MSe_2(M=Nb,W)纳米材料的制备及摩擦学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以MoS_2为代表的过渡族金属硫化物因其独特的层状结构,层间以范德华力结合,层内以很强的共价键结合,且在自然界中有大量矿藏,所以在摩擦领域得到了广泛的应用和研究。事实上,过渡族金属硒化物,如MSe_2(M=Nb,W)与MoS_2具有相似的物理结构及物理性质,将其作为润滑油添加剂添加到普通基础油中,可以明显的提高其减摩性能,但人们对其在摩擦领域的研究较少,因此我们利用固相合成法制备出了不同形貌的MSe_2(M=Nb,W)纳米材料,并对其在摩擦学性能方面的研究进行了探讨。
     本文主要对过渡族金属硒化物MSe_2(M=Nb,W)型纳米材料的制备工艺和摩擦学性能等问题进行了初步探索。主要研究内容包括:
     (1)将单质Nb粉和Se粉混合,密封在反应釜内,在高温管式炉中加热,通过固相反应合成了大量的NbSe_x微纳米片和纤维。对所合成的纳米材料分别用TEM、SEM、EDS、XRD等测试手段进行表面形貌和结构成分的表征。结果表明,提高温度有利于NbSe_x的结晶;温度较低时容易得到纤维状微纳米材料,直径100~300 nm,长度为几十微米;随着温度的升高,微纳米纤维逐渐消失而形成六边形状的片层结构,尺寸在10μm左右。
     (2)将得到的NbSe_3纳米纤维进行高温分解,并利用SEM、EDS、TEM、HRTEM等测试手段对其产物进行了表面形貌和结构成分的表征。结果表明,得到了NbSe_2纳米纤维,直径150~300 nm,长度为几十微米。
     (3)将单质W粉和Se粉密封在反应釜内,在高温管式炉中加热,通过固相反应合成了大量的WSe_2纳米片。对所合成的纳米材料分别用TEM、SEM、EDS、XRD等方法进行了结构、形貌和成分的测试和表征。结果表明,制备出的纳米材料具有纳米纤维,纳米片和纳米颗粒等不同形貌,其尺寸在100nm以内。
     (4)将NbSe_x和WSe_2微纳米材料作为润滑油添加剂,在UMT-2摩擦磨损试验机上进行了不同条件的摩擦性能测试,对过渡族金属硒化物MSe_2(M=Nb,W)微纳米材料在边界润滑条件下的摩擦学行为进行了初步探讨,并对比了不同形貌的微纳米材料的摩擦学性能,结果表明,添加了纳米材料的润滑油的摩擦系数降低百分比为10%~30%。
     (5)将NbSe_2微纳米材料与铜机械混合制备出了铜基复合材料并在UMT-2摩擦磨损试验机上对其进行了不同条件的摩擦性能测试,对NbSe_2微纳米材料在干摩擦条件下的摩擦学性能进行了研究,对比了不同形貌的NbSe_2微纳米材料对铜的摩擦学性能的影响。结果表明,添加了NbSe_2纳米材料的铜基复合材料具有更好的减摩性能。
     (6)通过对添加纳米级固体添加剂的润滑油的摩擦性能试验,初步探讨了含有MSe_2(M=Nb,W)纳米级固体添加剂的润滑油的摩擦机制,其优异的摩擦性能可能归结于MSe_2纳米材料独特的结构,润滑膜机制和填充条件修复机制。
Recently,MoS_2 was studied widely in the field of friction due to its special layer structure,which is integrated by Van der Waals force between layers,while internal layer by strong covalent bond,and it is rich in mineral resources.As a matter of fact,transitional metal diselenium MSe_2 (M=Nb,W) has a similar physical structure and nature with MoS_2.It can be improve the friction reduction properties of base oil as lubricating oil additives,but there is less research about them in the field of friction.So MSe_2(M=Nb,W)nanomaterials were prepared by solid state reaction,and the tribological properties were also studied in this article.
     In this paper,experimental investigation and theoretical analysis were carried out on the preparation process and tribological properties of transitional metal diselenium MSe_2(M=Nb,W) nanomaterials.
