盐胁迫下盐芥(Thellungiella halophila)和拟南芥(Arabidopsis thaliana)生理响应的比较研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以盐芥(Thellungiella halophila)和拟南芥(Arabidopsisthaliana)为实验材料,通过测定分析与逆境胁迫相关的生理指标:叶片水势、叶绿素荧光参数、抗氧化物酶(POD、SOD)活性、同工酶谱以及可溶性糖等,研究盐生植物和非盐生植物在盐胁迫下的生理响应特征,为探讨植物的耐盐生理机制,确定与植物抗盐相关的关键基因,进而为培育抗盐的农作物、开发和利用盐渍土地提供实验依据。
     作为盐生模式植物的盐芥具有许多与模式植物拟南芥相似的遗传特征。本文以不同生长时期的盐芥和拟南芥为材料,采用不同条件的盐胁迫:①不同盐浓度:盐芥,50-600mM,拟南芥50-300mM;②不同胁迫时间:7d、14d、21d,测定并分析了上述与盐胁迫响应相关的生理指标,获得以下结论:
     测定不同生长期的拟南芥和盐芥的叶片水势,结果表现为:相同生长期,即生长三周的拟南芥和生长六周的盐芥叶片的水势本底水平不同,拟南芥高于盐芥,在盐胁迫下的反应亦不同,拟南芥叶片水势下降幅度大,随胁迫浓度增大而迅速降低,而盐芥反应较为平稳,100mM NaCl胁迫21d,拟南芥叶片水势低于盐芥。相同条件的盐胁迫处理,生长四周的盐芥的水势低于生长六周的,说明植物体内调节适应能力不同,生长六周的盐芥植株生长强壮,调节能力强,耐受盐胁迫能力强。
     叶绿素荧光的变化可以反映植物受胁迫的情况。测定盐胁迫下不同生长期盐芥的叶绿素荧光参数(Fo、Fm、Fv/Fm、Yield),结果表明,随盐浓度增高,生长四周和六周的盐芥Fv/Fm、Yield值都呈平稳下降趋势,盐胁迫21d下降幅度最大,Fv/Fm、Yield更能反映盐芥对胁迫的耐受能力。即使为盐生植物,在高盐胁迫下或胁迫时间较长,PSⅡ也会受到伤害,引起Fv/Fm和Yield降低。
     测定不同生长期拟南芥和盐芥在盐胁迫下的过氧化物酶(POD)活性。不同生长期盐芥POD活性变化具有相同的特征,随盐处理浓度增加POD活性增高,根中POD活性远高于叶片;随盐处理浓度增加,拟南芥的POD活性增高,根中POD活性远高于叶片。盐芥POD活性存在组织特异性。拟南芥中POD活性存在组织特异性和发育阶段特异性。说明POD在盐芥、拟南芥抵御盐胁迫中都发挥了重要作用。
     盐芥中超氧化物岐化酶(SOD)活性水平的变化与胁迫强度、组织部位和发育时期有关。生长四周的盐芥的SOD活性的本底水平根高于叶片,随盐处理浓度增加,叶片中的SOD活性升高而根中的SOD活性降低,且各盐浓度下叶片中的SOD活性均高于根;生长六周的盐芥叶和根中的SOD的本底活性水平基本相同,随盐浓度增加SOD活性升高,但叶片中增加幅度高于根,各处理组叶片中的SOD活性都高于根;生长六周的盐芥叶片中SOD活性高于生长四周的盐芥,随盐处理浓度增加,叶片SOD活性都平稳上升;不同生长期盐芥根中的SOD活性对盐胁迫反应不同,随盐处理浓度的增加,生长四周的盐芥呈降低而生长六周的盐芥呈升高的变化。
     盐处理下不同生长期拟南芥叶片中各盐浓度处理下SOD活性比较,盐处理7d后的SOD活性高于14d。但根中的SOD活性,14d高于7d。叶片中SOD活性,生长三周的拟南芥明显高于生长四周的拟南芥。
     盐芥的SOD和POD同工酶种类皆多于拟南芥。
     测定盐胁迫下不同生长期的拟南芥和盐芥的叶片中可溶性糖含量。结果表明,不同生长期的拟南芥和盐芥,在盐胁迫下叶片中可溶性糖含量皆增加,但增加量存在差异,其中生长六周的盐芥增加量最大。生长三周的拟南芥和生长六周的盐芥相比较,拟南芥叶片中可溶性糖含量本底水平低于盐芥叶片。
     综上研究结果,盐胁迫下拟南芥和盐芥的生理响应有相同之处,也存在诸多不同,包括基础代谢水平、胁迫下响应程度等方面。此外不同生长期的拟南芥、不同生长期的盐芥,在耐受盐胁迫的生理响应亦存在差异。与拟南芥相比,盐芥具有更强的耐受盐胁迫的能力是多种因素作用的结果。
Thellungiella halophila and Arabidopsis thaliana were adopted as materials in the paper.In order to study the characteristics of physiological responses of halophyte and glycophyte under salt stress, find out the physiological and biochemistry mechanism of salt stress of plants,some parameters related to abiological stress,including water potential,chlorophyll fluorescence,activity of antioxidant enzymes(POD&SOD),electrophoresis zymogram of isoenzymes and soluble sugar etc.,were measured and analyzed,which helped find the essential genes related to salt resistance.
