金属硼化物电化学行为的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电池作为一种方便的电能来源,被广泛地应用在各种各样的电子设备中。随着便携式电子设备的迅速发展,及其日益小型化、微型化,人们对化学电源的容量提出了越来越高的要求。
     人们通过研究发现,金属硼化物中的硼元素处于活化状态,在一定的条件下可以发生电化学氧化反应,给出很高的电化学容量。
     本文进一步研究了二硼化钛、Fe-B UFAAP和Co-B UFAAP的电化学行为,同时用XRD、XPS和ICP等分析方法研究了发生放电反应后,在电极表面和电解液中生成的产物,并对电极反应的机理进行了探讨。
     当放电速率为100mA/g时,二硼化钛电极在30%KOH溶液中的放电容量可达800mAh/g;二硼化钛电极在20%KF溶液中的第二个放电平台的放电量可达1400mAh/g。
     Fe-B UFAAP和Co-B UFAAP在KOH溶液中也表现出了一定的电化学活性,当放电速率为100mA/g时,Fe-B UFAAP电极在30%KOH溶液中的放电量为1200 mAh/g;Co-B UFAAP在30%KOH溶液中的放电量为900 mAh/g。
     Fe-B UFAAP和Co-B UFAAP电极在30%KOH溶液中均具有一定的循环充放电能力,但是放电容量随循环次数的增加迅速降低。
     二硼化钛、Fe-B UFAAP和Co-B UFAAP作为非水锂离子电池的负极也表现出了一定的循环性能。
     我们通过研究发现,金属硼化物在水溶液中具有很高的电化学容量,在非水溶液中也具有一定的循环能力,是一种很有潜力的电极材料。
Electrochemical batteries have been serving as convenient power sources for various portable electronic devices.The developing of portable electronic devices demands searching for new batery systems with higher energy density.
     It has been found that the boron element in metal borides is activated,and can be electrochemically oxidized with very high discharge capacity.
     We further studied the electrochemical behaviors of TiB2,Co-B UFAAP and Fe-B UFAAP,and the discharge products by XRD,XPS and ICP.We also discussed the possible mechanism of discharge reaction.
     Discharged at a constant rate of 100mA/g, TiB2 electrode gives out a discharge capacity of 800mAh/g in 30%KOH solution.In 20%KF solution,the discharge capacity of the second discharge stage can reach as high as 1400mAh/g.
     Co-B UFAAP and Fe-B UFAAP also exhibit electrochemical activities.When discharged at 100mA/g in 30%KOH solution, the discharge capacity of Fe-B UFAAP is 1200mAh/g,and Co-B UFAAP, 900mAh/g.
     Both Fe-B UFAAP and Co-B UFAAP anode show certain capability of recycling performance,but the discharge capacity decreased sharply with the increasing of cycling number.
     TiB2,Co-B UFAAP and Fe-B UFAAP also exhibit certain recyling performance as the anodes of Li-ion batteries in organic electrolyte.
     Our studies showed that metal borides have very high discharge capacity in water solutions and exhibit certain recycling capability in organic electrolyte.They may become very attractive anode materials.
引文
[1](美)Dean J 主编,魏俊发等译,兰氏化学手册,北京:科学出版社,2003年
    [2]Vajeeston P,Ravindran P, Ravi C, et al, Electronic-structure, bonding,and ground-state properties of AlB2-type transition-metal diborides,Physical Review B,2001,63: 045115
    [3]北京师范大学无机化学教研室等编,无机化学(下),北京:高等教育出版社,2003
    [4]黄佩丽,田荷珍著,基础元素化学,北京:北京师范大学出版社,1994
    [5]Gordon W, Soffer S, A galvanomagnetic investigation of TiB2, NbB2 and ZrB2,Journal of Physical Chemistry Solids,1975, 36: 627~631
    [6][美]科顿 F,[英]威尔金森 G 著,高等无机化学(上册),北京:人民教育出版社,1981
    [7]刘志坚,曲选辉,黄伯云等,新型 LiB 化合物晶体结构和形貌的研究,粉末冶金材料科学与工程,2000,5(1): 1~4
    [8]Worle M, and Nesper R,Infinite, unbranched borynide chains in LiB, isoelectronic to polyyne and polycumulene, Angewandte Chemie -International Edition in English,2000, 39(13):2349~2353
    [9]Liu Zhijian,Qu Xuanhui,Huang Baiyun et al, Crystal Structure and Morphology of a New Compound LiB, Journal of Alloys and Compounds, 2000, 311(2): 256~264
