TiB_2陶瓷颗粒在HF和H_2O_2液体中组成、结构和性能演变规律的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为PEMFC重要组成部分,高性能与低成本的催化剂体系是决定PEMFC实际应用的重要指标之一。目前改善催化剂的方法主要包括:合金Pt催化剂、非Pt催化剂、高效催化剂载体以及优化的催化剂结构。其中,催化剂载体能很好地分散催化剂Pt,减少Pt催化剂的用量,提高催化剂的催化活性。传统的催化剂载体主要是多孔碳黑,这种载体在PEMFC环境中长期运行存在腐蚀问题,从而导致催化剂Pt的流失、迁移和团聚。本课题选取TiB_2导电陶瓷作为载体,从载体的结构和化学性质等方面着手,研究其作为PEMFC催化剂载体的可行性。主要研究内容包括以下三个方面:
     1)采用行星球磨对TiB_2粉体进行超细化。通过对大粒径的TiB_2粉末进行球磨,研究球磨时间、球磨速度、球料比、球磨气氛以及后续的酸洗和分级工艺的影响,尽量降低TiB_2载体的粒径大小,并对球磨过程中出现的一系列物理化学现象进行解释,尤其是超细化过程中的氧化问题和显微结构演变的问题。通过合理控制一些关键工艺参数,进一步降低TiB_2的氧化;同时采用HRTEM, SEAD等表征手段对球磨中间态进行表征,建立理论同结构演变之间的关系。结果表明TiB_2在高应力作用下择优沿着[0001]和[10-10]方向发生塑形滑移并最终发生裂解。
     2)特殊形貌结构TiB_2基材料的合成。目前商业化的TiB_2均采用高温固相反应制得,由于其各向异性,容易沿着C轴择优生长形成光滑的六方柱状晶体结构,这种结构不利于Pt的负载和固定,在一定温度场、流场和气体压力下长期运行容易剥落,使Pt发生团聚和迁移,造成成本的浪费和催化效率降低。本文采用球磨工艺及等级分离方法,成功合成出花状双头TiB_2纳米晶须。同时以乙二胺为添加剂,采用HF或过氧化氢溶剂热的方法,成功合成出中空双金字塔结构、凤梨结构、海胆状核壳结构和纳米墙状核壳结构TiB2/Ti02杂化材料。HRTEM、XRD、EDS、XPS结果显示退火后海胆状核壳结构TiB_2/TiO_2杂化材料是一种典型的氮掺杂TiO_2/TiB_2异质结材料。UV-vis光谱表明这种氮掺杂异质结的吸收峰的吸收边发生了明显的蓝移。
     3)PEMFC化学环境的模拟。通过对氢氟酸环境和过氧化氢环境的模拟,考察TiB_2材料在氢氟酸环境和过氧化氢环境中的运行情况。通过对水热温度、水热时间、浓度、添加剂等参数的控制,详细研究TiB_2材料在这种环境中的形貌、结构和组成的变化,从而进一步验证TiB_2材料在这种环境的稳定性,分析TiB2基材料作为PEMFC催化剂载体的可行性。结果表明TiB_2材料在HF和H_2O_2环境中发生氧化,通过合适工艺的控制,可以得到一定形貌的杂化材料。电化学测试结果表明这种具有特殊结构的杂化材料具有同TiB_2原粉相当的电化学稳定性。
As an important component of PEMFC, catalytic system with low cost and excellent catalytic properties is one of decisive targets for application. Currently, the methods of improving the catalytic properties and decreasing the cost of catalyst system include as follows:Pt alloys, non-Pt catalysts, catalyst carrier with high efficiency and the optimum catalytic structure. Traditionally, the Pt catalyst is homogeneously dispersed on porous carbon, which can obviously increase the active areas of Pt catalyst, enhance the catalytic efficiency and reduce the cost. However, the carbon materials would be corroded under such rigorous environment of PEMFC for a long time. Consequently, it would result in loss, transference and conglomeration of Pt catalysts. In this work, TiB2 electric ceramic was used as catalyst carrier and the feasibility was analyzed from the viewpoint of structure evolution and chemical properties of TiB2 materials. The thesis mainly includes three parts as follows:
     (1) Preparation of ultrafine TiB_2 powders by a planetary ball-milling method. The ultrafine TiB_2 powders could be gained via controlling the milling time, rotation speed, mass ratio of ball to powder, atmosphere, as well as acid-cleaning and hierachical centrifugation. Some physical and chemical phenomena during the milling were analyzed, especially the oxidation of TiB_2 powders and microstructural evolution. The optimum processes for ultrafine TiB2 powders were also discussed. The results show that the twins and cleavage of TiB2-based materials are prone to form along the (0001)/[10-10] slip systems under high stresses.
     (2) Synthesis of TiB_2-based materials with special morphologies. Currently, commercial TiB2 powders are mostly prepared by high-temperature solid-state reaction. Due to its anisotropy, TiB_2 powders preferentially form slippy two-dimensional hexagonal structure under such high temperature and long holding time, which is deleterious to load Pt nanoparticles. Under a certain temperature field, flow field and stress field in PEMFC, Pt nanoparticles are prone to strip and transfer from the TiB_2 carrier. Consequently, it will increase the cost and decrease the catalytic efficiency. In this work, flowerlike nanowhiskers were successfully prepared by planetary ball-milling and hierachical centrifugation. Moreover, TiO_2/TiB_2 hybrid materials with hollow bipyramidal structure, pineapple structure, urchin structure and nanowall structure have also successfully synthesized by solvothermal method in the liquid of HF and H_2O_2. The results of HRTEM, XRD, EDS and XPS show that urchin TiO_2/TiB_2 hybrid material is actually a kind of typical N-doped TiO_2/TiB_2 heterostructure after annealing. UV-vis spectra indicate that such heterostructure results in obvious blue-shif because of nitrogen dopant.