     There are a lot of similarities in genetic characteristics between T.halophila and A.thaliana.T.halophila and A.thaliana on different growth stages and under various salt stresses were adopted as materials in our research.The various salt stress included different salt concentrations: 50-600mM for T.halophila,50-300mM for A.thaliana as well as different salt stress duration:7,14 and 21 days.Some data were obtained,and some conclusions were concluded as follows:
     The water potential of T.halophila and A.thaliana on different growth stages was determined.The results of it showed that the basic levels of water potential of 6-week-old T.halophila and 3-week-old A.thaliana were different,that is,the water potential was higher in A. thaliana than in T.halophila.Their reactions under salt stress were also different.With the increasing of salinity,water potential in A.thaliana decreased rapidly with a broad range,but it was comparatively steady in T.halophila.The water potential of A.thaliana was lower than that of in T.halophila when they were treated with 100mM NaCl for 21d.In the same condition of salt stress,the water potential of 4-week-old T. halophila was lower than that of 6-week-old plant.It showed that the adjustment and adaptability in plants were distinct under salt stress. 6-week-old T.halophila was stronger and grew with better adaptability and greater endurance of salt stress.
     The variations of chlorophyll fluorescence can reflect the situation of plants' withstanding salt stress.Chlorophyll fluorescence parameters (Fo、Fm、Fv/Fm、Yield) of T.halophila under salt stress on different growth stages were determined and the results showed that both Fv/Fm and Yield of 4-week-old and 6-week-old T.halophila decreased steadily with the increasing of salinity.The range of decrease was the largest on 21 d.The Fv/Fm and Yield were more suitable in terms of understanding the salt resistance in T.halophila.If the plant was treated with high salinity or were under stress for a long time,PSⅡcan also be damaged and the Fv/Fm and Yield can decrease even if the plant was belong to halophyte.
     The activities of POD of T.halophila and A.thaliana on different growth stages under salt stress were determined.There were the same characteristics between 4-week-old and 6-week-old T.halophila.The activities of roots were much higher than that of leaves.With the increase of the salinity,the activities of POD rose.As for A.thaliana,the activities of POD increased as well along with the rise of salinity and they were higher in roots than in leaves.The activities of POD in T.halophila exhibited tissue-specific expression.The activities of POD in A.thaliana exhibited tissue-specific and developmental-stage-specific expression. This showed that POD played a crucial role in the resistance of salt stress.
     The variations of SOD activities of T.halophilia were closely related to the salt stress intensity,the organization and the growth stage.The trends of variations of SOD activities were different between leaves and roots;the former increased while the latter decreased and the SOD activities of leaves were higher than that of roots under salt stress.The leaves and roots of 6-week-old T.halophila had the same basic level of SOD activities.With the increases of the salt concentration,the SOD activities were enhancive,the increasing range of the SOD activities was greater in leaves than in roots and there were higher level SOD activities in leaves in different salt concentration.
