基于自适应模糊的永磁同步电机直接转矩控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
永磁同步电动机因其体积小、重量轻、效率高、输出转矩大、功率密度大、维护简单方便等诸多优点,在众多应用伺服电机,尤其在高转矩响应,高精度要求的场合中,逐渐成为实用价值高的最佳选择。而直接转矩控制方式具有结构简单、算法易实现,动态响应迅速等特点。因此,永磁同步电机直接转矩控制已成为现代交流传动领域的研究热点。
     本文以永磁同步电机直接转矩控制作为研究的主要课题,首先讨论了永磁同步电机的结构及分类,介绍了它的应用前景,并综述了永磁同步电动机控制技术的发展状况及算法的研究现状。在分析永磁同步电机三相与两相坐标变换的基础上,给出了它的简化数学模型和运动方程。接着探讨了直接转矩控制在永磁同步电机上的应用理论基础,分析了永磁同步电机常规直接转矩控制系统存在转矩脉动大、抗干扰能力弱以及鲁棒性不好等问题的原因。
     针对此类问题,提出了一种新的基于自适应模糊理论的直接转矩控制方法。该方法特点之一为基于模糊理论进行空间矢量的选择,磁链误差以及转矩误差经过模糊化处理、模糊运算,以及解模糊得到当前需要施加的电压空间矢量。该方法特点之二为采用自抗扰控制器取代传统的速度环PID控制器,通过设置理想的速度过渡过程,并对负荷转矩进行实时“状态”估计,从而得到了精确的转矩参考信号。最后,借助于MATLAB/SIMULINK工具建立了完整的系统仿真模型,对基于自适应模糊的永磁同步电机直接转矩控制系统进行了仿真实验。仿真结果验证了本课题所提出的新控制策略的可行性,通过与常规直接转矩控制方法的对比仿真,表明新的控制方法明显优于常规方法,不仅在减少永磁同步电机的转矩脉动上有良好的表现,其抗干扰能力以及鲁棒性都有了较大的改善,提高了系统的实用性和静动态品质,具有较强的使用价值。
Because of small volume,light weight,high efficiency,torque and power densities, maintenance convenience,Permanent magnet synchronous motor becomes the best choice in many applications servo motor,especially in high torque,high-precision the occasion required response.With direct torque control method for structure is simple,for the dynamic response is swift and easy to realize the algorithm.Therefore,the direct torque control in Permanent magnet synchronous motor has become the research focus in the field of AC drive.
     This paper takes the direct torque control in Permanent magnet synchronous motor as the main research topic, the structure and classification of Permanent magnet synchronous motor is introduced first, and then its application prospects are summarized, and the development of its control technique is discussed.On the analysis of the three-phase to two phase of coordinate transformation is presented, based on which the simple mathematical model and the equations of motion are build.Then thoroughly discusses the theory of the direct torque control in Permanent magnet synchronous motor,and detailed analysis of its torque ripple and weak anti-interference ability and robustness problems.
     To solve this problem,take a new method based on adaptive fuzzy control technique on the direct torque control.One feature of the method is the choice of the space vector based on fuzzy, and the applied space vector after the chain and torques error were fuzzied and defuzzied.The other feature of this method is making the use of the ADRC to replace the traditional PID controller at the speed circle.By putting the transition process for speed and estimating the realtime‘state’of the load,the accurate reference of the toque signal is get.Last,with the help of MATLAB/SIMULINK tool set up a complete simulation model and simulate this system. The simulation experiment verify the avaliable of the adaptive fuzzy control strategy,by comparing with the normal direct torque control, the new method of control is better than that of the conventional direct torque control,not only in the reduction of permanent magnet synchronous motor torque ripple,and its anti-interference ability and robustness are enhanced.,the quality of the dynamic and static practicability are improved.and the new controller has a great practicality.