    [10]熊炳昆,杨新民,罗方承,张伟编著,锆铪及其化合物的应用,北京:冶金工业出版社,2002
    [11]龚毅生等著,无机化学丛书(第二卷),北京:科学出版社,1990
    [12]钟凤兰,王荣泰,张瑞林,富铁硼化物Fe2B的电子理论研究,科学通报,1996,41(8):758~760
    [13]钟凤兰,富铁硼化物 FeB 的电子理论研究,科学通报,1995,40(20):1845~1848
    [14]章桥新,TiB2的价电子结构及其性能研究,陶瓷学报,2000,21(3):159~161
    [15]刘利,傅正义,硼化钛系复合材料研究进展,粉末冶金技术,2000,18(3):217~220
    [16]李庆余,赖延清,常温机械化学合成硼化钛,轻金属,2002,9:46~47
    [17]吴年强,林硕,叶仲屏,机械合金化中的固态反应,材料导报,1999,13(6):12~14
    [18]徐强,张幸江,曲伟,韩杰才,SHS/PHIP法合成TiB2陶瓷的研究,高技术通讯,2002,8:71~74
    [19]Radev D, and Klissurski D, Mechanochemical Synthesis and SHS of Diborides of Titanium and Zirconium, Journal of Materials Synthesis and Processing, 2001,9(3): 131~136
    [20]于志强,杨振国,TiB2- Al2O3复合粉体的自蔓延高温还原合成与表征,硅酸盐学报,2005,33(4):407~410
    [21]方舟,王皓,傅正义,Zr-B体系自蔓延高温合成ZrB2陶瓷粉末,硅酸盐学报,2005,33(8):1016~1018
    [22]袁润章,自蔓延高温合成技术研究进展,武汉:武汉工业大学出版社,1994
    [23]方舟,王皓,傅正义,Zr-B2O3-Mg体系自蔓延高温合成ZrB2陶瓷粉末,硅酸盐学报,2004,32(8): 755~758
    [24]包淑娟,TiB2粉料的还原合成与酸洗纯化研究,材料开发与应用,2000,(5):17~21
    [25]罗学涛,谢小林,邓克明,TiB2粉料的合成与纯化研究,南昌航空工业学院学报(自然科学版),2001,15(1):7~10
    [26]刘利,高强度高导电陶瓷金属复合材料的自蔓延高温合成及致密化研究,硕士学位论文,武汉工业大学,1999
    [27]王为民,硼化钛陶瓷的自蔓延高温合成与加工,博士学位论文,武汉工业大学,1999
    [28]孙晓东,傅正义,袁润章,TiH2对TiB2自蔓延高温合成过程的影响,粉末冶金技术,1998,16(1): 17-20
    [29]张幸江,自蔓延高温燃烧合成 TiC-Ni 梯度功能材料的研究,博士学位论文,哈尔滨工业大学,1999
    [30]Shigeru Okada, Tetsuzo Atoda, Iwami Higashi, et al, Preparation of single crystals of MoB2 by the aluminium-flux technique and some of their properties, Journal of Materials Science, 1987, 22:2993~2999
    [31]谷云乐,溶剂热合成硼化物及非金属含硼化合物纳米材料,博士学位论文,中国科学技术大学,2003
    [32]Yunle Gu,Yitai Qian,Luyang Chen, et al, A mild solvothermal route to nanocrystalline titanium diboride, Journal of Alloys and Compounds, 2003, 352: 325~327
    [33]Jianyi Shen, Zhiyu Li, Qijie Yan, et al, Reactions of Bivalent Metal Ions with Borohydride in Aqueous Solution for the Preparation of Ultrafine Amorphous Alloy Particles, Journal of Physical Chemistry, 1993, 97: 8504~8511
    [34]Linderoth S, Morup S, Amorphous TM1-xBx alloy particles prepared by chemical reduction(invited), Journal of Applied Physical, 1991, 69(8): 5256~5261
    [35]Well S, Charles S, Morup S, et al, A study of Fe-B and Fe-Co-B alloy particles produced by reduction with hydride,Journal of Physics: Condensed Matter, 1989, 1(43): 8199~8208
    [36]Hu Z, Fan Y, Chen F, et al, Amorphous iron-boron powders prepared by chemical reduction of mixed-metal cation solutions:dependence of composition upon reaction temperature, Journal of The Chemical Society:Chemical Communications, 1995, 2: 247~247
    [37]Hu Z, Hsia Y, Zheng J, et al, A study of Fe-Ni-B ultrafine alloy particles produced by reduction with borohydride, Journal of Applied Physics, 1991, 70: 436~438
    [38]Hu Z, Fan Y and Chen Y, Materials Science(English), 1994, B25: 193
    [39]Hu Z, Fan Y and Chen Y, Preparation and characterization of ultrafine amorphous alloy particles, Applied Physics A, 1999, 68:225~229
    [40]胡征,韩钰,范以宁等,固相化学反应制备纳米材料的方法,中国专利,96117127.8,1997-06-25
    [41]张文保,倪生麟,化学电源导论,上海:上海交通大学出版社,1992
    [42]Dell R, Batteries: fifty years of materials development, Solid State Ionics, 2000, 134: 139~158
