过渡金属氮化物和硼化物的第一性原理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文的目的是使用基于密度泛函理论的第一性原理计算来研究过渡金属氮化物和过渡金属硼化物的结构、稳定性、弹性常数和电子性能,为预测材料的新性能和指导新材料的合成提供依据。具体的研究内容归纳如下:
     1.通过对氮化钯pyrite、marcasite、CoSb2和STAA四种结构的第一性原理研究,我们得出这四种结构的氮化钯在零压下都是金属性的。它们虽然都具有力学稳定性,但在零压时都不具有热力学稳定性。其中,pyrite结构的氮化钯在较高压力下时是最稳相。第一性原理计算得到的拉曼频率和实验得到的拉曼谱图吻合得很好,有力地证明了高压实验合成的氮化钯具有pyrite结构。pyrite结构的氮化钯虽然从动力学稳定性上来说是稳定的,但是它在低压时热力学不稳定,趋向于分解成Pd金属和氮气。
     2.研究了三种结构(pyrite结构、narcasite结构和CoSb2结构)4d和5d过渡金属氮化物的稳定性、弹性常数和电子结构。我们的第一性原理计算结果同实验和先前理论研究的结果非常一致,证实了实验中合成的氮化锇、氮化铱和氮化铂分别具有narcasite结构、CoSb2结构和pyrite结构。虽然这三种物质在零压下从热力学上来说都是不稳定的,但是它们都具有力学稳定性和动力学稳定性。氮化锇是导体,而氮化铱和氮化铂是半导体。氮化金的形成能相对于其它三种氮化物来说非常高,这可能是氮化金非常难以制得的原因。
     3.使用第一性原理系统研究了4d和5d过渡金属一氮化物的电子性能和力学性能。我们的计算结果和实验值非常吻合,并且发现所研究的所有的一氮化物都是金属性的。当d电子壳层开始被填充时,由于成键态被占据,晶格常数减小体模量增加。而当反键态开始被占据时,晶格常数增加,体模量减小。这就导致了在半填充壳层附近,会出现晶格常数的极小值和体模量的极大值。
     4.对4d过渡金属二硼化物MB2 (M=Zr, Nb, Mo, Tc, Ru, Rh)的晶体结构、力学性能和电子结构进行研究。通过计算得出二硼化锝和二硼化钼都是超硬材料。在4d过渡金属二氮化物中,Hex-I结构的二硼化锝具有最高的C33值947GPa。强共价键和由共价键相互作用形成的z字形结构是低压缩率产生的原因。
     5.我们使用第一性原理计算研究了4d和5d过渡金属一硼化物的结构、弹性性能、热力学稳定性和电子性能。在零压时NaCl结构的ZrB,NbB,MoB, HfB, TaB和WB, WC结构的TcB, RuB, ReB, OsB和IrB以及anti-NiAs结构的RhB,PdB都是热力学稳定的。这些物质的Vickers硬度都很低。由于B空位的存在,造成了WC结构IrB和anti-NiAs结构PtB晶格常数实验值和理论计算值的巨大差异。在常压下,WC结构化学计量比的IrB力学不稳定,同时anti-NiAs结构化学计量比的PtB动力学不稳定。这表明实验中合成出的IrB和PtB都是非化学计量比的。对于4d和5d过渡金属一硼化物,随着价电子数的增加,最稳定结构呈现NaCl结构到WC结构到anti-NiAs结构的转变。
     同时,我们还使用有机金属先驱法合成出过氧化锌纳米颗粒,并通过实验和第一性原理计算研究了它的结构、结构稳定性、磁性以及光学性能。研究结果发现过氧化锌会在230℃分解成氧化锌,而在常温条件下可以稳定存在至36 GPa。在零压时,立方结构的过氧化锌体模量为174 GPa,间接禁带宽度为4.5 eV,在温度降至5K时仍不具有铁磁性。
Here we use the first principles calculations based on density function theory to study the crystal structure, stability, elastic constants and electronic properties of tuansition metal nitrides and transition metal borides. It will be helpful to predict the properties of materials and design new materials. The contents are as follows:
     1. Investigated the crystal structure, stability, elastic constants and electronic properties of PdN2 for four polymorph structures:pyrite, marcasite, CoSb2 and STAA, using first-principles calculations. At zero pressure all four polymorphs are metallic and thermodynamically unstable but mechanically stable. Pyrite PdN2 is found to be the lowest energy phase at high pressure. Good agreement between calculated and observed Raman frequencies was found, indicating that the recently synthesized palladium nitride at high pressure is likely to have the pyrite structure. Pyrite PdN2 is phononically stable but thermodynamically unstable at low pressure, and may decompose into metallic Pd and solid N2.
     2. Studied the stability, elasticity and electronic properties of 4d and 5d transition metal nitrides with three structural types (pyrite, marcasite and CoSb2 structure) by first principles calculations. In agreement with experiments and previous theoretical predictions, the crystal structures synthesized in the experiments for OsN2 is marcasite, for PtN2 is pyrite, and for IrN2 the CoSb2 structure. It is found that these three compounds are thermodynamically metastable but mechanically and dynamically stable. OsN2 is found to be metallic material, while IrN2 and PtN2 are both semiconductor. The formation energy of AuN2 is found to be very high as compared with other three nitrides studied here. This underlies the experimental difficulty in the synthesis for this compound.