     With the increase of the salinity,the SOD activities in leaves rose, and they were higher in the 6-week-old than in 4-week-old T.halophila. Comparing the SOD activities in roots on different stages,we can find that SOD activities of the 4-week-old increased while the 6-week-decreased along with the increase of salinity.
     SOD activities of A.thaliana leaves under different salinity and growth stages varied,that is,SOD activities of leaves were higher in 7d than in 14d.On the contrary,the SOD activities of roots were higher in 14d than in 7d.The SOD activities in A.thaliana leaves were higher in 3-week-old plant than that in 4-week-old plant.
     In terms of the diversities of isoenzymes of antioxidant enzymes, there were more types of SOD and POD in T.halophila.
     Soluble sugar of the leaves from T.halophila and A.thaliana on different growth stages under salt stress was measured.The result indicated that the level of soluble sugar of A.thaliana leaves on different stages increased along with the increase of salt stress and so did in T. halophila.The quantities of increase of two plants were distinct and the largest quantity of increase among them was that of 6-week-old.The basic level of soluble sugar in A.thaliana of 3-week-old leaves was lower than that of T.halophila of the same stage.
     Physiological responses of T.halophila and A.thaliana under the salt stress have similarities as well as differences,including the level of basal metabolism and the degree of response,etc..Besides,T.halophila and A. thaliana,on different growth stages,responded in their own ways under salt stress.In comparison with A.thaliana,T.halophila was capable of enduring higher salt stress,because of the function of various factors.
引文
[1]赵可夫,李法增.中国的盐生植物[J].植物学通报,1999,16(8):201-207.
    [2]Aronson JA.Halophytes,A database of salt tolerant plants of the world [M].Office of Arid land Studies Tueson,1989,pp1-77.
    [3]赵可夫,冯立田.中国盐生植物资源[M].北京:科学出版社,2001.
    [4]刘祖祺,张石诚.植物抗性生理学[M].北京:中国农业出版社,1994:222-287.
    [5]张凤娟.盐生植物耐盐结构的研究现状[J].河北职业技术师范学院学报,2003,17(4).
    [6]赵可夫,李法增.中国盐生植物[M].北京:科学出版社,1999.
    [7]赵可夫,盐生植物[J].植物学通报.1997,14(4):1-12.
    [8]祁淑艳,储诚山.盐生植物对盐渍环境的适应性及其生态意义[J].天津农业科学,2005,(2).
    [9]Jian-Kang Zhu.Genetic analysis of plant salt tolerance using Arabidopsis[J].Plant Physiology,2000,Vol.124,pp.941-948.
    [10]Jian-Kang Zhu.Plant salt tolerance[J].Trends in Plant Science,2001,Vol.6No.2.
    [11]Hasegawa PM,Bressan RA,Jian-Kang Zhu.Plant cellular and molecular responses to high salinity[J].2000,51:463-499.
    [12]Peter VM.A halophyte relative of Arabidopsis[J].Plant Physiology,2004,Vol.135:1147-1148.
    [13]Natasha VR,Peter VM.Celebrating Plant Diversity[J].Plant Physioligy,2001,Vol.127,pp.1325-1327.
    [14]曹仪植.拟南芥[M].高等教育出版社,2004.
    [15]郝林.拟南芥—植物发育生物学和分子生物学实验的好材料[J].植物生理学通报,1996,35(3).
    [16]Bressan RA,Changqing Zhang,Hui Zhang,et al..Learning from the Arabidopsis Experience—The Next Gene Search Paradigm[J].Plant Physiology, 2001,Vol.127,pp.1354-1360.
    [17]Volkov.V,Wang B,Doming PJ,et al..Thellungiella halophila,a salt relative of Aradophsis thaliana,possess effective mechanisms to discriminate between potassium and dolium[J].Plant,Cell and Environment.2003,27:1-14.
    [18]Xiong.L,Zhu J-K..Molecular and genetic aspects of plant responses to osmotic stress[J].Department of Plant Sciences,2002,25(2):131-139.
    [19]Teruaki Taji,Motoaki Seki,Masakazu Satou,et al..Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt cress using Arabidopsis Microarra[J].Plant Physiology,2004,Vol.135,pp.1697-1709.