     3) Chemical simulation in the environment of PEMFC. The detailed process of TiB_2 in the environment of HF and H_2O_2 was analogized according to the characteristics of PEMFC. The changes of morphology, structure, and composition were investigated via adjusting the hydrothermal temperature, hydrothermal time, concentration, additive, and so on. The results show that TiB_2 will be oxidized in the environment of HF and H_2O_2. However, the oxidization can be minimized through appropriate process. The electrochemical test shows that such hybrid materials with special morphology have equivalent electrochemical stability with that of TiB_2 raw powders.
引文
[1]毛宗强,氢能—我国未来的清洁能源,太阳能,3(2005)6-8.
    [2]蔡炻柳,氢能及其应用前景分析,能源与环境,5(2008)39-41.
    [3]衣宝廉,燃料电池-高效、环境友好的发电方式,化学工业出版社,2000,1-4.
    [4]S. Thomas, M. Zalbowitz. Fuel Cells:Green Powder. Department of Energy,1999,3231.
    [5]EG & G Technical Services, Inc. Science Applications International Corporation, fuel cell handbook(Sixth Edition), U. S. Department of Energy (DOE),2002,11.
    [6]F. Barbir, T. Gomez. Efficiency and economics of proton exchange membrane fuel cells. Int. J. Hydrogen Energ.22 (1997) 1027-1037.
    [7]M.V. Moreira, G.E. da Silva. A practical model for evaluating the performance of proton exchange membrane fuel cells. Renew. Energ.34 (2009) 1734-1741.
    [8]P. Costamagna, S. Srinivasan. Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000 Part1. Fundamental scientific aspects. J. Power sources 102 (2001) 242-252.
    [9]R.K. Ahluwalia, X. Wang, A. Rousseau. Fuel economy of hybrid fuel-cell vehicles. J. Power Sources 152 (2005) 233~244.
    [10]K.S. Jeong, B.S. Oh. Fuel economy and life-cycle cost analysis of a fuel cell hybrid vehicle. J. Power Sources.2002.105(1):58~65.
    [11]A.F. Ghenciu. Review of fuel processing catalysts for hydrogen production in PEM fuel cell systems. Curr. Opin. Solid St. M.6 (2002) 389-399.
    [12]S.M. Haile. Fuel cell materials and components. Acta Materialia 51 (2003) 5981-6000.
    [13]汪圣龙,唐浩林,潘牧等,膜电极结构对质子交换膜燃料电池性能的影响,材料导报 17(2003)3740.
    [14]H.N. Dinh, X. Ren, F.H. Garzon, et al. Electrocatalysis in direct methanol fuel cells:in-situ probing of PtRu anode catalyst surfaces. J. Electroanal Chem.491 (2000) 222-233.
    [15]A. Heinzel, V.M. Barragan. A review of the state-of-the-art of the methanol crossover in direct methanol fuel cells. J. Power Sources 84 (1999) 70-74.
    [16]Z.Liu, X.Y. Ling, X. Su, et al. Carbon-supported Pt and PtRu nanoparticles as catalysts for a direct methanol fuel cell. J. Phys. Chem. B 108 (2004) 8234-8240.
    [17]Y. Xu, A.V. Ru. M. Mavrikakis. Adsorption and dissociation of O_2 on Pt-Co and Pt-Fe alloys. J. Am. Chem. Soc.126 (2004) 4717-4725.
    [18]A. Hammett. B.J. Kennedy. Bimetallic carbon supported anodes for the direct methanol-air fuel cell. Electrochim Acta.33 (1988) 1613-1618.
    [19]G.Q. Sun, J.T. Wang, S. Gupta, et al. lron(Ⅲ) tetramethoxyphenylporphyrin (FeTMPP) as electrocatalyst for oxygen reduction in direct methanol fuel cells, J. Appl. Electrochem.31 (2001)1025-1031.
    [20]E.J. Taylor, E.B. Anderson, N.R.K. Vilambi. Preparation of high-platinum-utilization gas diffusion electrodes for proton exchange membrane fuel cells. J. Electrochem. Soc.139 (1992) 45-46.
    [21]X. Wang, I.M. Hsing, P.L.Yue. Electrochemical characterization of binary carbon supported electrode in polymer electrolyte fuel cells. J. Power Sources 96 (2001) 282-287.
    [22]L. You, H. Liu. A parametric study of the cathode catalyst layer of PEM fuel cells using a pseudo-homogeneous model. Int. J. Hydrogen Energ.26 (2001) 991-999.
    [23]X. Cheng, B. Yi, M. Han, et al. Investigation of platinum utilization and morphology in catalyst layer of polymer electrolyte fuel cells. J. Power Sources 79 (1999) 75-81.
    [24]M.S. Wilson, S. Gottesfeld. Thin-film catalyst layers for polymer electrolyte fuel cell electrodes. J. Appl. Electrochem.22 (1992) 1-7.
    [25]A.J. Appleby. Oxygen Reduction on oxide-free platinum in 85% orthophosphoric acid: temperature and impurity dependence. J. Electrochem. Soc.117 (1970) 328-335.
