碱性渣系混合气体保护药芯焊丝焊接工艺性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
药芯焊丝是近几年来发展最快、最有吸引力的新型焊接材料。为改善和提高碱性渣系药芯焊丝的焊接工艺性能,本文对己有的普通碱性渣系进行了改进,研制了一种碱性MgO-氟化物-SiO_2-TiO_2渣系的混合气体保护药芯焊丝。围绕渣系组分对药芯焊丝熔滴过渡行为、焊接电弧稳定性、熔渣覆盖及脱渣性等方面的影响进行了系统的研究和探讨。
     通过高速摄影观察熔滴过渡过程、水中收集熔滴和焊接飞溅测试等方法,研究了渣系组分对焊丝熔滴过渡行为以及焊接飞溅的影响。结果表明:当MgO含量小于25%时,熔滴颗粒相对细小,沿着焊丝轴向平稳过渡,焊接飞溅较小。用一部分氟硅酸钠代替萤石时,可以细化熔滴,降低飞溅。但是氟硅酸钠的含量超过12%以上时,又会使得焊接飞溅增大。
     通过与焊机相匹配的Lookout Weldoffice2000软件同步测试焊接过程的电弧电压和焊接电流数据,生成电弧电压、焊接电流波形图;同时结合高速摄影观察电弧的形态,研究了渣系组分对焊接电弧稳定性的影响。结果表明:当MgO为22%左右,CaF2为6%、Na2SiF6为9%时,焊接电弧稳定性较好。
     通过熔渣覆盖性评定及落球脱渣性试验研究了渣系组分对渣覆盖及脱渣性的影响,并建立了脱渣率的数学模型。结果表明:当MgO含量22%~25%左右,SiO_2含量5%~7%左右,氟化物含量15%左右,TiO_2含量13%~15%左右时,焊缝熔渣覆盖良好,脱渣性好。此外,分析了熔渣微观组织结构、内表面形貌和断口特征对焊缝脱渣性的影响。结果表明:当熔渣的组织粗大,第二相为方向性较强的条带状,熔渣结构密实时,脱渣性较好;反之,脱渣性较差。
     最后,本文得出了具有较好焊接工艺性能的药芯焊丝渣系主要成分配比为:MgO(22%~25%)-CaF_2+Na_2SiF_6(15%)-SiO_2(5%~7%)-TiO_2(15%)。
Flux cored wires are the most attractive new welding materials with the fastest developing speed in recent years. In order to improve the welding operation performance of basic flux cored wire, the paper has modified the present slag system and developed a new slag system for mixture gas-shielded flux cored wire, i.e. MgO-fluoride-SiO_2-TiO_2 slag system. The paper has carried on systematic research and discussion around slag system composition influences on droplet transfer formations, welding arc stability, slag covering ability and detachability of the flux cored wire.
     The effects of slag system composition on droplet transfer formations of flux cored wire and welding spatter were investigated by high-speed photography, by collecting droplets in a water through and test of spatter. The results showed that when MgO was less than 25%, the droplet transfer was steady with relatively small molten droplets and welding spatter was smaller too. Replacing a part of CaF2 with Na2SiF6 could reduce welding spatter with thinning molten drops. But when the Na2SiF6 was more than 12%, it would increase the welding spatter.
     The arc voltage and welding current was recorded synchronous with the software Lookout Weldoffice2000 which matched with the welding machine, and then the arc voltage and welding electric current oscillogram were produced according these data. At the same time, the electric arc shape could be observed through the high-speed photography. The effects of slag system composition on welding arc stability of the flux cored wire were therefore studied. The results showed that when MgO was about 22%, CaF2 was 6% and Na2SiF6 was 9%, the welding arc stability was well.
     The paper has investigated the slag system composition influences on slag covering ability and slag detachability by slag covering ability evaluating and slag detachability testing, and established slag detachability mathematical model. The results showed that when the contents of MgO was 22%~25%, SiO_2 was5%~7%, fluoride was about 15% and TiO_2 was 13%~15%, the slag was covered well and it was easy to take off. In addition, the paper has analyzed the microstructures of slag, the inner surface structure of slag and the characteristic of slag fracture. The results showed that it was benefit for the slag detachability when the microstructure of slag was coarse, the second phase of microstructure presented strip-shaped distribution, and the slag structure was compact, and, contrariwise, the slag detachability became worse.