    [20]赵自国,陆静梅.植物耐盐性研究及进展[J].长春师范学院学报,2002,21(1):51-53.
    [21]郭艳茹,詹亚光.植物耐盐性生理生化指标的综合评价[J].黑龙江农业科学,2006,(1):66-70.
    [22]Prior C,Potier S,Souciet J,et al..Characterization of the NHA1 gene encoding a Na~+/H~+ antiporter of the yeast Saceharomyces cerevisiae[J].FEBS Lett,1996,387:89-93.
    [23]Ko CH,Gaber RF.TRK1 and TRK2 encode structurally relatad K~+ stransporters in Saccharomyces cerevisiae[J].Mol Cell Biol.1991,11(8):4266-4273.
    [24]刘家琼,蒲锦春,刘新民.我国沙澳中部地区主要不同生态类型植物的水分关系和早生结构比较研究[J].植物学报,1987,29(6):662-673.
    [25]Hare PD,Cress WA.Metabolic implication of stress induced praline accumulation in plants[J].Plant Growth Regulation,1997,21:79-102.
    [26]Hare PD,Cress WA,Van staden J.Dissecting the roles of osmolyte accumulation during stress[J].Plant Cell Envir,1998,21:535-553.
    [27]刘家尧,衣艳君,赵可夫,等.甜菜碱的测定技术及其在抗盐生理中的作用[J].曲阜师范大学学报,1994,20(2):66-69.
    [28]Pollard A,Wyn jones RG.Enzyme activities in concentrated solutions of glycine betalze and other solute[J].Planta,1979,144:291-298.
    [29]毛桂莲,许兴,徐兆祯.植物耐盐生理生化研究进展[J].中国农业生态学报, 2004,12(1):43-40.
    [30]张海燕,赵可夫.盐分和水分胁迫对盐地碱蓬幼苗渗透调节效应的研究[J].植物学报,1998,40(1):56-61.
    [31]肖雯,李恢先,蒲陆梅.几种盐生植物抗盐生理指标的研究[J].西北植物学报,2000,20(5):818-825.
    [32]廖光瑶.SPAC的水势热力学系统[J].四川林业科技,1999,12(1):47-52.
    [33]付爱红,陈亚宁,李卫红,等.干旱、盐胁迫下的植物水势研究与进展[J].中国沙漠,2005,25(5).
    [34]Donovan LA,Grise DJ,West JB,et al..Predawn disequilibrium between plant and soil water potentials in two cold desert Shrubs[J].1999,120:209-217.
    [35]Munns R.Comparative physiology of salt and water stress.Plant Cell Environ [J].2002,25(2):239-250.
    [36]赵昕,吴雨霞,赵敏桂,等.NaCl胁迫对盐芥和拟南芥光合作用的影响[J].植物学通报,2007,24(2):154-160.
    [37]苏旭,吴学明,祁生贵.青海湖畔两种盐生植物叶片的超微结构研究[J].青海草业,2004,3.
    [38]沈义国,陈受宜.植物盐胁迫应答的分子机制[J].遗传HEREDITAS(Beijing),2001,23(4):365-369.
    [39]覃鹏,刘飞虎,梁雪妮.超氧化物歧化酶与植物抗逆性[J].黑龙江农业科学,2002,(1):31-34.
    [40]夏铁骑.自由基、活性氧、SOD及植物衰老机理研究的现状与进展[J].濮阳职业技术学院学报,2005,18(2):23-24.
    [41]邵红雨,孔广超,齐军仓,等.植物耐盐生理生化特性的研究进展[J].安徽农学通报,2006,9.
    [42]Asada K.Production and action of active oxygen in photosynthetic tissue[J].CRCPres,1994,PP.77-104.
    [43]马序俊,朱大海.植物超氧化物歧化酶(SOD)的研究进展[J].中国生物工程杂志,2003,23(1):48-50.
    [44]胡万能,万贤国.同工酶技术及其应用[M].长沙:湖南科学技术出版社, 1985:1-213.