     3.Studied the electronic and elastic properties of 4d and 5d transition metal mononitrides by first-principles calculations. The calculated results fit well with the available experimental data. All metal mononitrides studied in our work are metallic, rather than semiconductor. As a valence shell (the d shell in this case) starts to be filled, the equilibrium lattice constant decreases and bulk modulus increases because bonding states are being filled while lattice constant increases and bulk modulus decreases as the anti-bonding states are filled. This leads to a minimum in the lattice constant and maximum in the bulk modulus for compounds near a half-filled shell.
     4. Investigated the structure, elastic, and electronic properties of 4d transition metal diborides MB2 (M=Zr, Nb, Mo, Tc, Ru, Rh).It is found that both TcB2 and MoB2 are ultrahard materials.Among 4d transition metal diborides, hexagonal ReB2-type TcB2 has the highest C33 value of 947 GPa. Both highly directional covalency and a zigzag topology of interconnected bonds are the origin of the lower compressibility.
     5. Studied crystal structures, thermodynamic stability, electronic and elastic properties of transition metal borides. NaCl-type ZrB,NbB, MoB, HfB, TaB, WB, WC-type TcB, RuB, ReB, OsB, IrB, and anti-NiAs-type RhB, PdB are thermodynamically stable at zero pressure. The Vickers hardnesses of these monoborides are very low. The presence of B-vacancies is the origin for the difference of lattice parameters between theoretical data and experimental results for WC-type IrB and anti-NiAs-type PtB. At ambient pressure, WC-type IrB with stoichiometry is mechanically unstable, while anti-NiAs-type PtB with stoichiometry is dynamically unstable. This indicates that IrB and PtB synthesized in experiments are nonstoichiometry. The most stable structures studied here change from NaCl-type, WC-type to anti-NiAs-type structure in the order of left to right for 4d and 5d transition metal monoborides.
     And we also synthesized ZnO2 nanoparticles by an organometallic precursor method. The structure, structural stability, magnetic and optical properties of ZnO2 nanoparticles have been investigated by experiments and first-principles calculations. It is found that ZnO2 nanoparticles decompose into ZnO at about 230℃,and is stable up to 36 GPa at ambient temperature. The cubic ZnO2 phase has a bulk modulus of Bo=174 GPa at zero pressure. Nanocrystalline ZnO2 material is in-direct semiconductor with an energy gap of about 4.5 eV and paramagnetic down to 5 K.
引文
[1]V. V. Brazhkin, A. G. Lyapin, and R. J. Hemley, Phil. Mag.2002,82,231.
    [2]R. B. Kaner, J. J. Gilman, and S. H. Tolbert, Science 2005,308,1268.
    [3]P. Perlin, Phys. Rev. B 1992,45,83-89.
    [4]M. Ueno, A. Onodera, O. Shimomura, and K. Takemura, Phys. Rev. B 1992,45, 10123-10126.
    [5]A. Zerr, G. Miehe, and R. Boehler,2003,2,185-189.
    [6]K. Leinenweber, Chem. Eur. J.1999,5,3076-3080.
    [7]G. Serghiou, G. Miehe, and R. Boehler, J. Chem. Phys.1999,111,4659-4662.
    [8]N. Scotti, W. Kackelmann, and H. Jacobs, Sn3N4, Z.Anorg.Allg. Chem.1999,625, 1435-1439.
    [9]D. A. Papaconstantopoulos, W. E. Pickett, B. M. Klein, and L. L. Boyer, Phys. Rev. B 1985,31,752-761.
    [10]W. Ching, S. Mo, L. Ouyang, P. Rulis, I. Tanaka, and M. Yoshiya, J.Am. Ceram. Soc.2002,85,78-80.
    [11]J. Dong, O. F. Sankey, S. K. Deb, G. Wolf, and P. F. McMillan, Phys. Rev. B 2000,61,11979-11992.
    [12]P. Kroll, Phys. Rev. Lett.2003,90,125501.
    [13]W. Y. Ching, S.-D. Mo, L. Ouyang, I. Tanaka, and M. Yoshiya, Phys. Rev. B
    2000,61,10609-10614. [14] N. Pessal, R. E. Gold, and W. Reichardt, J. Phys. Chem. Solids 1968,29,19-38.
    [15]H. Pierson, Handbook of Refractory Carbides and Nitrides:Properties, Characteristics and Applications (Noyes Publications,Westwood,New Jersey,1996).
    [16]H. L. Luo, S. A. Wolf, W. W. Fuller, A. S. Edelstein, and C. Y. Huang, Phys. Rev. B 1984,29,1443-1446.
    [17]J. Zasadzinsky, R. Vaglio, G. Rubino, K. E. Gray, and M. Russo, Phys. Rev. B 1985,32,2929-2934.
    [18]T. Takamori, K. K. Shih, D. B. Dove, R. W. Nywening, and M. E. Re, J.Appl. Phys.1990,68,2192-2195.
    [19]N. Greenwood and A. Earnshaw, Chemistry of the Elements (Butterworth-Heinemann, UK,1997).
    [20]D. Young, Phase Diagrams of Elements (Univ. California Press, Berkeley,1991).
    [21]N. C. Holmes, J. A. Moriarty, G. R. Gathers, and W. J. Nellis, J.Appl. Phys.1989,66,2962-2967.
