prolonged survival in selected patients following surgical resection for pulmonary metastasis from hepatocellular carcinoma. Br J Surg, 1998, 85(9): 1198-1200.
    3.李雁,汤钊猷,叶胜龙,等。体内连续筛选法建立自发性肺孙孙人肝癌细胞系。中华医学杂志,2002,82(9):601-605。
    4.李敬东,李波,郑本波,等。比较两种裸鼠人肝癌孙孙模型。四川医学,2005,26(3):281-282。
    5. Xu H Y, Qian A R, Shang P, et al. siRNA targeted against HAb18G/CD147 inhibits MMP-2 secretion, actin and FAK expression in hepatocellular carcinoma cell line via ERK1/2 pathway. Cancer Letters, 2007, 247(2): 336-44.
    6. Gregory J. McKenna, Chen Y L, et al. A role for matrix metalloproteinases and tumor host interaction in hepatocellular carcinomas. The American Journal of Surgery, 2002, 183(5): 588-94.
    7. Yang C, Zeisberg M, Lively J C, et al. Integrin alpha1 beta1 and alpha2 beta1 are the key regulators of hepatocarcinoma cell invasion across the fibrotic matrix microenvironment. Cancer Res, 2003, 63(23): 8312-17.
    8. Giannelli G, Bergamini C, Marinosci F, et al. Clinical role of MMP2/TIMP2 imbalance in hepatocellular carcinoma. Int J Cancer, 2002, 97(11): 425-31.
    9. Theret N, Musso O, Turlin B, et al. Increased extracellular matrix remodeling is associated with tumor progression in human hepatocellular carcinomas. Hepatology, 2001, 34(1): 82-88.
    10. Jiang Y, Goldberg I D, Shi Y E. Complex roles of tissue inhibitors of metallo proteinases in cancer. Oncogene, 2002, 21(14): 2245-52.
    11. Donadio A C, Durand S, Remedi M M, et al. Evaluation of stromal metalloproteinases and vascular endothelial growth factors in a spontaneous metastasis model. Experimental and Molecular Pathology, 2005, 79(3): 259-64.
    12. Zhang H, Ozaki I, Mizuta T, et al. Mechanism ofβ1-integrin-mediated hepatoma cell growth involves p27 and S-phase kinase-associated protein 2. Hepatology, 2003, 38(2): 305-13.
    13. Hehlgans S, Haase M, Cordes N. Signalling via integrins: Implications for cell survival and anticancer strategies. Biochimica et Biophysica Acta, 2007, 1775(1): 163-80.
    14.陈新国,钱峰,张力,等。检测抗CD34抗体标记的肿瘤微血管密度预测肝癌肝孙植术后复发。中华器官孙植杂志,2006,27(10):615-617。
    15.李功杰,杨立,史晓林,等。原发性肝癌肿瘤新生血管形态特征与其DSA血供分型关系的研究。介入放射学杂志,2005,14(2):135-38。
    16. Maniotis A J, Folberg R, Hess A, et al. Vascular channel formation by human melanoma cells in vivo and vitro: vasculogenic mimicry. AMJ Pathol, 1999, 155(3): 739-52.
    17. Folberg R, Hendrix M J, Maniotis A J, et al. Vasculogenic mimicry and tumor angiogenesis. Am J Pathol, 2000, 156(2): 361-81.
    18. Zhang D, Brodt P. Type 1 insulin-like growth regulates MT1-MMP synthesis and tumor invasion via PI3-kinase/Akt signaling. Oncogene, 2003, 22(7): 974-82.
    19. Ronnie Tung Ping Poon, Cecilia L, Joanna Wen Ying Ho, et al. Tissue Factor Expression correlates with tumor angiogenesis and invasiveness in human hepatocellular carcinoma. Clin Cancer Res, 2003, 11(1)9: 5339-45.
    20. Laughner E, Taghavi P, Chiles K, et al. HER2 (neu) signaling increases the rate of hypoxia-inducible factor 1α(HIF-1α) synthesis: novel mechanism for HIF-1-mediated vascular endothelial growth factor expression. Mol Cell Biol, 2001, 21(12): 3995-04.
    21. Roberta P, Ronnie T.P. Poon. Angiogenesis and antiangiogenic therapy in hepatocellular carcinoma. Cancer Lett, 2006, 242(2): 151-67.
    22. Ruf W, Seftor E A, Petrovan R J, et al. Differential role of tissue factor pathway inhibitors 1 and 2 inhibitors 1 and 2 in melanoma vasculogenic mimicy. Cancer Res, 2003, 63 (17): 5381-89.