    [26]M. Peuckert, T. Yoneda, R.A.D. Betta, et al. Oxygen reduction on small supported platinum particles. J. Electrochem. Soc.133 (1986) 944-947.
    [27]A.L. Dicks.The role of carbon in fuel cells. J. Power sources 156 (2006) 128-141.
    [28]K. Prater. The renaissance of the solid polymer fuel cell. J. Power Sources 29 (1990) 239-250.
    [29]E.Yeager. Electrocatalysts for O_2 reduction. Electrochim. Acta 29 (1984) 1527-1537.
    [30]查全性,电极过程动力学导论,北京:科学出版社,(2002)219-220。
    [31]K. Kordesch, G. Simader. Fuel cells and their applications. Weinheim:VCH Verlagsgesell schaft mbH & VCH Publishers Inc. (1996) 45-50.
    [32]T. Toda, H. Igarashi, H. Uchida, et al. Enhancement of the electroreduction of oxygen on Pt alloys with Fe, Ni, and Co. J. Electrochem. Soc.146 (1999) 3750-3756.
    [33]N.M. Markovic, H.A. Gasteiger, P.N. Ross. Oxygen reduction on platinum low-index single-crystal surfaces in sulfuric acid solution:rotating ring-Pt (hkl) disk studies. J. Phys. Chem.99(1995)3411-3415.
    [34]M. Inaba, H. Yamada, J. Tokunaga, et al. Effect of Agglomeration of Pt/C Catalyst on hydrogen peroxide formation. Electrochem. Solid St.7 (2004) 474-476.
    [35]K.H. Choi, D.H. Peck, C. S. Kim, et al. Water transport in polymer membranes for PEMFC. J. Power Sources 86 (2000) 197-201.
    [36]X. Wang, J.M. Hu, I.M. Hsing. Electrochemical investigation of formic acid electro-oxidation and its crossover through a Nafion membrane. Electroanal.Chem.562 (2004) 73-80.
    [37]Y.W. Rhee, S.Y. Ha, R.I. Masel. Crossover of formic acid through Nafion membranes. J. Power sources 117 (2003) 35-38.
    [38]R.M. Hodge, T.J. Bastow, G.H. Edward, et al. Free volume and the mechanism of plasticisation in water-swollen poly(vinyl alcohol). Macromolecules 29 (1996) 8137-8143.
    [39]M. Cappadonia, J.W. Enring, S.M.Niaki, et al. Conductance of Nafion117 membranes as a function of temperature and water content. Solid State Ionics 77 (1995) 65-69.
    [40]M. Cappadonia, J.W. Enring, U. Stimming. Proton conduction of Nafion117 membrane between 140 K and room temperature. J. Electroanal. Chem.376 (1994) 189-195.
    [41]R. Homung, G. Kappelt. Bipolar plate materials development using Fe-based alloys for solid polymer fuel cells. J. Powder Sources 72 (1998) 20-21.
    [42]D.A. Shores, G.A. Deluga. Handbook of fuel cell-fundmentais. technology and application. John Wiley & Sons (2003) 273.
    [43]O. Savadogo. Emerging membranes for electrochemical systems Part Ⅱ. High temperature composite membranes for polymer electrolyte fuel cell (PEFC) applications. J. Power sources 127(2004)135-161.
    [44]吴洪,王宇新,王世昌,用于聚合物电解质膜塑料电池中的质子导电膜,高分子材料科学与工程17(2001)17-11.
    [45]M. Wakizoe, O.A. Velev. S. Srinivasan. Analysis of proton exchange membrane fuel cell performance with alternate membranes. Electrochim. Acta 40 (1995) 335-344.
    [46]S. Yoshitsugu, E. Per, S. Daniel. Proton conductivity of Nafion117 as measured bya four-electrode AC impedance method. J. Electrochem. Soc.143 (1996) 1254-1259.
    [47]Q. Guo, P.N. Pintauro, H. Tang, et al. Sulfonated and crosslinked polyphosphazene-based proton-exchange membranes. J. Membrane Sci.154 (1999) 175-181.
    [48]F.N. Buchi, B. Gupta, O. Haas, et al. Study of radiation-grafted FEP-g-polystyrene membranes as polymer electrolytes in fuel cells. Electrochimica Acta 40 (1995) 345-353.
    [49]G.G. Scherer. Polymer membranes for fuel cells. Phys. Chem.94 (1990) 1008-1014.
    [50]于景荣,衣宝廉,邢丹敏等,燃料电池用磺化聚苯乙烯降解机理及其复合膜的初步研究高等学校化学学报23(2002)1792-1796.
    [51]S.Q. Wu, Z.M. Qiu, S.B. Zhang, et al. The direct synthesis of wholly aromatic Poly(p-phenylene)s bearing sulfobenzoyl side groups as proton exchange membranes. Polymer 47 (2006) 6993-7000.
    [52]F.N. Buchi, B. Gupta, O. Haas, et al. Study of radiation-grafted FEP-g-polystyrene membranes as polymer electrolytes in fuel cells. Electrochim. Acta 40 (1995) 345-353.
    [53]Q. Gao. P.N. Pintanro, H. Tang, et al. Sulfonated and crosslinked polyphosphazene-based proton-exchange membranes. J. Membrane Sci.154 (1999) 175-181.
    [54]B. Mattsson, H. Ericson, L.M. Torell. et al. Degradation of a fuel cell membrane, as revealed by micro-Raman spectroscopy. Electrochim. Acta 45 (2000) 1404-1408.