    [22]A. Leineweber, H. Jacobs,and S. Hull, Inorg. Chem.2001,40,5818-5822.
    [23]R. S. Ram, J. Lievin and P. F. Bemath, J. Chem. Phys.1998,109,6329.
    [24]T. C. Steimle and W. Virgo, J. Chem. Phys.2003,119,12965.
    [25]R. S. Ram, J. Lievin and P. F. Bemath, J. Chem. Phys.1999,111,3449.
    [26]A. J. Marr, M. E. Flores and T. C. Steimle, J. Chem. Phys.1996,104,8183.
    [27]T. Maruyama and T. Morishita, Appl. Phys. Lett.1996,69,890.
    [28]S. Krishnamurthy, M. Montalti and M. G. Wardle, Phys. Rev. B 2004,70, 045414.
    [29]E. S. Shanley and J. L. Ennis, Ind. Eng. Chem. Res.1991,30,2503.
    [30]E. Gregoryanz, C. Sanloup, M. Somayazulu, J. Badro, G. Fiquet, H-.K. Mao, and R. Hemeley, Nature Mater.2004.3,294.
    [31]B. R. Sahu and L. Kleinman, Phys. Rev. B 2005,71,041101.
    [32]R. Yu and X. F. Zhang, Appl. Phys. Lett.2005,86,121913.
    [33]C. Z. Fan, L. L. Sun and Y. X. wang, Chin. Phys. Lett.2005,22,2637.
    [34]J. Uddin and G. E. Scuseria, Phys. Rev. B 2005,72,035101.
    [35]S. K. R. Patil, S. V. Khare, B. R. Tuttle, J. K. Bording, S. Kodambaka, Phys. Rev. B 2006,73,104118.
    [36]R. Yu, Q. Zhan, and X. F. Zhang, Appl. Phys. Lett.2006,88,051913.
    [37]J. C. Crowhurst, A. F.Goncharov, B. Sadigh, C. L. Evans. P.G. Morrall, J. L. Ferreira, A. J. Nelson, Science 2006,311,1275.
    [38]A. F. Young, J. A. Montoya, C. Sanloup,M. Lazzeri, E.Gregoryanz, S. Scandolo, Phys. Rev. B 2006,73,153102.
    [39]H. Y. Gou, L. Hou, J. W. Zhang, G. F. Sun, L. H. Gao, and F. M. Gao, Appl. Phys. Lett.2006,89,141910.
    [40]N.Bettahar, S. Benalia, D. Rached, M. Ameri, R. Khenata, H. Baltache, and H. Rached, J. Alloys Compd.2009,478,297-302.
    [41]A Yildiz, U Akinci,O Gulseren, and I Sokmen, J. Phys.:Condens. Matter 2009, 21,485403.
    [42]A. F.Young, C. Sanloup. E. Gregoryanz. S. Scandolo, R. J. Hemley, and H. K. Mao, Phys. Rev. Lett.2006,96.155501.
    [43]Y. X. Wang, M. Arai, T. Sasaki, and C. Z. Fang, Phys. Rev. B 2007,75,104110.
    [44]Z. J. Wu, E. J. Zhao, H. P. Xiang, X. F. Hao, X. J. Liu, and J. Meng, Phys. Rev. B 2007,76,054115.
    [45]J. C. Crowhurst. A. F. Goncharov, B. Sadigh, J. M. Zaug, D. Aberg, Y. Meng and V. B. Prakapenka. J. Mater. Res.2008,23,1-5.
    [46]R. Yu, Q. Zhan, and C. De Jonghe, Angew. Chem., Int. Ed.2007,46,1136.
    [47]J. A. Montoya, A. D. Hernandez, C. Sanloup, E. Gregoryanz, and S. Scandolo, Appl. Phys. Lett.2007,90,011909.
    [48]Y. X. Wang, M. Arai, and T. Sasaki, Appl. Phys. Lett.2007,90,061992.
    [49]Z. J. Wu, X. F. Hao, X. J. Liu, and J. Meng, Phys. Rev. B 2007,75,054115.
    [50]Z. W. Chen, X. J. Guo, Z. Y. Liu, M. Z. Mao, Q. Jing, G. Li, X. Y. Zhang, L. X. Li, Q. Wang, Y. J. Tian, and R. P. Liu, Phys. Rev. B 2007,75,054103.
    [51]D. Aberg, B. Sadigh, J. Crowhurst, and F. Goncharov, Phys. Rev. Lett.2008,100, 095501.
    [52]A. D. Hernandez, J. A. Montoya, G. Profeta and S. Scandolo, Phys. Rev. B 2008, 77,092504.
    [53]E. R. Hernandez and E. Canadell, J. Mater. Chem.2008,18,2090.
    [54]H. Cynn, J. E. Klepeis, C.-S. Yoo, and D. A. Young, Phys. ReV. Lett.2002,88, 135701.
    [55]F.Occelli, D. L. Farber, J. Badro, C. M. Aracne, D. M. Teter, M. Hanfland, B. Canny, and B. Couzinet, Phys. ReV. Lett.2004,93,095502.
    [56]T. Kenichi, Phys. ReV. B 2004,70,012101.
    [57]A.G. Thornton and J. Wilks, Nature 1978,274,792.