    [45]宋凤鸣.枯萎病菌侵染后棉苗体内超氧物歧化酶和过氧化氢酶活性的变化及与抗病性的关系[J].浙江大学学报,1999,25(4):373-377.
    [46]Susumu,Katsutomo,Hiroyuki,et al.A Large Family of ClasslII Plant Peroxidases[J]..Plant Cell Physiol,2001,42:462-468.
    [47]梁艳荣,胡晓红,张颍力,等.植物过氧化物酶生理功能研究进展[J].内蒙古农业大学学报,2003,26(2):110-113.
    [48]彭永康,崔世民.植物过氧化物酶的结构、催化反应及生理功能[J].天津师范大学报,1993,2:65-72.
    [49]邵红雨,孔广超,齐军仓,等.植物耐盐生理生化特性的研究进展[J].安徽农学通报,2006,(9).
    [50]陈贻竹,李晓萍,夏丽,等.叶绿素荧光技术在植物环境胁迫研究中的应用[J].热带亚热带植物学报,1995,3(4):79-86.
    [51]Krause GH,Weis F.Chlorophyll fluorescence and photosysthesis:The basis[J].Ann Rev Plant Physiol Plant Mol Biol,1991,42:313-349.
    [52]冯建灿,胡秀丽,毛训甲.叶绿素荧光动力学在研究植物逆境生理中的应用[J].经济林研究,2002,20(4):14-18.
    [53]Van Kooten O,Snel JFH.The use of chorophyll fluorescence momenclature in plant stress physiology[J].Photosynthesis Research,1990,25:147-150.
    [54]Redondo-G6mez S,Mateos-Naranjo E,Davy AJ,et al.Growth and photosynthetic responses to salinity of the salt-marsh shrub Atriplex portulacoides[J].Facultad de Biology,2007,100(3):555-63.
    [55]高海波,沈应柏.用叶绿素荧光研究植物伤害信息的系统性传递[J].湖北农业科学,2007,46(5).
    [56]陶宗娅,邹琦.植物光合作用光抑制分子机理及其光保护机制[J].西南农业学报,1999,12(5):9-18.
    [57]Li X,Jiao DM,Liu YL et al..Chlorophyll fluorescence and membrane lipid peroxidation in the flag leaves of different high yield rice variety at late stage of development under national condition[J].Acta Botanica Sinica,2002,44(4):413 -421.
    [58]郭延平,张良诚,洪双松,等.温州蜜柑叶片光合作用的光抑制[J].园艺学报,1999,26(5):281-28.
    [59]唐晓黎.砂仁叶片光合作用光抑制及其防御[J].思茅师范高等专科学校学报,2001,17(3):86-89.
    [60]冯玉龙,冯志立,曹坤芳.砂仁叶片光破坏的防御[J].植物生理学报,2001,27(8):483-488.
    [61]赵世杰,许长成,孟庆伟,等.田间小麦叶片光合作用的光抑制[J].西北植物学报,1998,18(4):521-526.
    [62]蒲光兰,周兰英,胡学华,等.干旱胁迫对金太阳杏叶绿素荧光动力学参数的影响[J].干旱地区农业研究,2005,23(3):44-48.
    [63]王建程,严昌荣,卜玉山.不同水分与养分水平对玉米叶绿素荧光特性的影响[J].中国农业气象,2005,26(2):95-98.
    [64]杨晓青,张岁歧,梁宗锁,等.水分胁迫对不同抗旱类型冬小麦幼苗叶绿素荧光参数的影响[J].西北植物学报,2004,24(5):812-816.
    [65]罗俊,张木清,林彦铨,等.甘蔗苗期叶绿素荧光参数与抗旱性关系研究[J].中国农业科学,2004,37(11):1718-172.
    [66]Fracheboud Y,Haldimann P,Leipner J,et al..Chlorophyll fluorescence as a selection tool for cold tolerance of photosynthesis in maize[J].Journal of Experimental Botany,1999,50(338):1533-154.
    [67]周艳虹,黄黎锋,喻景权.持续低温弱光对黄瓜叶片气体交换、叶绿素荧光猝灭和吸收光能分配的影响[J].植物生理与分子生物学学报,2004,30(2):153-160.