    [55]A. Panchenko. DFT investigation of the polymer electrolyte membrane degradation caused by OH radieals in fuel cells. J. Membrane Sci.278 (2006) 269-278.
    [56]G. Hubner, E. Roduner. EPR investigation of HO/radical initiated degradation reactions of sulfonated aromatics as model compounds for fuel cell proton conducting membranes. J. Mater. Chem.9 (1999) 409-418.
    [57]S. Stucki, G.G. Scherer, S. Schlagowski, et al. PEM water electrolyser. evidence for membrane failure in 100 kW demonstration plants. J. Appl. Electrochem.28 (1998) 1041-1049.
    [58]D.E. Curtin, R.D. Lousenberg, T.J. Henry, et al. Advanced materials for improved PEMFC performance and life. J. Power Sources 131 (2004) 41-48.
    [59]W. Liuz, D. Zuchkerbrod. In Situ Detection of Hydrogen Peroxide in PEM Fuell Cells. J. Electrochem. Soc.152 (2005) 1165-1170.
    [60]R. Hornung, G. Kappelt. Bipolar plate materials development using Fe-based alloys for solid polymer fuel cells. J. Power Sources 72 (1998) 20-21.
    [61]L.M. Roen, C.H. Paik, T.D. Jarvic. Electrocatalytic corrosion of carbon support in PEMFC cathodes. Electrochem.Solid St.7 (2004) 19-22.
    [62]A. Taniguchi, T. Akit, K. Yasud, et al. Analysis of electrocatalyst degradation in PEMFC caused by cell reversal durng fuel starvation. J. Power Sources 130 (2004) 42-49.
    [63]K.H. Kangasniemi, D.A. Condit, T.D. Jarvi. Characterization of Vulcan Electrochemically oxidized under simulated PEM fuel cell conditions. J. Electrochem. Soc.151 (2004) 125-132.
    [64]Y. Kiros, O. Lindstrom, T. Kaimakis. Cobalt and cobalt-based macrocycle blacks as oxygen-reduction catalysts in alkaline fuel cells. J. Powder Sources 45 (1993) 219-227.
    [65]D.A. Stevens, J.R. Dahn. Thermal degradation of the support in carbon supported platinum electrocatalysts for PEM fuel cells. Carbon 43 (2005) 179-1881.
    [66]S. Zyun, I. Kenta, Y. Kazuaki, et al. Imaging of highly oriented pyrolytic graphite corrosion accelerated by Pt particles. Electrochem. Commun.7 (2005) 1153-1156.
    [67]M. Sehulze, A. Schneiderl, E. Gulzow. Alteration of the distribution of the platinum catalyst in membrane-electrode assemblies during PEMFC operation. J. Power Sources 127 (2004) 213-221.
    [68]H. Tang, Z.G. Qi, M. Ramani, et al. PEM fuel cell cathode carbon corrosion due to the formation of air/fuel boundary at the anode. J. Power Sources 158 (2006) 1306-1312.
    [69]S.I. Pyun, Y.G. Ryu, S.H. Choi. Corrosion behaviour of platinum-catalyzed carbon in phosphoric acid solution. Carbon 32 (1994) 161-164.
    [70]Y. Shao, GYin, Y. Gao. Understanding and approaches for the durability issues of Pt-based catalysts for PEM fuel cell. J. Power Sources 171 (2007) 558-566.
    [71]S.D. Knights, K.M. Colbow, J. St-Pierre, et al, Aging mechanisms and lifetime of PEMFC and DMFC. J. Power Sources 127 (2004) 127-134.
    [72]P. Staiti, A. Arico, V. Antonucci, et al. Morphological variation of platinum catalysts in phosphotungstic acid fuel cell. J. Power Sources 70 (1998) 91-101.
    [73]H. Tang, M. Pan, S.P. Jiang, et al. Synthesis of platinum nanoparticles and the self-assembled on Nafion membrane as catalyst coated membrane. J. Chem. Res.7 (2005) 449-451.
    [74]H. Tang, M. Pan, S.P. Jiang, et al. Modification of Nafion TM membrane to reduce methanol crossover via self-assembly Pd nanoparticle. Mater. Lett.59 (2005) 3766-3770.
    [75]M.L. Anderson. R.M. Stroud, D.R. Rolison. Enhancing the activity of fuel cell reaction by designing three-dimensional nanostructured architectures:catalyst-modified carbon-silica composite aerogels. Nano Lett.2 (2002) 235-240.
    [76]F. Montilla, E. Morallo'n, J.L. Va'zquez, et al. Carbon-ceramic composites from coal tar pitch and clays:application as electrocatalyst support. Carbon 40 (2002) 2193-2200.
    [77]K.W. Park, Y.E. Sung. Origin of the enhanced catalytic activity of carbon nanocoil-supported Pt-Ru alloy electrocatalysts. J. Phys. Chem. B 108 (2004) 939-44.
    [78]X. Wang. W. Li, Z.Chen, et al. Durability investigation of carbon nanotube as catalyst support for proton exchange membrane fuel cell. J. Power Sources 158 (2006) 154-159.
    [79]C.A. Bessel, K.. Laubernds. Graphite nanofibers as an electrode for fuel cell applications. J. Phys. Chem. B 105(2001) 1115-1118.
    [80]S.H. Joo, S.J. Choi, I. Oh, et al. Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature 412 (2001) 169-172.
    [81]Z.D. Wei, M.B. Ji, Y. Hong, et al. MnO_2-Pt/C composite electrodes for preventing voltage reversal effects with polymer electrolyte membrane fuel cells. J. Power Sources 160 (2006) 246-251.