    [58]J. F. A. Shackleford, CRC Handbook of Materials Science & Engineering; CRC Press:Boca Raton, FL,2001.
    [59]R. Riedel, Ed. Handbook of Ceramic Hard Materials; Wiley-VCH:New York, 2000.
    [60]R. W. Cumberland, M. B. Weinberger, J. J. Gilman, S. M. Clark, S. H. Tolbert, and R. B. Kaner, J. Am. Chem. Soc.2005,127,7264.
    [61]M. H. Manghnani, K. Katahara, E. S. Fisher, Phys. Rev. B 1974,9,1421.
    [62]A. Vegas, L. A. Martinez-Cruz, A. Ramos-Gallardo, A. Romero, Z. Kristallogr. 1995,210,574.
    [63]P. Hohenberg and W. Kohn, Phys. Rev.,1964,136(3B),864-871.
    [64]W. Kohn and L. J. Sham, Phys Rev.,1965,140(4A),1133-1138.
    [65]J. Callaway and N. H. March, Solid State Physics,1984,38,136-223.
    [66]J. Kohanoff and N. I. Gidopoulos, Handbook of Molecular Physics and Quantum Chemistry, Vol.2, edited by Stephen Wilson,2003, John Wiley & Sons, Ltd, pp532-568.
    [67]肖慎休、王崇愚、陈天朗,密度泛函理论的离散变分方法在化学和材料物理学中的应用,1998,科学出版社,pp10-11.
    [68]K. Capelle, arXiv:cond-mat/0211443,2003.
    [69]D. R. Hamann, M. Schluter, and C. Chiang, Phys. Rev. Lett.,1977,43,1494.
    [70]谢希德,陆栋,固体能带理论,1998,复旦大学出版社.
    [71]G. B. Bachelet, D. R. Hamann and M. Schluter, Phys. Rev. B,1982,26,4199.
    [72]D. Vanderbilt, Phys. Rev. B,1990,41,7892.
    [73]S.-H. Jhi. J. Ihm, S. G. Louie, and M. L. Cohen, Nature,1999,399,132.
    [74]P. F. McMillan, Nature Mater.2002.1,19.
    [75]S. Yamanaka, K. Hotehama. and H. Kawaji. Nature (London) 1998,392,580.
    [76]M. Chhowalla and H. E. Unalan, Nature Mater.2005,4,317.
    [77]Z. G. Wu, X.J. Chen, V.V. Struzhkin, and R.E. Cohen, Phys. Rev. B 2005,71, 214103.
    [78]M. B. Kanoun and S. Goumri-Said, Phys. Rev. B 2005,72,113103.
    [79]C. Z. Fan, S. Y. Zeng, L. X. Li, Z. J. Zhan, R. P. Liu, W. K. Wang, P. Zhang, and Y. G. Yao, Phys. Rev. B 2006,74,125118.
    [80]MATERIALS STUDIO, Version 3.2, Accelrys Inc.,2002.
    [81]J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett.1996,77,3865.
    [82]G. Kresse, J. Furthmlliier, and J. Hafner, Europhys. Lett.1995,32,729.
    [83]D. Alfe, G. D. Price, and M. J. Gillan, Phys. Rev. B,2001,64,045123.
    [84]D. Alfe, (1998). Program available at http://chianti.geol.ucl.ac.uk/_dario.
    [85]G. Kresse and J. Hafner, Phys. Rev. B 1993,47, R558.
    [86]G. Kresse and J. Hafner, J. Phys.:Condens. Matter 1994,6,8245.
    [87]G. Kresse and J. Furthmller, Phys. Rev. B 1996,54,11169.
    [88]J. F. Nye, Physical Properties of Crystals, Oxford University Press, Oxford, 1985.
    [89]D. M. Ceperley and B. J. Alder, Phys. Rev. Lett.1980,45,566.
    [90]W. Chen, J. S. Tse, and J. Z. Jiang, J. Phys.:Condens. Matter 2010,22,015404.
    [91]L.E. Toth, Transition Metal Carbides and Nitrides, Academic Press, New York, 1971.
    [92]S.T. Oyama (Ed.), The Chemistry of Transition Metal Carbides and Nitrides, Blacklie Academic & Professional, London,1996.
    [93]P. J. Dismukes, M. W. Yim, and S. V. Ban, J. Cryst. Growth 1972,13-14,365.
    [94]H. F. George and H. K. John, Phys. Rev.1954,93,1004.
    [95]H. Nakagawa, S. Nasu, H. Fujii, M. Takahashi, and F. Kanamaru, Hyperfine Interact.1991,69,455.
    [96]K. Suzuki, T. Kaneko, H. Yoshida, H. Morita, and H. Fujimori, J. Alloys Compd. 1995,224,232.
    [97]C. S. Sandu, M. Benkahoul, M. Parlinska-Wojtan, R. Sanjines, and F. Levy, Surf. Coat. Technol.2006,200,6544.
    [98]R. Sanjines, M. Benkahoul, C. S. Sandu, P. E. Schmid, and F. Lvy, Thin Solid Films 2006,494,190.
    [99]J. E. Sundgren and H. T. G. Hentzell, J. Vac. Sci. Technol. A 1986,4,2259.
    [100]W. S. Williams, in Progress in Solid State Chemistry, edited by M. Reiss and J. D. Mac Calden (Pergamon, New York,1971),Vol.6.