    23. Holash J, Maisonpierre P C, Compton D, et al. Vessel cooption, regression, and growth in tumors mediated by angiopoientins and VEGF. Science, 1999, 284(5422): 1994-98.
    24. Yasuda S, Arii S, Mori A, et al. Hexokinase II and VEGF expression in liver tumors: correlation with hypoxia-inducible factor-1αand its significance. Journal of Hepatology, 2004, 40(1): 117-23.
    25. Sargiannidou I, Qiu C, Tuszynski G P. Mechanisns of thrombospondin-1 mediated metastasis and angiogenesis. Semin Thromb Hemost, 2004, 30(1): 127-36.
    26.薛建锋,刘颖斌,刘付宝,等。凝血酶敏感蛋白-1与肝细胞肝癌孙孙孙孙及血管生成的相关性研究。实用肿瘤杂志,2006,21(2):152-155。
    27. David T, Joanne C, Lance A, et al. Specificities of heparin-binding sites from the amino-terminus type type 1 repeats of thrombospondin-1. J Bioch Bisph, 2000, 74(1): 13-23.
    28. Hess A R, Seftor E A, Seftor R E, et al. Phosphoinositide 3-kinase regulates membrane Type 1-matrix metalloproteinase (MMP) and MMP-2 activity during melanoma cell vasculogenic mimicy. Cancer Res, 2003, 63(16): 4757-62. 319-28.
    30. Sharma N, Seftor R E, Seftor E A, et al. prostatic tumor cell plasticity involves cooperative interactions of distinct phenotypic subpopulations: role in vasculogenic mimicry. Prostate, 2002, 50(3): 189-01.
    31.郝希山,孙保存,张诗武,等。双向分化肿瘤血管生成拟态的分子机制初步观察。中华肿瘤杂志,2003,25(6):524-526。
    1. Lazer M. PPARγ10 years later. Biochimie, 2005, 87(1): 9-13.
    2. David B B, Jessica W. Peroxisome proliferator-activated receptors: a critical review on endogenous pathways for ligand generation. Prostaglandins & other Lipid Mediators, 2003, 71(1-2): 1-22
    3. Tang H, McLachlan A. Transcriptional regulation of hepatitis B virus by nuclear hormone receptors is a critical determinant of viral tropism. Proc Natl Acad Sci USA, 2001, 98(4): 1841-46.
    4. Rusyn I, Rose M L, Bojes H K, et al. Novel role of oxidants in the molecular of action of peroxisome proliferators. Antixid Redox Signal, 2000(3), 2: 607-11.
    5. Knight B,Yeap B B, Yeoh G C, et al. Inhibition of adult liver progenitor (oval) cell growth and viability by an agonist of the peroxisome proliferator activated receptor (PPAR) family member [gamma], but not [alpha] or [delta]. Carcinogenesis, 2005, 26(10): 1782-92.
    6. Kawaguchi K, Sakaida I, Tsuchiya M, et al. Pioglitazone prevents hepatic steatosis, fibrosis and enzyme-altered lesions in rat liver cirrhosis induced by a choline-deficient L-amino acid-defined diet. Biochemical and Biophysical Research Communications, 2004, 315(3): 187-95.
    7. Bedoucba M, Atzpodien E, Boelsterli U A, et al. Diabetic KKAY mice exhibit increased hepatic PPAR gamma gene expression and develop hepatic upon chronic treatment with antidiabetic thiazolidinediones. J hepatol, 2001, 35: 17-23.
    8. Toyoda M, Takagi H, Horiguchi N, et al. A ligand for peroxisime proliferator-activated receptorγinhibits cell growth and induces apoptosis in human liver cancer cells. Gut, 2002, 50(4): 563-67.
    9. Koga H, Sakisaka S, Harada M, et al. Involvement of p21WAF1/Cip1, p27Kip1, and p18INK4c in troglitazone-induced cell-cycle arrest in human hepatoma cell lines. Hepatology, 2001, 33(11): 1087-97.
    10. Yoshizawa K, Cioca D P, Kawa S, et al. Peroxisome proliferator-activated receptor gamma ligand troglitazone induces cell cycle arrest and apoptosis of hepato-cellular carcinoma cell lines. Cancer, 2002, 95(9): 2243-51.
    11. Mayoral R, Fernández M A, BoscáL, et al. Prostaglandin E2 promotes migration and adhesion in hepatocellular carcinoma cells. Carcinogenesis, 2005, 26(4): 753-61.
    12. Hiroshi O, Katsuya S, Hidekazu I, et al. Peroxisome proliferator-activated receptor [gamma] augments tumor necrosis factor family-induced apoptosis in hepatocellular carcinoma. Anti-Cancer Drugs, 2002, 13(1): 59-65.