     Firstly,NbSe_x(x=2,3) micro-nanomaterials were successfully prepared by solid-state reaction.The as-prepared products were characterized by X-ray diffraction(XRD),scanning electron microscopy (SEM),transmission electron microscopy(TEM),and high-resolution transmission electron microscopy(HRTEM).The results showed that it was helpful to NbSe_x crystallize to raise temperature,the fibers with diameter 100~300 nm and length several micometers could be obtained at lower temperature,and when temperature was raised the NbSe_x sheets were produced.
     Secondly,NbSe_2 nanofibers were obtained from NbSe_3 nanofibers by high temperature decomposition.The as-obtained NbSe_2 nanofibers were characterized by EDS,scanning electron microscopy(SEM),TEM and HRTEM and so on.The results showed that the obtained fibers had a diameter 100~300 nm and length several tens of micometers.
     Thirdly,WSe_2 nanomaterials were successfully prepared by solid-state reaction.The obtained products were characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM),and high-resolution transmission electron microscopy(HRTEM).The results showed that the obtained WSe_2 nano-materials had different morphology including nanofibers, nanosheets and nanoparticals,which grain size was about 100nm.
     Fourthly,the tribological properties of NbSe_x and WSe_2 nanomaterials as lubricant additive were investigated on UMT-2 friction testing machine made in USA.And tests were carried on the condition of boundary lubrication and made a comparison on the tribological properties to the different morphology of NbSe_x nanomaterials.The results showed that friction coefficient of lubricants reduce percentage was 10%to 30%,as nanomaterials add into the base oil.
     Fifthly,Copper-matrix composites were obtained by mechanical mixing the NbSe_2 nanomaterials and copper.The dry friction experiments of Cu-NbSe_2 composites were also carried on UMT-2 friction testing machine.And made a study of the effect on the tribological properties of Cu-NbSe_2 composites with different morphology.The results showed Cu-NbSe_2 composites had a better tribological properties
     The last but not least,friction mechanism of transitional metal diselenium MSe_2(M=W,Nb) nanomaterials as lubricant and composites additive were discussed.The excellent tribological proerties of these nanomaterials may be due to the following factors:the special structures, the formationof lubrication films and fill up-repair mechanism.
引文
[1]汪德涛,周国民,党鸿辛等.润滑工程[M].北京:机械工业出版社.1986
    [2]何开波.谈谈发动机的配缸间隙[J].内燃机.1998(1):42-43
    [3]乔斯特.关于英国润滑教育与研究的现状和工业需要的报告[M].上海交通大学译.1979
    [4]叶毅,董浚修.纳米技术用于边界润滑中的探讨[J].合成润滑材料.1998,2:27-32
    [5]温诗铸,李娜.纳米摩擦学基础研究进展[J].材料研究学报,1997,11(1):1-7
    [6]温诗铸.世纪回顾与展望——摩擦学研究的发展趋势[J].机械工程学报,2000,36(6):1-5
    [7]#12
    [8]聂明德,党鸿辛.固体润滑.1982,2(3):179-184.
    [9]许松年,吴建军.固体润滑技术的应用.冶金设备,1995,93(5):31-33.
    [10]彭友方.固体润滑的应用.润滑与密封,1997,(5):63-64.
    [11]Dowson D..History of Tribology,Longman,1979.
    [12]宫川行雄等.火箭宇航专用轴承的润滑和设计.国外轴承技术,1980,(06):8-15.