    [82]H. Chhina, S. Campbell, O. Kesler. An oxidation-resistant indium tin oxide catalyst support for proton exchange membrane fuel cells. J. Power Sources 161 (2006) 893-900.
    [83]K.Y. Chen, A.C. Tseung. Effect of Nafion dispersion on the stability of Pt/WO_3 electrodes. J. Electrochem. Soc.143 (1996) 2703-2707.
    [84]J. Shim, C.R. Lee, H.K. Lee. et al.. Electrochemical characteristics of Pt-WO_3/C and Pt-TiO_2/C electrocatalysts in a polymer electrolyte fuel cell. J. Power Sources 102 (2001) 172-177.
    [85]L. Xiong, A. Manthiram. Synthesis and characterization of methanol tolerant Pt/TiO_x/ C nanocomposites for oxygen reduction in direct methanol fuel cells. Electrochim. Acta 49 (2004)4163-4170.
    [86]J.L. Ayastuy, A. Gil-Rodriguez. M.P. Gonzalez-Marcos, et al. Effect of process variable on Pt/CeO_2 catalyst behaviour for the PROX reaction. Int. J. Hydrogen Energ.31 (2006) 2231-2242.
    [87]J.E. Houston. G.E. Laramore. R.L. Park. Surface electronic properties of tungsten, tungsten carbide, and platinum. Science 185 (1974) 258-260.
    [88]D.R. Melntyre. G.T. Burstein, A. Vossen. Effect of carbon monoxide on the electrooxidation of hydrogen by tungsten carbide. J. Power Sources 107 (2002) 67-73.
    [89]N. Liu, K. Kourtakis, J.C. Figuero, et al, Potential application of tungsten carbides as electrocatalysts Ⅲ. Reactions of methanol, water, and hydrogen on Pt-modified C/W(111) surfaces. J. Catal.215 (2003) 254-263.
    [90]W. Ruettinger, X.S. Liu, R.J. Farrauto. Mechanism of aging for a Pt/CeO2-ZrO2 water gas shift catalyst. Appl. Catal. B-Environ.65 (2006) 135-141.
    [91]G. Liu, H. Zhang, Y. Zhai, et al. Pt_4ZrO_2/C cathode catalyst for improved durability in high temperature PEMFC based on H_3PO_4 doped PBI. Electrochem. Commun.9 (2007) 135-141.
    [92]H.A. Gasteiger, S.S. Kocha, B. Somapalli, et al. Activity benchmarks and requirements for Pt, Pt-alloy and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B 56 (2005) 9-35.
    [93]T. Ioroi, N. Fujiwara, Z. Siroma, et al. Platinum and molybdenum oxide deposited carbon electrocatalyst for oxidation of hydrogen containing carbon monoxide. Electrochem. Commun. 4 (2002) 442-446.
    [94]N. Liu, S.A. Rykov, H.H. Hwu, et al. Modifying surface activity by carbide formation: Reaction pathways of cyclohexene over clean and carbide-modified W(111), J. Phys. Chem. B 105(2001)3894-3902
    [95]H.H. Hwu, J.G. Chen. Potential Application of tungsten carbides as electrocatalysts.1. Decomposition of methanol over carbide-modified W(111). J. Phys. Chem. B 105 (2001) 10037-10044.
    [96]P.K. Shen, A.C.C. Tseung. Anodic oxidation of methanol on Pt/WO_3 in acidic media. J. Electrochem. Soc.141 (1994) 3082-3090.
    [97]A.C.C. Tseung, K.Y. Chen. Hydrogen spill-over effect on Pt/WO_3 anode catalysts. Catal. Today 38 (1997) 439-443.
    [98]P.K. Shen, A.C.C. Tseung. Anodic oxidation of methanol on Pt/WO_3 in acidic media. J. Electrochem. Soc.141 (1994) 3082-3089.
    [99]G. Will. Electron deformation density in titanium diboride chemical bonding in TiB_2. J. Solid State Chem.177 (2004) 628-631.
    [100]P. Vajeeston, P. Ravindran, C. Ravi, et al. Electronic structure, bonding, and ground-state properties of AlB_2-type transition-metal diborides. Phys. Rev. B 63 (2001) 1-12.
    [101]H. Schmidt, G. Borchardt. Self-diffusion of boron in TiB_2. J. Appl. Phys.93 (2003) 907-911.
    [102]Y. Han, Y. Dai, D. Shu, et al. First-principles study of TiB_2 (0001) surfaces. J. Phys.-Condens. Mat.18 (2006) 4197-4205.
    [103]B. Basu, G.B. Raju, A.K. Suri. Processing and properties of monolithic TiB_2 based materials. Int. Mater. Rev.51 (2006) 352-374.
    [104]R.G. Munro. Material properties of titanium diboride. J. Res. Natl. Inst. Stand. Technol.105 (2000) 709-720.
    [105]P.K. William, P.F. Becher, C.B. Finch. Study of the Kondo effect and intrinsic electrical conduction in titanium diboride. J. Appl. Phys.58 (1984) 10-15.
    [106]C.S. Choi, G.C. Xing, G.A. Ruggles, et al. The effect of annealing on resistivity of low pressure chemical vapor deposited titanium diboride. J. Appl. Phys.69 (1991) 7853-7861.
    [107]Y. Zhang, K. Fukuoka, M. Kikuchi, et al. Shock compression behavior of titanium diboride. Int. J. Impact Eng.32 (2005) 643-649.