    13. Ferruzzi P, Ceni E, Tarocchi M, et al. Thiazolidinediones Inhibit Growth and Invasiveness of the Human Adrenocortical Cancer Cell Line H295R. The Journal of Clinical Endocrinology & Metabolism. 2005, 90(3): 1332-39.
    14. Yoshida S, Yamaguchi Y, Itami S, et al. Neutralization of hepatocyte growth factor leads to retarded cutaneous wound healing associated with decreased neovascularization and granulation tissue formation. J Invest Dermatol, 2003, 120(1): 335-45.
    15. Xin X, Yang S, Kowalski J, et al. Peroxisome proliferatoractivated receptor- ligands are potent inhibitors of angiogenesis in vitro and in vivo. J Biol Chem, 1999, 274(13): 9116-21.
    16. Neuschwander-Tetri B A, Brunt E M, Wehmeier K R, et al. Improved non-alcoholic steahepatitis after 48 weeks of treatment with the PPARγligand rosiglitazone. Hepatology, 2003, 38(11): 1008-17.
    17. Wang TT, Xu J, Yu XF, et al. Peroxisome proliferators-activated receptorγin malignant diseases. Oncology/Hematology, 2006, 58(1): 1-14.
    18. Schaefer K L, Wada K, Takahashi K, et al. Peroxisome Proliferator-Activated Receptor Inhibition Prevents Adhesion to the Extracellular Matrix and Induces Anoikis in Hepatocellular Carcinoma Cells. Cancer Res, 2005, 65(6): 2251-59.
    19. Goetze S, Bungenstock A, Czupalla C, et al. Leptin induces endothelial cell migration through Akt, which is inhihited by PPAR gamma-ligands. Hypertension, 2002, 40(5): 748-754.
    1. Fire A, Xu S, Montgomery M K, et al. Potent and specific genetic influence by double-stranded RNA in Caenorhabditis elegans. Nature, 1998, 391(6749): 806-11.
    2. Elbashir SM, Harborth J, Lendeckel W, et al. Duplexes of 21 nucleotide RNAs mediate RNA interference in cultured mamalian cells. Nature, 2001, 411(6836): 494-98.
    3. Bernstein E, Caudy A A, Hammond S M, et al. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature, 2001, 409(6818): 363-66.
    4. Hammond S M, Bernstein E, Beach D, et al. An RNA-directed nuclease mediates post- transcriptional gene silencing in Drosophila cells. Nature, 2000, 404(6775): 293-96.
    5. Vickers T A, Koo S, Bennett C F, et al. Efficient reduction of target RNAs by small interfering RNA and RNase H-dependent antisense agents. A comparative analysis. J Biol Chem, 2003, 278(9): 7108-18.
    6. Schwarz D S, Hutvagner G, Du T,et al. Asymmetry in the assembly of the RNAi enzyme complex. Cell, 2003, 115(2): 199-208.
    7. Brummelkamp T R, Bemards R, Agami R. A system for stable expression of short interfereing RNAs in mammalian cells. Science, 2002, 296(5567): 550-53.
    8. Fewell G D, Schmitt K. Vector-based RNAi approaches for stable, inducible and genome-wide screens. Drug Discovery Today, 2006, 11(21/22): 975-83.
    9. Liu C M, Liu D P, Dong W J, et al. Retrovirus vector-mediated stable gene silencing in human cell. Biochemical and Biophysical Research Communications, 2004, 313(3): 716-20.
    10. Yin J Q, Gao J, Shao R, et al. siRNA agents inhibit oncogene expression and attenuate humen tumor cell growth. Exp Ther Oncol, 2003, 3(4): 194-204.
    11. Alfred S L C, Nathalie W, Ada M Y T, et al. RNA interference targeting HBx suppresses tumor growth and enhances cisplatin chemosensitivity in human hepatocellular carcinoma. Cancer Lett, 2007, 9(4): 347-51.
    12. Hung L, Kumar V. Specific inhibition of gene expression and transactivation functions of hepatitis B virus X protein and c-myc by small interfering RNAs. FEBS Letters, 2004, 560 (1-3): 210-14.
    13. Niu J, Xu Z H, Li X N, et al. siRNA-mediated type 1 insulin-like growth factor receptor silencing induces chemosensitization of a human liver cancer cell line with mutant P53. Cell Biology International, 2007, 31(2): 156-64.
    14. Chen J, Xiao X Q, Deng C M, et al. Downregulation of xIAP expression by small interfering RNA inhibits cellular viability and increases chemosensitivity to methotrexate in human hepatoma cell line HepG2. J Chemother. 2006, 18(5): 525-31.