    [101]P. Hones, R. Sanjines, and F. Levy, Surf. Coat. Technol.1997,94-95,398.
    [102]R. Sanjines, P. Hones, and F. Levy, Thin Solid Films 1998,332,225.
    [103]W. Slysz, M. WJgrzecki, J. Bar, P. Grabiec, M. Gorska, V. Zwiller, C. Latta, P. Bohi, I. Milostnaya, O. Minaeva, A. Antipov,O. Okunev, A. Korneev, K. Smirnov, B. Voronov, N. Kaurova, G. Goltsman, A. Pearlman, A. Cross, I. Komissarov, A. Verevkin, and Roman Sobolewskic, Appl. Phys. Lett.2006,88,261113.
    [104]W. De La Cruz, J. A. Diaz, L. Mancera, N. Takeuchi, and G. Soto, J. Phys. Chem. Solids 2003,64,2273.
    [105]N. Takeuchi, Phys. Rev. B 2002,66,153405.
    [106]L. Mancera, J. A. Rodriguez, and N. Takeuchi, J. Phys.:Condens. Matter 2003, 15,2625.
    [107]C. Stampfl, W. Mannstadt, R. Asahi, and A. J. Freeman, Phys.Rev. B 2001,63, 155106.
    [108]A. Fernandez Guillermet, J. Haglund, and G. Grimvall, Phys. Rev. B 1992,45, 11557.
    [109]R. de Paiva, R. A. Nogueira, and J. L. A. Alves, Phys. Rev. B 2007,75,085105.
    [110]U. Essen, W. Klemm, and Z. Anorg. Allg. Chem.1962,317.25.
    [111]G.L. Olcese, J. Phys. F:Met. Phys.1979,9,569.
    [112]A.N. Christensen, Acta Chem. Scand.1990,44,851.
    [113]X. Chen, V.V. Struzhkin, Z. Wu, M. Somayazulu, J. Qian, S. Kung, A.N. Christensen, Y. Zhao, R.E. Cohen, H.-K. Mao, and R.J. Hemley, Proc. Natl. Acad. Sci. Am.2005,102,3198.
    [114]X. Chen, V.V. Struzhkin, S. Kung, H.-K. Mao, R.J. Hemley, and A.N. Christensen, Phys. Rev. B 2004,70,014501.
    [115]T. Mashimo, S. Tashiro, T. Toya, M. Nishida, H. Yamazaki, S. Yamaya, K. Oh-ishi, and Y. Syono, J. Mater. Sci.1993,28,3439.
    [116]E.K. Molodovskaya, V.F. Petrunin, I. Karimov, M. Karimov, T. Khaydarov, I.P. Borovinskaya, A.N. Pityulin, and A.G. Merzhanov, Fiz. Met. Metalloved.1975,40, 202.
    [117]I.P. Parkin and A.T. Rowley, Adv. Mater.1994,6,780.
    [118]T. Mashimo, S. Tashiro, M. Nishida, and K. Miyahara, E. Eto, Physica B 1997, 239,13.
    [119]T. Mashimo and S. Tashiro, J. Mater. Sci. Lett.1994,13,174.
    [120]N. Schonberg, Acta Metall.1954,2,427.
    [121]F. D. Murnaghan, Proc. Natl. Acad. Sci. U.S.A.1944,30,244.
    [122]Structure Reports, edited by W. B. Pearson (International Union of Crystallography, Oosthoek, Scheltema, and Holkema, Utrecht,1913-1993).
    [123]W. A. Harrison and G. K. Straub, Phys. Rev. B 1987,36,2695.
    [124]H. Y. Chung, M. B. Weinberger, J. B. Levine, A. Kavner, J. M. Yang, S. H. Tolbert, and R. B. Kaner, Science 2007,316,436.
    [125]H. Y. Chung, M. B. Weinberger, J. M. Yang, S. H. Tolbert, and R. B. Kaner, Appl. Phys. Lett.2008,92,261904.
    [126]H. Y. Gou, L. Hou, J. W. Zhang, H. Li, G. F. Sun, and F. M. Gao, Appl. Phys. Lett.2006,88,221904.
    [127]S. Chiodo, H. J. Gotsis, N. Russo, and E. Sicilia, Chem. Phys. Lett.2006,425, 311.
    [128]R. F. Zhang, S. Veprek, and A. S. Argon, Appl. Phys. Lett.2007,91,201914.
    [129]Y. X. Wang, Appl. Phys. Lett.2007,91,101904.
    [130]Y. C. Liang and B. Zhang, Phys. Rev. B 2007,76,132101.
    [131]S. Aydin and M. Simsek, Phys. Rev. B 80 (2009) 134107.
    [132]X. Q. Chen, C. L. Fu, M. Krcmar, and G. S. Painter, Phys. Rev. Lett.2008,100, 196403.
    [133]J. Wang and Y.-J. Wang, J. Appl. Phys.2009,105,083539.
    [134]F. Peng, W. M. Peng, H. Z. Fu, and X. D. Yang, Physica B 2009,404,3363.
    [135]F. Luo, Y. Cheng, G. F. Ji, and X. R. Chen, Chin Phys. Lett.2009,26,097101.
    [136]F. Luo, M. Fu, J. G. Fu, and X. R. Chen, Chin. Phys. B 2010,19,027101.