    [13]薛群基,张治军,张平余.纳米微粒及其有序组装体系的摩擦学研究.中国机械工程学会摩擦学分会第六届全国摩擦学学术会议论文集,西安:西安交通大学,1997:1-3
    [14]雒建斌等,微纳米摩擦学中的问题.中国机械工程学会摩擦学分会第六届全国摩:擦学学术会议论文集,西安:西安交通大学,1997:4-5
    [15]温诗铸,纳米摩擦学.北京:清华大学出版社,1998:1-10
    [16]国家自然科学基金委员会,无机非金属材料科学.北京:科学出版社,1997:102-160
    [17]钱伯章,纳米科技,2007,4(6):250-256
    [18]Rapoport L,Leshchinsky V,Lapsker I,Volovik Yu,Nepomnyashchy O.Lvovsky M,Popovitz-Biro R,Feldman Y,Tenne R.Tribological properties of WS2 nanoparticles under mixed lubrication.Wear,2003,255:785-793
    [19]陈爽,刘维民,欧忠文,徐滨士.油性表面修饰PbO纳米微粒作为润滑油添加剂的摩擦学性能研究[J].摩擦学学报,2001,21(5):344-347
    [20]陈爽,刘维民.表面修饰PbS纳米微粒的合成及其抗磨性[J].摩擦学学报,1997,17(3):260-262
    [21]段标.纳米滚珠型聚合物润滑添加剂的合成及摩擦学特性研究.[博士学位论文].华中理工大学,1997:1-18
    [22]官文超.水溶性富勒烯(C60/C70)-OP的合成及其润滑性能的研究.见:中国机械工程学会摩擦学分会第六届全国摩擦学学术会议论文集.西安:西安交通大学,1997:314-316
    [23]高洪光,李诗卓.一种新型润滑剂-硫代钼酸锌.见:中国机械工程学会摩擦学分会第六届全国摩擦学学术会议论文集,西安:西安交通大学,1997:341-344
    [24]刘维民.羟基硅酸盐润滑油添加剂对45#钢/球墨铸铁摩擦副摩擦磨损性能的影响[J].摩擦学报,2003,23(4):265-267
    [25]夏延秋,冯欣,冷媾.纳米级镍粉改善润滑油摩擦磨损性能的研究[J].沈阳工业大学学报,1999,21(2):101-103
    [26]徐建生,钟康年,常跃等.纳米润滑剂的制备及特性研究[J].润滑与密封,2002,(4):14-16
    [27]乔玉林,徐滨士,马世宁等.含纳米铜的减摩修复添加剂摩擦学性能及其作用机理研究[J].石油炼制与化工,2002,(8):34-38
    [28]Tarrasov S,Kolubaev A,Belyaev S,et al.Study of friction reduction by nanocopper additives to motor oil[J].Wear,2002,252:63-69
    [29]R.Tenne,L.Margulis,M.Genut,G.Hodes.Polyhedral and Cylindrical Structures of Tungsten Disulphide.Nature,1992,(360):444-446.
    [30]L.Margulies,G.Salitra,R.Tenne,M.Talianker.Nested Fullerene-Like Structures.Nature,1993,(365):113-117.
    [31]A.Rothschild,J.Sloan,R.Tenne.Growth of WS2 Nanotubes Phases.J.Am.Chem.Soc.,2000,(122):5169-5172.
    [32]Y.Feldman,G.L.Frey,M.Homyonfer,R.Tenne.Bulk Synthesis of Inorganic Fullerene-like
    [33]MS2(M=Mo,W) from the Respective Trioxides and the Reaction Mechanism.J.Am.Chem.Soc.,1996,(118):5632-5637.
    [34]A.Rothschild,R.Popovitz-Biro,O.Lourie,R.Tenne.Morphology of Multi-wall WS_2Nanotubes.J.Phys.Chem.,2000,(104):8976-8981.
    [35]G.Seifert,H.Terrones,M.Terrones,T.Frauenheim.Novel NbS_2 Metallic Nanotubes.Solid State Comm,2000,(115):635-638.
    [36]T.Kasuga,M.Hiramatsu,A.Hoson,T.Sekino,K.Niihara.Formation of Titanium Oxide Nanotube.Langmuir,1998,(14):3160-3163.
    [37]张顺利,周静芳,张治军等.纳米管TiO_2的形貌结构和物理化学特性.科学通报,2000,45(10):1104-1108.
    [38]E.S.Michael,S.B.Petra,N.Reinhard,et al.Vanadium Oxid Nanotubes:A new Nanostructured Redoxactive Material for the Electrochemical Insertion of Lithium.Electro.chem.Soc.,1999,146:2780-2784.