    [68]王可玢,赵福洪,王孝宣,等.用体内叶绿素a荧光动力学鉴定番茄的抗冷性[J].植物学通报,1996,13(2):29-33.
    [69]王丽燕.NaCl胁迫对植物光合作用的影响[J].德州学院学报,2005,21(4):12-14.
    [70]Belkhodja R.Chlorophyl fluorescence as a possible tool for salinity tolerance screening in barley Hordenm vulgare L[J].Plant Physiol,1993,104:667-673.
    [71]刘家尧,衣艳君,张承德,等.活体叶绿素荧光诱导动力学及其在植物杭盐生理研究中的应用[J].曲阜师范大学学报(自然科学版),1997,23(4):80-83.
    [72]Lin ZF,Liu N,Lin GZ,et al..Stress-induced alteration of chlorophyll fluorescence polarization and spectrum in leaves ofAlocasia macrorrhiza[J].Chinese Academy of Sciences,2007,17(6):663-9.
    [73]Morant-Manceau A,Pradier E,Tremblin G.Osmotic adjustment,gas exchanges and chlorophyll fluorescence of a hexaploid triticale and its parental species under salt stress[J].Facultédes Sciences and Technology,2004,161(1):25-33.
    [74]于川江,武维华.拟南芥根皮层细胞质膜内向K通道电生理特性分析[J].中国科学,1999,29(3).
    [75]Zhu JK,Liu JP,Xiong LM.Genetic analysis of salt tolerance in Arabidopsis:evidence for a critical role of potassium nutrition.Plant Cell,1998,10:1181-1191.
    [76]董美芳,袁王俊,尚富德.小盐芥营养器官的结构特点与其盐渍环境的关系研究[J].北植物学报,2005,25(6):107-108.
    [77]Wang W,Vinocur B,Altman A.Plant responses to drought,salinity and extreme temperatures:towards genetic engineering for stress tolerance[J].2003,218(1):1-14.
    [78]刘爱荣,赵可夫.盐胁迫对盐芥生长及硝酸还原酶活性的影响[J].植物生理与分子生物学学报,2005,31(5):469-476.
    [79]刘爱荣,赵可夫.盐胁迫下盐芥渗透调节物质的积累及其渗透调节作用[J].植物生理与分子生物学学报,2005,31(4):389-395.
    [80]刘爱荣,张远兵,陈登科.盐胁迫对盐芥生长和抗氧化物酶活性的影响[J].植物研究,2006,26(2):216-221.
    [81]尹昆,安利国,袁会铎,等.反相HPLC色谱法测定盐芥和菠菜中的甜菜碱含量[J].2005,20(25).
    [82]陈德明.盐渍环境中的植物耐盐性及其影响因素[J].土壤学进展,1994,22(5).
    [83]王增兰.盐芥耐盐生理及分子生物学研究.全国优秀博士论文.
    [84]王学奎.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000,7.
    [85]高俊凤.植物生理学实验指导[M].北京:高等教育出版社,2006,5.
    [86]陈建明,俞晓平,程家安.叶绿素荧光动力学及其在植物抗逆生理研究中的应用[J].浙江农业学报,2006,18(1):51-55.
    [87]赵会杰,邹琦,于振文.叶绿素荧光分析技术及其在植物光合机理研究中的应用[J].河南农业大学学报,2000,34(3):248-251.
    [88]王丽燕,赵可夫.玉米幼苗对盐胁迫的生理响应[J].作物学报,2005,31(2):264-266.
    [89]惠红霞,许兴,李守明.盐胁迫抑制枸杞光合作用的可能机理[J].生态学杂志,2004,23(1):5-9.
    [90]Kerepesi I,Galiba C.Osmotic and salt stress-induced alteration in soluble carbohydrate content in wheat seedlings[J].Crops.Sci.,2000,40:482-487.
    [91]崔西辰,张清,邓志瑞.辣椒不同发育时期的同工酶研究[J].上海大学学报(自然科学版),2005,11(6).
    [92]廖炎,彭友贵,陈桂珠.植物耐盐性机理研究进展[J].生态学报,2007,27(5):2077-2085.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700