引文
[1]许大中.交流电机调速理论[M].浙江:浙江大学出版社, 1991: 285-286
    [2]陈伯时.电力拖动自动控制系统[M].北京:机械工业出版社, 2000: 125-128
    [3]聂天适.永磁同步电机直接转矩控制技术的研究[D].哈尔滨:哈尔滨理工大学, 2008
    [4] Kraus R.. The overview and history of permanent magnet devices in accelerator technology[J]. IEEE Trans. on Magneties, 1994, 30(4): 1547-1554
    [5]王鑫,李伟力,程树康.永磁同步电机发展展望[J].微电机, 2007, 19(5): 23-25
    [6]姚海兰.永磁同步电机直接转矩控制系统[D].上海:同济大学, 2008
    [7] Jahns T.M., Blasko V.. Recent advances in power electronics technology for industrial and traction machine drives[J]. Proceedings of the IEEE, 2001, 89(6): 963-975
    [8]金如麟,谭弗娃.永磁同步电动机的应用前景[J].上海大中型电机, 2001, (3): 9-13
    [9]李烨,严欣平.永磁同步电动机伺服系统研究现状及应用前景[J].微电机, 2001, 34(4): 30-33
    [10]李永东,张猛.高性能交流永磁同步电机伺服系统现状[J].伺服控制, 2008, 14(1): 34-35
    [11]金孟加.面贴式永磁同步电机直接转矩控制策略研究[D].浙江:浙江大学, 2006
    [12]韩英桃,周青苗,刘卫国.稀土永磁同步电动机变频调速系统最佳控制方案的探讨[J].微特电机, 2000, (2): 31-33
    [13] French C., Acarnley P.. Direct torque control of permanent magnet drives[J]. IEEE Trans. on Industrial Application, 1996, 32(5): 1080-1088
    [14]胡虎,李永东.交流电机直接转矩控制策略一现状与趋势[J].电气传动, 2004, (3): 3-8
    [15]肖石伟,文生平,张先勇等.蓄电池供电的单相逆变电源的研制[J].微计算机与信息, 2010, 26(7): 157-158
    [16]邓启文.直接转矩控制的发展与展望[J].微特电机, 2002, (2): 36-38
    [17] Depenbrock M.. Direct-Self-Control(DSC) of inverter-fed induction machine[J]. IEEE Trans. on Power Electronics, 1988, 3(4): 420-429
    [18] Takallashi, Ohmori L.Y.. High-performance direct torque control of an induction motor[J]. IEEE Trans. on Industry Applications, 1989, 25(2): 257-264
    [19] Zhong L, Rahman M.F.,et al. A direct torque controller for permanent magnetsynchronous motor drives[J]. IEEE Trans. on Energy Conversion, 1999, 14(3): 637-642
    [20]田淳,胡育文.永磁同步电机直接转矩控制系统理论及控制方案的研究[J].电工技术学报, 2002, 17(l): 7-11
    [21] Yuwen.H, Tian C.. In-depth research on direct torque control of Permanent Magnet Synchronous Motor[A]. IECON 2002 Industrial Electronics Society, 2002, (2): 1060-1065
    [22] Casadei D., Profumo F.,et al. FOC and DTC:two viable schemes for induction motors torque control[J]. IEEE Trans. on Power Electronics, 2002, 17(5): 779-787
    [23] Rahman M.F, Haque M.D., et al. Problems associated with the direct torque control of an interior permanent magnet synchronous motor drive and their remedies[J]. IEEE Trans. on Industrial Electronics, 2004, 51(4): 799-809
    [24]贾洪平,贺益康.永磁同步电机滑模变结构直接转矩控制[J].电工技术学报, 2006, 21(1): 1-6
    [25]沈艳霞,江俊,纪志成.基于递归神经网络的永磁同步电机控制器设计[J].南京理工大学学报, 2005, 34(10): 73-76
    [26]孙丹,贺益康,智大为.基于模糊逻辑的永磁同步电动机直接转矩控制[J].电工技术学报, 2003, 10(1): 33-38
    [27]曹先庆,朱建光,唐任远.基于模糊神经网络的永磁同步电动机矢量控制系统[J].中国电机工程学报, 2006, 32(1): 137-141
    [28]李鸿儒,顾树生.基于神经网络的PMSM自适应滑模控制[J].控制理论与应用, 2005, 15(6): 461-464
    [29] Sayeed M., Malik E., et al. Pl-Fuzzy estimations fortuning the stato resistance in DTC[J]. IEEE Trans. on Power Electronics, 1998, 13(2): 279-287
    [30]周青苗.永磁同步电机直接转矩控制理论分析[J].西北工业大学学报, 2000, 18(2): 273-276
    [31]孙丹.高性能永磁同步电机直接转矩控制[D].浙江:浙江大学, 2004
    [32]刘军,刘丁,吴浦升,白华煌.基于模糊控制调节电压矢量作用时间策略的永磁同步电机直接转矩控制仿真研究[J].中国电机工程学报, 2004, 24(10): 148-152
    [33] Muhammed F.R., Zhong L., et al. A Direet-Torque-Controlled interior permanent magnet synehronous motor drive without a speed sensor[J]. IEEE Trans. on Energy Conversion, 2003, 18(l): 17-21