    [39]M.Niederberger,H.J.Muhr,F.Krumeich,et al.Field-effect transistor made of individual V2O5 nanofibers.Chem.Mater,2000,12:1995-1998.
    [40]Y.R.Hacohen,E.Greenbaum,R.Tenne,et al.Cage Structures and Nanotubes of NiCl_2.Nature,1998,395:336-340.
    [41]M.Zhang,Y.Bando,K.Wada.Silicon Dioxide Nanotubes Prepared by Anodic Alumina as Templates.J.Mater.Res.,2000,15:387-392.
    [42]R.Tenne,L.Margulis,M.Genut,G.Hodes.Polyhedral and Cylindrical Structures of Tungsten Disulphide.Nature,1992,(360):444-446
    [43]L.Margulies,G.Salitra,R.Tenne,M.Talianker.Nested Fullerene-Like Structures.Nature,1993,(365):113-117
    [44]Y.Feldman,E.Wasserman,D.J.Srolovitz,R.Tenne.High rate,gas phase growth of MoS_2nested fullerences and nanotubes.Science,1995,267:222-226
    [45]Boaz Alperaon,Moshe Homyonfer,Reshef Tenne.Photoelectrochemical Studies with Inorganic Cage Structures of Metal Dichalcogenides.J.Electroanalytical Chemistry,1999,473:186-190
    [46]R.Tenne,L.Margulis,M.Genut,G.Hodes.Polyhedral and Cylindrical Structures of Tungsten Disulphide.Nature,1992,(360):444-446
    [47]L.Margulies,G.Salitra,R.Tenne,M.Talianker.Nested Fullerene-Like Structures.Nature,1993,(365):113-117
    [48]A.Rothschild,J.Sloan,R.Tenne.Growth of WS_2 Nanotubes Phases.J.Am.Chem.Soc.,2000,(122):5169-5172
    [49]Y.Feldman,G.L.Frey,M.Homyonfer,R.Tenne.Bulk Synthesis of Inorganic Fullerene-like MS_2(M=Mo,W) from the Respective Trioxides and the Reaction Mechanism.J.Am.Chem.Soc.,1996,(118):5632-5637
    [50]A.Rothschild,R.Popovitz-Biro,O.Lourie,R.Tenne,Morphology of Multi-wall WS_2Nanotubes.J.Phys.Chem.,2000,(104):8976-8981
    [51]G.Seifert,H.Terrones,M.Terrones,T.Frauenheim.Novel NbS_2 Metallic Nanotubes.Solid State Comm,2000,(115):635-638
    [52]T.Kasuga,M.Hiramatsu,A.Hoson,T.Sekino,K.Niihara.Formation of Titanium Oxide Nanotube.Langmuir,1998,(14):3160-3163
    [53]张顺利,周静芳,张治军等.纳米管TiO_2的形貌结构和物理化学特性.科学通报,2000,45(10):1104-1108
    [54]E.S.Michael,S.B.Petra,N.Reinhard,et al.Vanadium Oxid Nanotubes:A new Nanostructured Redoxactive Material for the Electrochemical Insertion of Lithium.Electro.chem.Soc.,1999,146:2780-2784
    [55]M.Niederberger,H.J.Muhr,EKrumeich,et al.Field-effect transistor made of individual V_2O_5 nanofibers.Chem.Mater,2000,12:1995-1998
    [56]Y.R.Hacohen,E.Greenbaum,R.Tenne,et al.Cage Structures and Nanotubes of NiCl_2.Nature,1998,395:336-340
    [57]M.Zhang,Y.Bando,K.Wada.Silicon Dioxide Nanotubes Prepared by Anodic Alumina as Templates.J.Mater.Res.,2000,15:387-392
    [58]L.Rapoport,Y.Bilik,Y.Feldman,M.Homyonfer,S.R.Cohen,R.Tenne.Hollow Nanoparticles of WS_2 as Potential Solid-State Lubricants.Nature,1997,387:791-796
    [59]L.Rapoport,Y.Feldman,M.Homyonfer,H.Cohen,J.L.Hutchison.Inorganic Fullerene-like Material as Additives to Lubricants:Structure-Function Relationship.Wear,1999,225:975-979