    15. Chan DW, Ng IO. Knock-down of hepatitis B virus X protein reduces the tumorigenicity ofhepatocellular carcinoma cells. J Pathol, 2006, 208(3): 372-80.
    16. Xu Y, Wang YH, Gao JD, et al. Suppression of c-myc expression by interference RNA in HepG2 hepatocellular carcinoma cells. Zhonghua Zhong Liu Za Zhi, 2004, 26(8): 458-60.
    17. Tanaka T, Tomaru Y, Nomura Y, et al. Comprehensive search for HNF-1beta-regulated genes in mouse hepatoma cells perturbed by transcription regulatory factor-targeted RNAi. Nucleic Acids Res, 2004, 17: 32(9):2740-50.
    18. Wang S L, Lan F H, Huang L H, et al. Suppression of hLRH-1 mediated by a DNA vector-based RNA interference results in cell cycle arrest and induction of apoptosis in hepatocellular carcinoma cell BEL-7402. Biochemical and Biophysical Research Communications, 2005, 333(3): 917-24.
    19. Nagao K, Tomimatsu M, Endo H, et al. Telomerase reverse transcriptase mRNA expression and telomerase activity in hepatocellular carcinoma. J Gastroenterol, 1999, 34(1): 83-88.
    20. Zhang P H, Zou L, Tu Z G. RNAi-hTERT inhibition hepatocellular carcinoma cell proliferation via decreasing telomerase activity. Journal of Surgical Research, 2006, 131(1): 143-149.
    21.卢小东,覃文新,潘东宁,等。DNA载体途径的RNA干扰技术对肝癌细胞系HCCLM3端粒酶活性的抑制作用。中华医学杂志,2004,84(16):1381-1385。
    22. Li K, Lin S Y, Brunicardi F C, et al. Use of RNA interference to target cyclin E overexpressing hepatomacellulae carcinoma. Cancer Res, 2003, 63(1): 3593-97.
    23. Zhang R G, Fang D C, Ning X Y, et al. Mechanisms of human telomerase reverse transcriptase RNAi which increases hepatocellular carcinoma cell apoptosis induced by TRAIL. Zhonghua Gan Zang Bing Za Zhi, 2007, 15(1): 32-36.
    24. Cheng S Q, Wang WL, Yan W, et al. Knockdown of survivin gene expression by RNAi induces apoptosis in human hepatocellular carcinoma cell line SMMC-7721.World J Gastroenterol, 2005, 11(5): 756-59.
    25. Chen X P, Wang Q, Guan J, et al. Reversing multidrug resistance by RNA interference through the suppression of MDR1 gene in human hepatoma cells. World J Gastroenterol, 2006, 12(21): 3332-37.
    26. Ren YY. Suppression of MDR1 expression and restoration of sensitivity to chemotherapy in multidrug-resistant hepatocellular carcinoma cell line Bel7402/5-Fu by RNA interference. Zhong Nan Da Xue Xue Bao Yi Xue Ban, 2006, 31(6): 872-76.
    27. Wu X, Fan J, Wang X, et al. Downregulation of CCR1 inhibits human hepatocellular carcinoma cell invasion. Biochem Biophys Res Commun, 2007, 355(4): 866-71.
    28.陆彬彬,殷咏梅,王朝霞,等。人血管内皮生长因子shRNA真核表达载体对肝癌细胞系SMMC-7721的增殖影响。南孙医科大学学报,2006,26(6):403-406。
    29. Li H H, Fu X Y, Chen Y, et al. Use of adenovirus-delivered siRNA to target Oncoprotein p28GANK in hepatocellular carcinoma. Gastroenterology, 2005, 128(7): 2029-41.
    30. Zhu X Q, Ye Q H, Lei K F, et al. knocking down osteopontin expression by specific siRNA reducesthe in vitro invasiveness of human hepatocellular carcinoma cells. Zhonghua Zhong Liu Za Zhi, 2006, 28(6): 404-07.
    31.张岩,胡美玉,陈碧华,等。体外RNA干扰下调ezrin表达对肝癌细胞生长和运动能力的影响。中华医学杂志,2006,86(8):530-535。
    32. Salvi A, Arici B, De Petro G, et al. Small interfering RNA urokinase silencing inhibits invasion and migration of human hepatocellular carcinoma cells. Mol Cancer Ther, 2004, 3(6): 671-78.
    33. Jacque M, Triques K, Stevenson M. Modulation of HIV-1 by RNA interference. Nature, 2002,
    418(6896): 435-38.
    34. Whelan J. First clinical data on RNAi. Drug Discovery Today, 2005, 10(15): 1014-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700