    [108]D.P. Dandekar, D.C. Benfanti. Strength of titanium diboride under shock wave loading. J. Appl. Phys.73(1993)673-679.
    [109]N. Panich, Y. Sun. Mechanical properties of TiB_2-based nanostructured coatings. Surf. Coat. Tech.198 (2005) 14-19.
    [110]P.H. Mayrhofer, C. Mitterer. H. Clemens. Self-organized nanostructures in hard ceramic coatings. Adv. Eng. Mater.7 (2005) 1071-1082.
    [111]S. Podriguez, V.B. Munoz, E.V. Esquivel, et al. Microstructural characterization of TiB_2 armor targets. J. Mater. Sci.21 (2002) 1661-1666.
    [112]J. Rao, R. Cruz, K.J. Lawson, et al. Carbon and titanium diboride multilayer coatings. Diam. Relat. Mater.13 (2004) 2221-2225.
    [113]I. Zergioti, G.N. Haidemenopoulos, C. Fotakis. Nanocrystalline growth and diagnostics of TiC and TiB_2 hard coatings by pulsed laser deposition. Appl. Phys. A 69 (1999) 427-431
    [114]K. Tsuchida, T. Nagata, H. Nakata. et al. LaB6 and TiB_2 electrodes for the alkali metal thermoelectric converter. J. Mater. Sci.33 (1998) 755-762.
    [115]X. Li, M.H. Manghnani, L.C. Ming, et al. Electrical resistivity of TiB_2 at elevated pressures and temperatures. J. Appl. Phys.80 (1996) 3860-3862.
    [116]C. Subramanian, T.S.R.Ch. Murthy, A.K. Suri. Synthesis and consolidation of titanium diboride. Int. J. Refract. Met. H.25 (2007) 345-350.
    [117]J.M. Sanchez. I. Azcona, F. Castro. Mechanical properties and titanium diboride based cermets. J. Mater. Sci.35 (2000) 9-14.
    [118]R.V. Krishnarao, J. Subrahmanyam. Studies on the formation of TiB_2 through carbothermal reduction of TiO_2 and B_2O_3. Mat. Sci. Eng. A 362 (2003) 145-151.
    [119]J. Li, B. Li. Preparation of the TiB_2 coating by electroplating in molten salts. Mater. Lett.61 (2007)1274-1278.
    [120]J. Elders, J.D.W.V. Voorst. Laser-induced chemical vapor deposition of titanium diboride. J. Appl. Phys.75(1994)553-562.
    [121]H.P. Li. The numerical simulation of the heterogeneous composition effect on the combustion synthesis of TiB_2 compound. Acta Materialia 51 (2005) 3213-3224.
    [122]H. Zhu, H. Wang, L. Ge, et al. Study of the microstructure and mechanical properties of composites fabricated by the reaction method in an AI-TiO_2-B_2O_3 system. Mat. Sci. and Eng. A 478 (2008) 87-92.
    [123]R. Ricceri. P. Matteazzi. A fast and low-cost room temperature process for TiB_2 formation by mechanosynthesis. Mat. Sci. Eng. A 379 (2004) 341-346.
    [124]Y. Hwang, J.K. Lee. Preparation of TiB2 powders by mechanical alloying. Mater. Lett.54 (2002) 1-7.
    [125]L. Chen, Y. Gu, Y. Qian, et al. A facile one-step route to nanocrystalline TiB2 powders. Mater. Res. Bull.39 (2004) 609-613.
    [126]Y. Gu, Y. Qian, L. Chen, et al. A mild solvothermal route to nanocrystalline titanium diboride. J. Alloy. Compd.352 (2003) 325-327.
    [127]L. Shi, Y. Gu, L. Chen, et al. A convenient solid-state reaction to nanocrystalline TiB2. Inorg. Chem. Commun.7 (2004) 192-194.
    [128]王雅东,艾新平,杨汉西,过渡金属二硼化物作为高容量负极的研究,电化学11(2005)16-19.
    [129]D.A. Stevens, M.T. Hieks, G.M. Haugen, et al. Ex Situ and in situ stability studies of PEMFC caltalysts effect of carbon type and humidification on degradation of the carbon. J. Electrochem. Soc.152 (2005) 2309-2315.
    [130]N.J. Welham. Formation of nanometric TiB2 from TiO_2. J. Am. Ceram. Soc.83 (2000) 1290-1292.
    [131]A.M. Locci, R. Orru, G. Cao, et al. Effect of ball milling on simultaneous spark plasma synthesis and densification of TiC-TiB_2 composites. Mat. Sci. and Eng. A 434 (2006) 23-29.
    [132]J. Li, F. Li, K. Hu, et al. TiB2/TiC nanocomposite powder fabricated via high energy ball milling. J. Eur. Ceram. Soc.21 (2001) 2829-2833.
    [133]M. Chen, E. Ma, K.J. Hemker, et al. Deformation twinning in nanocrystalline aluminum. Science 300 (2003) 1275-1277.
    [134]M. Chen, J.W. McCauley, K.J. Hemker. Shock-induced localized amorphization in boron carbide. Science 299 (2003) 1563-1566.
    [135]余瑞璜,固体与分子经验电子理论,科学通报23(1978)217-225.
    [136]徐万东,张瑞林,余瑞璜,过渡金属化合物晶体结合能的计算,中国科学A辑(1988)323-329.
    [137]刘志林,合金价电子结构与成分设计,长春,吉林科学技术出版社,1990.
    [138]张瑞林,固体与分子经验电子理论,长春:吉林科学技术出版社,1993:275-300.