    [60]L.Rapoport,M.Lvovsky,I.Lapsker,V.Leshchinsky,Y.Feldman,R.Tenne.Friction and Wear of Bronze Powder Composites Including Fullerene-Like WS_2 Nanoparticles.Wear,2001,249:149-156
    [61]A.Rothschild,S.R.Cohen,R.Tenne.WS_2 Nanotubes as Tips in Scanning Probe Microscopy.Appl.Phys.Lett.,1999,75:4025-4027
    [62]Y.Q.Zhu,W.K.Hsu,H.Terrones,et al.Novel route to WOx nanorods and WS2 nanotubes from WS2 inorganic fullerenes.J.Mater.Chem,2000,10:2570-2577
    [63]Y.Feldman,A.Zak,R.Popovitz-Biro and R.Tenne.New Reactor for Production of Tungsten Disulfide Onion-Like(Inorganic Fullerene-Like) Nanoparticles.Solid State Science,2002,2:663-667
    [64]Y.Q.Zhu,W.K.Hsu,S.Firth,et al.Niobium-dopped WS2 nanotubes.Chemical Physics Letters,2001,342:15-21
    [65]R.Rosenzweig,A.Margolin,Y.Feldman,R.Popovitz and T.Tenne.WS2 Nanotube Bundles and Foils.Chemistry of Materials,2002,14:471-473
    [66]Alia Zak,Yishai Feldman,Vladimir Alperovich,Rita Rosensweig and Reshef Tenne.Struc tural and Electronic Properties of Molecular Nanostructures.2002,22:207-210
    [67]Jun Chen,Su-Long Li,Qing Xu and Koji Tanaka.Synthesis of opened MoS2 nanotubes and the application as the catalyst of methanation.Chem Commun,2002,18:1722-1723
    [68]Y.Feldman,G.L.Trey,M.Homyonfer,V.Lyakhovitskaya et al.Growth of WS2 Nanotubes Phases.J.Am.Chem.Soc.,1996,118:5362-5367
    [69]J.H.Zhan,Z.D.Zhang,X.F.Qian,et al.Solvothermal Synthesis of NanocrystallineMoS2from MoO3 and Elemental Sulfur.Journal of Solid State Chemistry,1998,141:270-273
    [70]Yiya Peng,Zhaoyu Meng,Chang Zhong,et al.Tubc-and ball-likc amorphous MoS2prepared by a solvothermal method.Materials Chemistry and Physics,2002,73:327-329
    [71]Xian Yun Xu,Xiao Guang Li.Preparation and morphology studies of hollow polymer particles.Chinese Chemical Letters,2003,14:759-765
    [72]Yan Qiu Zhu,Wen Kuang Hsu,Harold W.Kroto and David R.M.Walton.Carbon nanotube template promoted growth of NbS2 nanotubes/nanorods.Chem.Commun,2001,21:2184-2185
    [73]R.L.D.Whitby,W.K.Hsu,P.C.P.Waltts,et al.WS2 nanotubes containing single-walled carbon nanotube bundles.Appl.Phys.Lett,2001,79:4574-4575
    [74]R.L.D.Whitby,W.K.Hsu,T.H.Lee et al.Complex WS2 nanostructures.Chemical Physics Letters,2002,359:68-76
    [75]Y.Q.Zhu,W.K.Hsu,Harold W.Kroto and David R.M.Walton.Hollow Cathode Plasma Synthesis of Carbon Nanofiber Arrays at Low Temperature.Phys,Chem.B,2002,106:1534-1536
    [76]Raymond L.D.Whitby,Wen Kuang Hsu,Peter K.Fearon,Norman C.Billingham,Isabelle Maurin,Harold W.Kroto,David R.M.Walton,Christopher B.Boothroyd,Steven Firth,Robin J.H.Clark,and David Collison..ultiwalled Carbon Nanotubes Coated with Tungsten Disulfide Chem.Mater.,2002,14(5):2209-2217
    [77] M.Remskar and Z.Skraba. MoS2 as microtubes. Appl.Phys.Lett, 1996, 69: 351-353
    