     Finally, the paper has acquired the slag system composition for the flux cored wire with favorable welding operation performance, i.e. MgO was 22%~25%, CaF_2 and Na_2SiF_6 were15%, SiO_2 was 5%~7% and TiO_2 was about 15%.
引文
[1]雷玉成,于治水.焊接成型技术[M].北京:化学工业出版社, 2005. 1~4.
    [2] Morimoto, Tomokazu. Developments in flux-cored wire for gas shielded arc welding[J]. Research and Development Kobe Steel Engineering Reports, 2005, 55(2): 61~65.
    [3]张文钺,陈邦固.药芯焊丝的崛起与发展[J].焊接, 1997, (7): 2~5.
    [4]刘兴龙,刘金栋.药芯焊丝在高速车转向架焊接的应用[J].四机科技, 2005, (4): 29~30.
    [5] Aihara, T. MAG welding stainless steels with flux-cored wire[J]. Welding Research Abroad, 1994, 40(8): 8~11.
    [6]陈邦固,许玉环.药芯焊丝-焊材工业面临的机遇与挑战(上)[J].焊接技术, 1993, (6): 34~39.
    [7]栗卓新,陈邦固.药芯焊丝的技术经济性及使用特点[J].焊接技术, 1996, (2): 35~37.
    [8]魏光源,戴钧陶,齐国治.药芯焊丝与焊接自动化[J].电焊机, 1998, 28(1): 6~9.
    [9]张文钺.国外焊接材料的发展动态及加快国产药芯焊丝发展的建议[J].材料开发与应用, 2005, 15(1): 30~34.
    [10] ANSI/AWS A5.22, Specification for Flux Carbon Steel Electrodes for Cored Arc Welding[S]. American Welding Society, 1979.
    [11] ANSI/AWS A5.20, Specification for Stainless Steel Electrodes for Cored Arc Welding[S]. American Welding Society, 1980.
    [12] ANSI/AWS A5.26, Specification for Carbon and Low-alloy-high Strength Steel Electrodes for Flux Cored Arc Welding[S]. American Welding Society, 1978.
    [13] ANSI/AWS A5.29, Specification for Low-alloy Steel Electrodes for Flux Cored Arc Welding[S]. American Welding Society, 1980.
    [14]长冈茂雄.耐底漆性能优良的角焊用MX-200型药芯焊丝[J].造船技术, 1993, (3): 37~43.
    [15] Tusek J. Raising Arc Welding Productivity[J]. Welding Review International, 1996, 15(8): 102~105.
    [16]唐伯钢,李春范,陈邦固,等.我国药芯焊丝的生产现状与发展前景[J].焊接, 2002, (2): 11~15.
    [17]唐伯钢.我国焊接材料世纪之交的发展前景与结构调整[A].见:中国机械工程学会编.第九次全国焊接会议论文集[C].哈尔滨:黑龙江人民出版社, 1999: 96~102.
    [18]陈邦固,金立鸿,王秀文.我国药芯焊丝应用现状与发展趋势[J].机械工人(热加工),2002, (8): 14~16.
    [19]王宝,杨林,王勇.药芯焊丝CO_2焊熔滴过渡现象的观察与分析[J].焊接学报, 2006, 27(7): 77~80.
    [20] Kim Y S, Eagar T W. Metal transfer in pulsed current gas metal arc welding[J]. Welding Journal 1993, 72(7): 279~287.
    [21] Norrish J, Richardson F. Metal Transfer Mechanisms[J]. Welding and Metal Fabrication, 1988, 56(1): 17~22.
    [22]孙小兵,张文钺,陈邦固.复合过渡模式-药芯焊丝的一种新的熔滴过渡方式[J].焊接学报, 1999, s1(12): 62~67.
    [23]李桓,曹文山,陈邦固.气保护药芯焊丝熔滴过渡的形式及特点[J].焊接学报, 2000, 21(1): 13~16.
    [24] Simpson S W, Peiyuan Zhu. Formation of molten droplets at a consumable anode in an electric welding arc[J]. Journal of Physics D, 1995, 28(8): 1594~1600.
    [25] Shimizu, Hiroyuki, Takaaki et al. Behavior of solid wire's copper coating in molten droplet formation and transfer–Surface tension of molten droplets in MAG Welding[J]. Japan Welding Society, 2005, 23(1): 37~47.
    [26] Haidar J, Lowke J J. Predictions of metal droplet formation in arc welding[J]. Journal of Physics D, 1996, 29(12): 2951~2960.