    [137]E. Rudy, F. Benesovsky, H. Nowotny, and LE Toth, Monatsh. Chem.1961,92, 692-700.
    [138]N. Natl, Stand (US) Monogr.1984,25,21,97.
    [139]H. Klesnar, TL Aselage, B. Morosin, and GH Kwei, J. Alloys Compd.1996, 241 180-186.
    [140]K. Spear and Blanks, Peen State University, University Park, Pennsylvania, USA, Private Communication, (1977).
    [141]B. Aronsson, Acta Chem. Scand.,1963,17,2036.
    [142]H. T. McSkimin and P. Andreatch, J. Appl. Phys.1972,43,985.
    [143]D. M. Teter, MRS Bull.1998,23,22.
    [144]P. Ravindran, L. Fast, P. A. Korzhavyi, B. Johansson, J. Wills, and O. Eriksson, J. Appl. Phys.1998,84,4891.
    [145]Y. X. Wang, M. Arai, and T. Sasaki, Appl. Phys. Lett.2007,90,061922.
    [146]B. Post, F. W. Glaser, J. Chem. Phys.,1952,20,1050.
    [147]B. Aronsson, E. Stenberg, J. Aselius, nature 1962,195,377.
    [148]F. W. Glaser, D. Moskowitz, B. Post, J. Met.1953,5,1119.
    [149]P. rogl, H. Nowstny, and F. Benesovsky, Monatshefte fur chemie 1971,102, 678.
    [150]B. Aronsson, E. Stenberg, J. Aselius, Acta Chem. Scand.1960,14,733.
    [151]D. Music, J.M. Schneider, Scr. Mater.2005,52,29.
    [152]Atsushi Togo, Fumiyasu Oba, and Isao Tanaka, Phys. Rev. B 2008,78,134106.
    [153]K. Parlinski, Z. Q. Li, and Y. Kawazoe, Phys. Rev. Lett.1997,78,4063.
    [154]G. Kresse and Furthmuller, J. Comput. Mater. Sci 1996,6,15.
    [155]J. Haines, J. M. Leger, and G. Bocquillon, Annu. Rev. Mater. Res.2001,31,1.
    [156]J. P. Watt and L. Peselnick, J. Appl. Phys.1980,51,1525.
    [157]A. N. Kolmogorov and S. Curtarolo, Phys. Rev. B 2006,74,224507.
    [158]Z. H. Ding, Private communication.
    [159]X. F. Hao, Y. H. Xu, Z. J. Wu, D. F. Zhou, X. J. Liu, X. Q. Cao, and J. Meng, Phys. Rev. B 2006,74,224112.
    [160]X. J. Guo, L. Li, Z. Y. Liu, D. L. Yu, J. L. He, R. P. Liu, B. Xu, Y. J. Tian, and H. T. Wang, J. Appl. Phys.2008,104,023503.
    [161]F. M. Gao, Phys. Rev. B 2006,73,132104.
    [162]L. He, E. D. Wu, H. T. Wang, R. P. Liu, and Y. J. Tian, Phys. Rev. Lett.2005,94, 015504.
    [163]J. S. Tse. submitted to J. Superhard Mat.
    [164]F. V. Grigoryev et al., Zh. Eksp. Theor. Fiz. Pisma Rad.1972,16,286.
    [165]J. C. Jamieson, A. W. Lawson, and N. D. Nachtrieb, Rev. Sci. Instrum.1959,30, 1016.
    [166]C. E. Weir, E. R. Lippincott, A. Van Valkburg, and E. N. Bunting, J. Res. Natl. Bur. Stand., Sec. A 1959,63 55.
    [167]A. Van Valkburg, Conference Internationale Sur-ies-Hautes Pressions, Le-Creusot, Saone-et-Loire, France,1965.
    [168]H. K. Mao and P. M. Bell, Science 1978,200,1145.
    [169]R. A. Forman, G. J. Piermarini, J. D. Barnet, and S. Block, Science 1972,176, 284.
    [170]J. D. Barnet, S. Block, and G. J. Piermarini, Rev. Sci. Instrum.1973,44,1.
    [171]G. J. Piermarini and S. Block, Rev. Sci. Instrum.1975,46,973.
    [172]G. J. Piermarini, S. Block, J. D. Barnet, and R. A. Forman, J. Appl. Phys.1975, 46,2774.
    [173]R. A. Noack and W. B. Holzapfel, in High Pressure Science and Technology, edited by K. D. Timmerhaus and M. S. Barbar (Plenum, New York), Vol.1, p.748.
    [174]H. K. Mao and P. M. Bell, Science 1976,191,851.
    [175]H. K. Mao and P. M. Bell, in Carnegie Institution of Washington Year Book 1978,77,904.
    [176]A. L.Ruoff, in High Pressure Science and Technology, edited by K. D. Timmerhaus and M. S. Barber (Plenum, New York), Vol.1, p.754.
    [177]V. E. Bean, S. Akimoto, P. M. Bell, S. Block, W. B. Holzapfel, J. C. Jamieson, M. H. Manghnani, M. F. Nicol, G.. J. Piermarini, and S. M. Stishov, in High Pressure in Research and Industry, Proceedings of the 8th AIRAPT Conference, Uppsala, edited by C. M. Beckman, T. Johannisson and L. Tegner (ISBN, Swedan), Vol. Ⅰ, p. 144.