    [78] M.Remskar, Ales Real, Zora Skraba, et al. Self-Assembly of Subnanometer-Diameter Single-Wall MoS2 Nanotubes. Science, 2001,292: 479-481
    [79] M.Remskar et al.. Self-assembly of subnanometer-diameter single-wall MoS2 nanotubes.Science, 2001, 292: 479-481
    
    [80] M. Remskar et al.MoS2 as Microtubes, Appl. Phys. Lett., 1996,69: 3-6
    [81] M.Nath and C.N.R.Rao. New metal disulfide nanotubes. Am.Chem.Soc,2001, 123:4841-4842
    [82] M.Nath, K.Mukhopadhyay, C.N.R.Rao. Preparation of Nanocrystalline MoS2 Hollow Spheres. Chemical Physics Letters, 2002, 352: 163-168
    [83] D.Vollath, D.V.Szabo. Synthesis of Nanocrystalline MoS2 and WS2 in a Microwave Plasma. Materials Letters, 1998,35: 236-244
    [84] Yadong D. Li, Xiaolin L.Li, Rongrui R, He, Jing Zhu, Zhaoxiang X. Deng. Artificial lamellar mesostructures to WS2 nanotubes. Am.Chem.Soc. 2002,124: 1411-1416
    [85] Gaosheng Chu, Guozhu Bian, Yilu Fu, Zhicheng Zhang. Preparation and Structural Characterization of Nano-sizes Amorphous Powders of MoS2 by r-Irradiation Method.Materials Letters, 2000,43: 81-86
    [86] M.Jose-Yacaman,H.Lopez,P.Santiago,et al, Studies of MoS2 structures produced by electron irradiation.Appl.Phys. Lett, 1996, 69:1065-1069
    [87] Xiangying Chen, Xiong Wang, Zhenghua Wang, Weichao Yu and Yitai Qian. Direct sulfidization synthesis of high-quality binary sulfides (WS2, MoS2, and V5S8) from the respective oxides. Mater. Chem. Phys, 2004, 87: 321-337
    [88] Noriaki Sano, Haolan Wang, Manish Chhowalla et al. Fabrication of inorganic molybdenum disulfide fullerenes by arc in water. Chemical Physics Letters, 2003, 368:331-337
    [89] Claire J.Carmalt, Christopher W.Dinnage and Ivan P.Parkin. Thio sol-gel synthesis of titanium disulfide from titanium thiolates. Mate.Chem., 2000,10: 2823-2826
    [90] Jun Chen, Su-Long Li, Zhao-Liang Tao and Feng Gao. Synthesis of TiSe2 Nanotubes/Nanowires. Chem.Commun., 2003, 980-981
    [91] Pavel Afanasiev, Christophe Geantet, Cecile Thomazeau and Bernadette Jouget,Molybdenum polysulfide hollow microtubules grown at room temperature from solutionChem.Commun, 2000,10:1001-1002
    [92] Wen Zhang Shu, Bao He Chang, Yan Qiu Zhu et al. Alternative route to molybdenum disulfide nanotubes. J.Am Chem. Soc, 2000,122:10155-10158.
    [93] Wen Kuang Hsu, Yan Qiu Zhu, Nan Yao et al. Ti-doped MoS2 nanostructures. Adv.Funct. Mater., 2001,11: 69-74
    [94] P Raybaud, J Hafner, G Kresse, H Toulhoat. Structural and electronic properties of the MoS2(1010)edge—surface. Surface Science. 1998,40(l):237—250
    [95]Cizaire L,Vacher B,Mogne T L,et al.Mechanisms of ultra-low friction by hollow inorganic fullerene-like MoS_2 nanoparticles[J].Surf Coat Techn,2002,160(2-3):282-287

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700