    [139]苏文勇,张瑞林,TiB_2等C32型化合物价电子结构分析,北京理工大学学报20(2000)550-554.
    [140]章桥新,TiB_2的价电子结构及其性能研究,陶瓷学报3(2000)159-161.
    [141]D.B. Lee, Y.C. Lee, D.J. Kim. The oxidation of TiB2 ceramics containing Cr and Fe. Oxid. Met.56(2001)177-189.
    [142]T.S.R.Ch. Murthy, R. Balasubramaniam, B. Basu, et al. Oxidation of monolithic TiB_2 and TiB2-20 wt.%MoSi2 composite at 850℃. J. Euro. Ceram. Soc.26 (2006) 187-192.
    [143]F. Huang, Z. Fu, W. Wang, et al. Oxidation behavior of titanium diboride ceramic at different temperatures. Journal of the Chinese Ceramic Society 36 (2008) 584-587.
    [144]P. Yang, M. Yang, S. Zou, et al. Positive and negative TiO_2 micropatterns on organic polymer substrates. J. Am. Chem. Soc.129 (2007) 1541-1552.
    [145]L. Zhou, D.S. Boyle, P. O'Brien. A facile synthesis of uniform NH_3TiOF_3 mesocrystals and their conversion to TiO_2mesocrystals. J. Am. Chem. Soc.130 (2008) 1309-1320.
    [146]J.J. Wu, C.C. Yu. Aligned TiO_2 nanorods and nanowalls. J. Phys. Chem. B 108 (2004) 3377-3379.
    [147]K. Ding, Z. Miao, Z. Liu, et al. Facile synthesis of high quality TiO_2 nanocrystals in ionic liquid via a microwave-assisted process. J. Am. Chem. Soc.129 (2007) 6362-6363.
    [148]R.L. Penn, J.F. Banfield. Imperfect Oriented Attachment:Dislocation Generation in Defect-Free Nanocrystals. Science 281 (1998) 969-971.
    [149]D. Moldovan, V. Yamakov, D. Wolf, et al. Scaling behavior of grain-rotation-induced grain growth. Phys. Review Lett.11 (2002) 206011-4.
    [150]A. P. Alivisatos. Naturally aligned nanocrystals. Science 289 (2000)736-740.
    [151]R.L. Penn, J.F. Banfield. Oriented attachment and growth, twinning, polytypism, and formation of metastable phase:insights from nanocrystalline TiO_2. Am. Mine.83 (1998) 1071-1082.
    [152]D.F. Zhang, L.D. Sun, J.L. Yin. et al. Low-temperature fabrication of highly crystalline SnO_2 nanorods. Adv. Mater.15 (2003) 1022-1025.
    [153]H. Xu, W. Wang, L. Zhou. A growth model of single crystalline hollow spheres:oriented attachment of Cu_2O nanoparticles to the single crystalline shell wall. Crystal Growth Des.8 (2008) 3486-3489.
    [154]M. Artemyev, B. Moller, U. Woggon. Unidirectional alignment of CdSe nanorods. Nano Lett.3(2003)509-512.
    [155]F. Huang. H.Z. Zhang, J.F. Banfield. Two-stage crystal growth kinetics observed during hydrothermal coursing of nanocrystalline ZnS. Nano Lett.3 (2003) 373-378.
    [156]P. Badica. Preparation through the vapor transport and growth mechanism of the first-order hierarchical structures of MoO_3 belts on sillimanite fibers. Crystal Growth Des.7 (2007) 794-801.
    [157]S. Ayyappan, J. Philip. B. Raj. Effect of digestion time on size and magnetic properties of spinel CoFe_2O_4 nanoparticles. J. Phys. Chem. C 113 (2009) 590-596.
    [158]D.P. Shoemaker, J. Li. R. Seshadri. Unraveling atomic positions in an oxide spinel with two Jahn-Teller ions:local structure investigation of CuMn_2O_4 J. Am. Chem. Soc.131 (2009) 11450-11457.
    [159]T.K. Lee, E.L. Mosunov. S.K. Hwang. Consolidation of a gamma TiAl-Mn-Mo alloy by elemental powder metallurgy. Mat. Sci. Eng. A-Struct 239-240 (1997) 540-545.
    [160]V. Poserin. S. Marcuson, J. Shu, et al. CVD technique for Inco nickel foam production. Ad(?). Eng. Mater.6 (2004) 454-459.
    [161]L. Hoglund, J. Agren. Analysis of the Kirkendall effect, marker migration and pore formation. Acta Mater.49 (2001) 1311-1317.
    [162]K.N. Tu, U. Gosele. Hollow nanostructures based on the Kirkendall effect:design and stability considerations. Appl. Phys. Lett.86 (2005) 093111.
    [163]R. Voigt, V. Ruth. Extended phenomenological theory of the Kirkendall effect in binary systems. Scripta Metallurgica et Materialia 31 (1994) 847-851.
    [164]Y.Yin, R. M. Rioux, C. K. Erdonmez, et al. Formation of hollow nanocrystals through the nanoscale Kirkendall effect. Science 2004,304,711-714.
    [165]H. Zeng, W. Cai, P. Liu, et al. ZnO-based hollow nanoparticles by selective etching: elimination and reconstruction of metal-semiconductor interface, improvement of blue emission and photocatalysis. ACS Nano 8 (2008) 1661-1670.
    [166]G. Chen, C. Xu, X. Song, et al. Themplate-free synthesis of single-crystalline-like CeO_2 hollow nanotubes. Crystal Growth Des.8 (2008) 4449-4453.