    [178]G. J. Piermarini, S. Block, and J. S. Barnet, J. Appl. Phys.1973,44,5377.
    [179]H. K. Mao, A. Mao, and P. M. Bell, Abstract of the 8th AIRAPT Conference, Uppsala, edited by C. M. Beckman, T. Johannisson, and L. Tegner (ISBN, Swedan), Vol. Ⅱ, p.453.
    [180]D. H. Liebenberg, Phys. Lett. A.1979,73,74.
    [181]谢鸿森《地球深部物质科学导论》科学出版社.
    [182]Jayaramana, Review of Scientific Instruments,1986,57 (6):1013-1031.
    [183]J. A. Xu and E. Huang, Review of Scientific Instruments,1994,65(1):204-207.
    [184]J. A. Xu, H. K. Mao, and Moissanite, Science,2000,290:783-785.
    [185]P. C. Sahu, K. V. Thomaskutty, and N. V. C. Shekar et al., Review of Scientific Instruments,1993,64(10):3030-3031.
    [186]H. E. Lorenzana, M. Bennahmlas, and H. Radousky, Review of Scientific Instruments,1994,65(11):3540-3543.
    [187]A. W. Lawson and T. Y. Tang, Rev. Sci. Instrum.1950,21,815.
    [188]G. J. Piermarini and C. E. Weir, J. Res. Natl. Bur. Stand., Sec. A.1962,65,325.
    [189]C. E. Weir, S. Block, and G. J. Piermarini, J. Res. Natl. Bur. Stand., Sec. A. 1965,69,275.
    [190]L. Merrill and W. A. Bassett, Rev. Sci. Instrum.1974,45,290.
    [191]B. Buras, J. Staun, S. Olsen, L. Gerward, G.. Will, and E. Hinze, J. Appl. Crystallogr.1977,10,431.
    [192]E. F. Skelton, I. Spain, S. C. Yu, C. Y. Liu, and E. R. Carpenter, Jr., Rev. Sci. Instrum.1977,48,879.
    [193]A. L. Ruoff and M. A. Baublitz, Jr., in Physics of Solids Under High Pressure, edited by J. S. Schilling and R. N. Schelton (North-Holland, Amsterdam),p.81,1981.
    [194]M. A. Baublitz, V.Arnold, and A. L. Ruoff, Rev. Sci. Instrum.1981,52,1616.
    [195]I. L. Spain, S. B. Qadri, C. S. Menoni, A. W. Webb, and E. F. Skelton, in Physics of Solids Under High Pressure, edited by J. S. Schilling and R. N. Schelton (North-Holland, Amsterdam), p.73,1981.
    [196]M. H. Manghnani, E. F. Skelton, L. C. Ming, J. C. Jamieson, S. Qadri, D. Schiferl, and J. Balogh, in Physics of Solids Under High Pressure, edited by J. S. Schilling and R. N. Schelton (North-Holland, Amsterdam), p.47,1981.
    [197]Y. Fujii, O. Shimomura, K. Takemura, S. Hoshino, and S. Minomura, J. Appl. Crystallogr.1980,13,284.
    [198]J. W. Brasch, A. J. Melveger, and E. R. Lippincott, Chem. Phys. Lett.1968,2, 99.
    [199]D. M. Adams, S. J. Payne and K. M. Martin, Appl. Spectrosc.1973,27,377.
    [200]C. H. Whitfield, E. M. Brody, and W. A. Bassett, Rev. Sci. Instrum.1976,47, 942.
    [201]B. Welber, Rev. Sci. Instrum.1976,47,183.
    [202]B. Welber, Rev. Sci. Instrum.1977,48,395.
    [203]D. M. Adams and S. K. Sharma, J. Phys.1977,10,10.
    [204]D. M. Adams and S. K. Sharma, J. Phys. E 1977,10,838.
    [205]K. Syassen and R. Sonnenschein, Rev. Sci. Instrum.1982,53,644.
    [206]A. Blacha, M. Cardona, N. E. Christensen, S. Ves, and H. Oyerhof, Solid State Commun.1982,43,183.
    [207]P. Y. Yu and B. Welber, Solid State Commun.1978,25,209.
    [208]D. Olego, M. Cardona, and H.Muller, Phys. Rev. B 1980,33,894.
    [209]F E. Huggins, H. K. Mao, and D. Virgo, in Carnegie Institution of Washington Year Book 1975,74,405.
    [210]W. A. Bassett and T. Takahashi, Am. Mineral.1965,50,1576.
    [211]L. G. Liu and W. A. Bassett, J. Geophys. Res.1975,80,3777.
    [212]L. Ming and W. A. Bassett, Rev. Sci. Instrum.1974,45,1115.
    [213]A. W. Webb, D. U. Gubser, and L. C. Towle, Rev. Sci. Instrum 1976,47,59.
    [214]R. W. Shaw and M. Nicol, Rev. Sci. Instrum 1981,52,1103.
    [215]H. K. Mao and P. B. Bell, in Carnegie Institution of Washington Year Book 1979,78,659.
    [216]V. D iatschenko and C. W. Chu, Science 1981,212,1393.
    [217]J. R. Ferraro. Vibrational Spectroscopy at High External Pressures. Academic Press, London,1984.