    [34]谢运祥,卢柱强.基于MATLAB/SIMULINK的永磁同步电机直接转矩控制仿真建模[J].华南理工大学学报(自然科学版), 2004, 32(1): 19-23
    [35]贾洪平,贺益康.永磁同步电机直接转矩控制中零矢量的作用研究[J].电气传动, 2006, 36(4): 13-16
    [36]袁登科,陶生桂,刘友梅.新型永磁同步电动机直接转矩控制系统[J].同济大学学报(自然科学版), 2004, 32(11): 1512-1515
    [37]朱卫华,杨向宇.永磁同步电机直接转矩控制零矢量插入新方法[J].机电工程技术, 2005, 34(11): 27-29
    [38] Cirrincione M., Pucci M., et al. A new direct torque control strategy for the mini-mization of common-mode emissions[J]. IEEE Trans. on Industry Applications, 2006, 42(2): 504-517
    [39] Bin W., Yue W.. An improved direct torque control of permanent magnet synchonous motor drives using space vector modulation[J]. IEEE Trans. on Power Electronics, 2009, 9(1): 228-230
    [41] Jun-Koo K., Seung-Ki S.. New direct torque control of induction motor for minimum torque ripple and constant switching frequency[J]. IEEE Trans. on Industry Applications, 1999, 35(5): 1076-1080
    [42]严青,邓忠华,张晓光等.直接转矩控制系统低速性能分析一转矩观测器问题[J].电工技术学报, 1996, 11(3): 21-26
    [43]李耀华,刘卫国.永磁同步电机直接转矩控制不合理转矩脉动抑制研究[J].西北工业大学学报, 2007, 25(5): 666-670
    [44]蒋城峰.基于双模糊的永磁同步电机直接转矩控制系统[D].湖南:中南大学, 2008
    [45]吴浦升.基于模糊控制的永磁同步电机直接转矩控制[D].西安:西安理工大学, 2004
    [46]秦伟.基于DSP的模糊直接转矩控制系统的研究[D].辽宁:辽宁工程技术大学, 2006
    [47]窦曰轩,王洪艳.模糊直接转矩控制系统MATLAB/SIMULINK仿真[J].计算机仿真, 2001, 15(2): 70-72
    [48]杨向宇,朱卫华,姚佳.永磁同步电机模糊直接转矩控制仿真[J].华南理工大学学报(自然科学版), 2006, 34(4): 51-54
    [49]曹先庆,朱健光,唐任远.永磁同步电动机模糊直接转矩控制系统的仿真[J].电力系统及其自动化学报, 2006, 15(4): 76-80
    [50] Romeral L., Arias A., et al. Novel direct torque control (DTC) scheme with fuzzy adaptive torque-ripple reduction[J]. IEEE Trans. on Power Electronics, 2003, 50(3): 487-492
    [51]韩京清.从PID技术到“自抗扰控制”技术[J].控制工程, 1999, 9(3): 11-15
    [52] Kuo-Kai S., Chiu-Keng L., et al. A newly robust contro1ler design for the position control of pennanent-magnet synchronous motor[J]. IEEE Trans. on Industrial Electronics, 2002, 49(3): 558-565
    [53]黄一,张文革.自抗扰控制器的发展.控制理论与应用[J]. 2002, 19(4): 485-492
    [54]韩京清.自抗扰控制器及其应用[J].控制与决策, 1998, 13(1): 19-23
    [55]张先勇.无刷双馈风力发电机组的建模及控制研究[D].广州:华南理工大学, 2007
    [56]刘鸣,邵诚.异步电动机的自抗扰控制器及其参数整定[J].控制与决策, 2003, 18(5): 540-544
    [57]孙毅.电动汽车用永磁同步电机自抗扰控制研究[D].吉林:吉林大学, 2008
    [58]孙凯,许镇琳,邹积勇.基于自抗扰控制器的永磁同步电机速度估计[J].系统仿真学报, 2007, 19(3): 582-584
    [59] Solsona J., Ivalla M., Muravchik C.. Nonlinear control of a permanent magnet synchronous motor with disturbance torque estimation[J]. IEEE Trans. on Energy Conversion, 2000, 15(2): 163-168
    [60]徐晗,徐宇,刘德君.基于自抗扰控制器的直流双闭环调速系统[J].化工科技, 2004, 12(6): 42-44
    [61]马冰雪,张瑞成.基于扩张状态观测器的直流电动机转速自抗扰控制器设计[J].电气应用, 2006, 25(2): 88-91
    [62]马冰雪.具有不确定性参数的直流电机转速自抗扰控制器设计[J].电气传动, 2006, 36(2): 30-33
    [63]陈惠琴,刘洁.异步电动机自抗扰控制系统的仿真[J].太原理工大学学报, 2006, 37(2): 180-184
    [64]段小丽,任一峰.自抗扰控制器解决感应电机调速系统参数鲁棒性问题[J].电气技术, 2009, (2): 12-14
    [65]李成学,周琍,丁磊.自抗扰控制器在无刷直流电机控制系统中的应用[J].电机技术, 2008, (1): 40-43
    [66]任海鹏,张继祖,李琦等.基于自抗扰控制器的无刷直流电动机速度控制[J].电气动, 2008, 38(4): 46-50
    [67]文生平,赵国平,蔡康雄.一种变论域模糊控制自适应算法[J].控制理论与方法, 2009, 26(3): 265-267
    [68]易继楷,候媛彬.智能控制技术[M].北京:北京工业大学出版社, 1999
    [69]王立新.模糊系统与模糊控制教程[M].北京:清华大学出版社, 2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700