    [27] Palani P K, Murugan N. Modeling and simulation of wire feed rate for steady current and pulsed current gas metal arc welding using 317L flux cored wire[J]. Advanced Manufacturing Technology, 2007, 34(11-12): 1111~1119.
    [28] Lin Q, Li X, Simpson S W. Metal transfer measurements in gas metal arc welding[J]. Journal of Physics D (Applied Physics), 2001, 34(3): 347~353.
    [29] Wu Y, Kovacevic R. Mechanically assisted droplet transfer process in gas metal arc welding[J]. Journal of Engineering Manufacture, 2002, 216(4): 555~564.
    [30]柳刚,李桓,韩国明,等.应用光谱技术进行熔化极气体保护焊熔滴过渡的研究[J].焊接技术, 2000, 2(1): 6~7.
    [31] Fuhuhisa MATSUDA, Masao USHIO, Tatsuo TSUJI et al. Arc Characteristics and Metal Transfer with Flux-Cored Electrode in CO_2 Shielding[J]. Transactions of JWRI 1979, 8(2): 27~32.
    [32] Norrish J, Richardson F. Metal Transfer Mechanisms[J]. Welding and Metal Fabrication, 1988, 56(1): 17~22.
    [33] Masao Ushi, Yoshiaki Murata, Fukuhisa Matsuda. Melting Phenomena of Flux Cored Wire[J].Transaction of JWRI, 1985, 14(2): 9~16.
    [34] Kim Y S, Eagar T W. Analysis of Metal Transfer in Gas Metal Arc Welding[J]. Welding Journal, 1993, 72(6): 269~278.
    [35]桂赤斌,黄毅.我国药芯焊丝的现状分析与发展建议[J].现代制造工程, 2006, (4): 138~140.
    [36]潘川,佟淑英,梁东图,等.低氢高韧性全位置用气体保护药芯焊丝的研制[J].焊接, 2001, (12): 31~33.
    [37]孙咸. TiO_2对不锈钢焊条熔滴过渡及工艺性能的影响[J].焊接材料与设备, 2000, 9(2): 25~26.
    [38]周振丰.焊接冶金学[M].北京:机械工业出版社, 1996. 20~45.
    [39]熊征,童康明,桂赤斌.焊条药皮碱度对熔敷金属中硫磷含量的影响[J].材料开发与应用, 1999, 4(4): 5~8.
    [40]张剑文,程宁,黄汉荣,等.氟化物对碱性药芯焊丝焊接工艺性能的影响[J].焊接, 2000, (12): 30~33.
    [41]杨建东,候杰昌,刘宝田.药芯焊丝制造技术的研究[J].机械工人, 2003, (8): 34~35.
    [42]胡勇.碱性药芯焊丝的四种设计类型比较[J].焊接, 2001, (12): 26~28.
    [43]余圣甫,李志远,朱六妹,等. CO_2气体保护药芯焊丝的改进[J].机械工程材料, 1998, 32(1): 37~40.
    [44]尹士科,王移山,朱明生,等.世界焊接材料手册[M].北京:中国标准出版社, 1996. 30~45.
    [45]王晖,刘景凤,张静,等.一种超低氢全位置CO_2气体保护药芯焊丝的研究[J].焊接, 2000, (5): 18~20.
    [46]胡勇.氟化物渣系588MPa级碱性药芯焊丝的研制[J].焊接技术, 2001, (12): 30~32.
    [47]陈邦固,雷万钧“.滞熔”现象对碱性气体保护药芯焊丝飞溅的影响[J].焊接技术, 1995, (6): 4~5.
    [48]闫红,张容等. MgO型气保护药芯焊丝渣覆盖的研究[J].河北工业大学学报, 2005, 34(5): 73~77.
    [49] Tsurikhin S N, Sokolov G N, Lysak V L et al. Flux-cored wire for the deposition of alloys based on nickel aluminide[J]. Welding International, 2006, 20(6): 483~490.
    [50] Packard, K. Selecting and caring for flux cored wire[J]. Welding Journal, 2007, 86(7): 32~34.
    [51]栗卓新.新型的焊接材料–药芯焊丝[J].机械工人, 1999, (1): 20~21.
    [52]王红鸿,孙咸,张汉谦.焊接电流对钛型药芯焊丝熔滴过渡特性的影响[J].太原理工大学学报, 2005, 36(5): 577~579.