    [218]A. H. Shen, W. A. Bassett, I. M. Chou, Y Syono, and M. H. Manghnani, eds. Tokyo/Washington:Terra Scientific Publishing Company (TERRA PUB)/American Geophysical Union [Z].1992,61.
    [219]A. H. Shen, W. A. Bassett, and I. M. Chou, American Mineralogist,1993,78, 694.
    [220]I. M. Chou, J. G. Blank, and A. F. Foncharov et al., Science 1998,281,809.
    [221]D. S. Mcclure, The Journal of Chemical Physics,1962,36,2757-2779.
    [222]J. H. Eggert, K. A. Goettel, and I. F. Silvera, Physical Review B,1989,40, 5724-5732.
    [223]H. K. Mao, J. Xu, and P. M. Bell, Journal of Geophysical Research,1986,91, 4673-4676.
    [224]N. H. Chen and I. F. Silvera, Review of Scientific Instruments,1996,67(12), 4275-4278.
    [225]L. W. Xu, R. Z. Che, and C. Q. Jin, Chinese Physics Letters,2000,17,555-557.
    [226]M. Hanfland, K. Syassen, and S Faby et al., Physical Review B,1985,31, 6896-6899.
    [227]H. Boppart, J. Straaten, and I. F. Silvera, Physical Review B,1985,32, 1423-1425.
    [228]C. Schmidt and M. A. Ziemann, American Mineralogist,2000,85,1725-1734.
    [229]D. L. Heinz, Geophysical Research Letters,1990,17(8),1161-1164.
    [230]A. Dewaele, G. Fikuet, P. Gillet, Review of Scientific Instruments,1998,69(6), 2421-2426.
    [231]A. B. Belonoshko and L. S. Dubrovinsky, American Mineralogist,1997,82, 441-451.
    [232]D. Andrault, G. Fikuet, and J. P. Itie et al., European Journal of Mineralogy, 1998,10(5),931-940.
    [233]J. A. Xu, High Temperature-High Pressure,1987,19,661-664.
    [234]B. J. Baer, C. S. Yoo, and H. Cynn, Applied Physics Letters,2000,76(25), 3721-3722.
    [235]H. T. Haselton, I. M. Chou, and A. H. Shen et al., American Mineralogist,1995, 80,1302-1306.
    [236]W. A. Bassett, Tzy-Chung Wu, and I-Ming Chou et al., The Geochemical Society, Special Publication,1996(5),261-272.
    [237]F. P. Bundy, Journal of Geophysica lResearch,1980,85:6930-6936.
    [238]K. Brister, Y. Vohra, and A. Ruoff, Review of Scientific Instruments,1988,59(2), 318-321.
    [239]A. L. Ruoff, H. Xia, and Luoh et al, Review of Scientific Instruments,1990, 61(12),3830-3833.
    [240]H. K. Mao and P. M. Bell, Carnegie Institute Washington Yearbook,1975,74, 402-405.
    [241]A. Saul and W. Wagner, Journal of Physical and Chemical Reference Data,1989, 18,1537-1565.
    [242]W. Wagner and A. Saul, Journal of Physical and Chemical Reference Data,1994, 23,515-527.
    [243]H. Gleiter, Acta mater.2000,48,1-29.
    [244]M. Philip, Rep. Prog. Phys.2001,64,297-381.
    [245]L. Ibarra and M. Alzorriz, Polym. Int.1996,48,550-586.
    [246]L. Ibarra and M.Alzorriz, J. Appl. Polym. Sci.2002,84,605-615.
    [247]L. Ibarra and M. Alzorriz, Polymer 2002,43,1649-1655.
    [248]S. Ohno, N. Aburatani, and N. Ueda, DE Parent 1980,2914,058.
    [249]S. Ohno, N. Aburatani, and N. Ueda, DE Parent 1981,4247,412.
    [250]R. Hagel, and K. Redecker, US 1982, Parent 4,363,679.
    [251]N. Uekawa, J. Kajiwara, N. Mochizuki, K. Kakegawa, and Y. Sasaki, Chem. Lett.2001,7,606-607.
    [252]N. Uekawa, N. Mochizuki, J. Kajiwara, F. Mori, Y. J. Wu, and K. Kakegawa, Phys. Chem. Chem. Phys.2003,5,929-934.
    [253]J. Z. Jiang, R. Lin, K. Nielsen, S. Mφrup, D. G. Rickerby, and R. Clasen, Phys. Rev. B 1997,55,14830-14835.
    [254]H. K. Mao, P. M. Bell, J. W. Shaner, and D. J.Steinberg, J. Appl. Phys.1978,49, 3276.
    [255]G. Kresse and D. Joubert, Phys. Rev. B 1999,59,1758.
    [256]N. G. Vannerberg, Ark. Kemi 1959,14,119.
    [257]M. Sun, W. C. Hao; C. Z. Wang, and T. M. Wang, Chem. Phys.Lett.2007,443, 342-346.
    [258]S. Lindross and M. Leskela, Inter. J. Inorg. Mater.2000,2,197.
    [259]J. A. Majewski, S. Birner, A. Trellakis, M. Sabathil, and P. Vogl, Phys. Status Solidi C 2004,1,2003.
    [260]L. E. Brus, J. Chem. Phys.1984,80,4403.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700