    [167]L. Li, Y. Chu, Y. Liu, et al. Template-free synthesis and photocatalytic properties of novel Fe_2O_3 hollow spheres. J. Phys. Chem. C 111 (2007) 2123-2127.
    [168]M. Chen, L. Gao. Synthesis and characterization of Ag nanosheets by a facile sacrifical template route through in situ replacement reaction. Inorg. Chem.45 (2006) 5145-5149.
    [169]Y.Z. Huang, L. Chen, L.M. Wu. Submicrosized rods, cables and tubes of ZnE (E=S, Se, Te): Exiterior-interior boron-chalcogen conversions and optical properties. Inorg. Chem.47 (2008) 10723-10728.
    [170]A.S. Barnard, L.A. Curtiss. Prediction of TiO_2 nanoparticle phase and shape transitions controlled by surface chemistry. Nano Lett.5 (2005) 1261-1266.
    [171]U. Bach, D. Lupo, P. Comte, et al. Solid-state dye-sensitized mesoporous TiO_2 solar cells with high photon-to-electron conversion efficiencies. Nature 395 (1998) 583-585.
    [172]S.Y. Choi, M. Mamak, N. Coombs, et al. Electrochromic performance of viologen-modified periodic mesoporous nanocrystalline anatase electrodes. Nano Lett.4 (2004) 1231-1235.
    [173]O.K. Varghese, D. Gong, M. Paulose, et al. Hydrogen sensing using titania nanotubes. Sens. Actuators B 93 (2003) 338-344.
    [174]K. Iuchi, Y. Ohko, T. Tatsuma, et al. Cathode-separated TiO_2 photocatalysts applicable to a photochromic device responsive to backside illumination. Chem. Mater.16 (2004) 1165-1167.
    [175]D.V. Bavykin, J.M. Friedrich, F.C. Walsh. Protonated titanates and TiO_2 nanostructured materials:synthesis, properties, and application. Adv. Mater.18 (2006) 2807-2824.
    [176]Y. Jun, M.F. Casula, J.H. Sim, et al. Surfactant-assisted elimination of a high energy facet as a means of controlling the shapes of TiO_2 nanocrystals. J. Am. Chem. Soc.125 (2003) 15981-15985.
    [177]M.R. Hoffmann, S.T. Martin, D.W. Bahnemann. Environmental application of semiconductor photocatalysis. Chem. Rev.95 (1995) 69-96.
    [178]K.Y. Song, Y.T. Kwon, G.J. Choi, et al. Photocatalytic activity of Cu/TiO_2 with oxidation state of surface-loaded copper. Bull. Korean Chem. Soc.20 (1999) 57-960.
    [179]D.I. Enache, J.K. Edwards, P. Landon, et al. Solvent-free oxidation of primary alcohols to aldehydes using Au-Pd/TiO_2 catalysts. Science 311 (2006) 362-365.
    [180]T. Hirakawa, P.V. Kamat. Charge separation and catalytic activity of Ag/TiO_2 core-shell composite clusters under UV-irradiation. J. Am. Chem. Soc.127 (2005) 3928-3934.
    [181]R. Asahi. T. Morikawa, T. Ohwaki, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293 (2001) 269-271.
    [182]S. In, A. Orlov, R. Berg, et al. Effective visible light-activated B-doped and B, N-codoped TiO_2 photocatalysts. J. Am. Chem. Soc.129 (2007) 13790-13791.
    [183]J.C. Yu, J.G. Yu, W.K. Ho, et al. Effects of F-doping on the photocatalytis activity and microstructures of nanocrystaline TiO_2 powders. Chem. Mater.14 (2002) 3808-3816.
    [184]G. Wu, T. Nishikawa, B. Ohtani, A. Chen. Synthesis and characterization of carbon-doped TiO_2 nanostructures with enhanced visible light response. Chem Mater.19 (2007) 4530-4537.
    [185]W. Zhao, W.H. Ma, C.C. Chen, et al. Eficiency degradation of toxic organic pollutants with Ni_2O_3/TiO_(2-x)B_x under visible irradiation. J. Am. Chem. Soc.126 (2004) 4782-4783.
    [186]Sakatani Y, Nunoshige J, Ando H, et al. Photocatalytic decomposition of acetaldehyde under visible light irradiation over La and N co-doped TiO_2. Chem Lett.32 (2003) 1156-1157.
    [187]Y. Wang, Y. Wang, Y. Meng, et al. A highly efficient visible-light-activated photocatalyst based on bismuth-and sulfur-codoped TiO_2. J. Phys. Chem. C 112 (2008) 6620-6626.
    [188]J. Boucle, S. Chyla. M.S.P. Shaffer, et al. Hybrid solar cells from a blend of poly(3-hexylthiophene) and ligand-capped TiO_2 nanorods. Adv. Func. Mater.18 (2008) 622-633.
    [189]J. Faiz, A.I. Philippopoulos, A.G. Kontos. et al. Functional superamolecular ruthenium cyclodextrin dyes for nanocrystalline solar cells. Adv. Func. Mater.17 (2007) 54-58.
    [190] Y. Zhao, X. Qiu, C. Burda. The effect of sintering on the photocatalytic activity of N-doped TiO_2 nanoparticles. Chem. Mater.20 (2008) 2629-2636.
    [191]尹诗斌,硕士学位论文,质子交换膜燃料电池用Pt/TiB_2催化剂的稳定性研究,武汉理工大学,2008,20-36.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700