    [53] Rhee S, Kannatey-asibu E Jr. Observation of Metal Transfer During Gas Metal Arc Welding[J].Welding Journa1, 1992, 71(10): 381~386.
    [54] Liu S, Siewert T A. Metal Transfer in Gas Metal Arc Welding: Droplet Rate[J]. Welding Journal, 1989, 69(2): 52~58.
    [55] Adam G, Siewert T A. Sensing of GMAW Droplet Transfer Modes Using an ER100s-1 Electrode[J]. Welding Journal, 1990, 69(3): 103~108.
    [56] Wang Q L, Li P J. Arc Light Sensing of Droplet Transfer and it’s Analysis in Pulsed GMAW Process[J]. Welding Journal, 1997, 76(11): 458~469.
    [57] Saini D, Floyd S. An Investigation of Gas Metal Arc Welding Sound Signal for on-line Quality Control[J]. Welding Journal, 1998, 77(4): 172~173.
    [58] Fan H G, Kovacevic R. Droplet formation, detachment, and impingement on the molten pool in gas metal arc welding[J]. Metallurgical and Materials Transactions, 1999, 30(4): 791~801.
    [59] Chakraborty S. Analytical investigations on breakup of viscous liquid droplets on surface tension modulation during welding metal transfer[J]. Applied Physics Letters, 2005, 86(17): 174104-1~3.
    [60] Hu J, Tsai H L. Effects of current on droplet generation and arc plasma in gas metal arc welding[J]. Journal of Applied Physics, 2006, 100(5): 053304-1~12.
    [61]孙咸.钛型渣系气保护药芯焊丝熔滴过渡及其控制[J].机械工人, 2005, (5): 26~29.
    [62] Jae H Choi, Jihye Lee, Choong D Yoo. Dynamic force balance model for metal transfer analysis in arc welding[J]. Journal of physics D: applied physics, 2001, 34(29): 2658~2664.
    [63]魏国. CO_2气体保护焊飞溅产生的原因及减少措施[J].机械工人, 2006, (6): 47~48.
    [64]孙咸,王红鸿,张汉谦,等.药芯焊丝熔滴过渡特性及其影响因素研究[J].石油工程建设, 2007, 33(1): 49~53.
    [65]权旺林.电弧波形与气体保护焊熔滴过渡模式关系研究[J].机械工程与自动化, 2004, (2): 10~11.
    [66]王震澂,郝廷玺.气体保护焊工艺和设备[M].北京:国防工业出版社,1982. 11~40.
    [67]李平.高效不锈钢焊条工艺性能的研究[D].哈尔滨:哈尔滨理工大学, 2005.
    [68]李晓泉,杜则裕,刘鹏飞,等. MgO-CaO-SiO_2焊接熔渣离子活度的热力学分析[J].中国有色金属学报. 2005, 15(1): 157~161.
    [69]何环宇,王庆祥,曾小宁. MgO含量对高炉渣粘度影响的实验研究[J].武汉科技大学学报, 2002, 25(4): 340~342.
    [70]张文钺.焊接冶金学(基本原理)[M].北京:机械工业出版社. 1999. 52~61.
    [71] Parshin S G. Properties of slag films of activating fluxes in argon-arc welding[J]. Welding International, 2006, 20(1): 45~53.
    [72]李云雁,胡传荣.试验设计与数据处理[M].北京:化学工业出版社. 2005. 35~60.
    [73]张智,张文钺,陈邦固,等.药芯成分对自保护药芯焊丝焊缝脱渣性的影响[J].材料科学与工艺, 1997, 5(4): 40~44.
    [74] Zhuoxin Li, Wenyue Zhang, Banggu cheng. Study on effects of physic-and chemico-properties of melting slag on detachability of SSFCE[J]. Chinese journal of mechanical engineering, 1996, 9(3): 254~259.
    [75]唐伯钢,尹士科,王玉荣.低碳钢与低合金高强度钢焊接材料[M].北京:机械工业出版社, 1987. 375~380.
    [76]牛全峰.自保护药芯焊丝的研究[D].武汉,武汉理工大学, 2005.
    [77]曲英.炼钢学原理[M].北京:冶金工业出版社, 1980. 40~66.
    [78] Mukhopadhyay S, Pal T K. Effect of shielding gas mixture on gas metal arc welding of HSLA steel using solid and flux-cored wires[J]. AMT, 2006, 29(3-4): 262~268.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700