    [43]Chun-Chen Yang and Sheng-Jen Lin, Improvement of high-rate capability of alkaline Zn–MnO2 battery, Journal of Power Sources, 2002, 112: 174~183
    [44]Licht S, Ghosh S, and Naschitz V, Hydroxide activated AgMnO4 alkaline cathodes, alone and in combination with Fe(Ⅵ) super-iron, BaFeO4, Electrochemical and Solid-State Letters, 2001, 4: A209~A212
    [45]Licht S, Wang B, and Ghosh S, Energetic iron(Ⅵ) chemistry : the super -iron battery, Science, 1999, 285: 1039~1042
    [46]Amendola S, High Energy Density Boride Batteries, U. S. Patent, 5948558, 1999-09-07
    [47]Amendola S, High Energy Density Boride Batteries, U. S. Patent, 6468694,2002-10-22
    [48]Yang H X, Wang Y D and Ai X P, et al, Metal Borides: Competitive High Capacity Anode Materials for Aqueous Primary Batteries, Electrochemical and Solid-State Letters, 2004, 7(7): A212~A215
    [49]王雅东,艾新平,杨汉西,过渡金属二硼化物作为高容量负极的研究,电化学,2005,11(1):16~19
    [50]王雅东,艾新平,杨汉西,超细非晶态 Fe-B 和 Co-B 合金粒子的电化学行为,电化学,2004,10(2):175~180
    [51]Wang Y D, Ai X P, and Cao Y L, et al, Exceptional electrochemical activities of amorphous Fe-B and Co-B alloy powders, Electrochemistry Communications, 2004, 6: 780~784
    [52]Wang Y D, Ai X P, and Yang H X, Electrochemical Hydrogen Storage Behaviors of Ultrafine Amorphous Co-B Alloy Particles, Chem.Mater., 2004, 16(24): 5194~5197
    [53]管从胜,杜爱玲,杨玉国, 高能化学电源, 北京: 化学工业出版社, 2005, 3~3
    [54]郭炳馄, 锂离子电池, 湖南:中南大学出版社,2002, 79~80
    [55]Gao Y, Dahn J R, Synthesis and Characterization of Li1+XMn2—XO4 for Li-ion Battery Applications,Electrochemical Society, 1996, 143: 100~114
    [56]Manthiram A, Electrode Materials for Rechargeable Lithium Batteries, Journal of Materials Chemistry, 1997, 1:43~46
    [57]Winter M, Besebhard J, Spahr M E, et al, Insertion Electrode Materials for Rechargeable Lithium Batteries, Advanced Materials,1998,10(10): 725~736
    [58]颜剑,苏玉长,苏继桃等,锂离子电池负极材料的研究进展,电池工业,2006,11(4),277-281
    [59]吴宇平,万春荣,姜长印, 锂离子电池碳负极材料的制备,电池,2000,30(4):143—146
    [60]Spahr M E, Wilhelm H, Joho F, et al, Purely Hexagonal Graphite and the face Modifications on its Electrochemical Lithium Insertion Properties , Interface Electrochemical Society Interface, 2002, 149:A960~A966
    [61]吴宇平,姜长印,万春荣等, 液相氧化法制备锂离子电池负极材料, 电源技术,2000,4(5):280~282
    [62]阚素荣,吴国良,卢世刚等, 国产石墨作为锂离子蓄电池负极材料的性能,电源技术, 2002, 26(2): 66~66
    [63]Kuribyashi I, Yokoyama M, Yamashita M, Battery characteristics with various carbonaceous materials, Journal of Power Sources,1995,54(1):1~5
    [64]仇卫华,张刚,卢世刚等, 锂离子电池负极材料——树脂包覆石墨的性能,电源技术,1999,23(1):7~7
    [65]Shirasaki T, Derre A,Guerin K, et al, Chemical and electrochemical intercalation of lithium into boronated carbons,Carbon,1999,37:1961~1967
    [66]Tanaka U,Sogabe T,Sakagoshi H, et al, Anode property of boron—doped graphite materials for rechargeable lithium—ion batteries, Carbon,2001,39:931~936
    [67]Brouse T, Retoux R,Herterich U,Thin—film crystalline SnO2—lithium electrodes, Journal of the Electrochemical Society, 1998, 145(1):1~4
    [68]Nuli Y N,Zhao S L,Qin Q Z, Nanocrystalline tin oxides and nickel oxide film anodes for lithium ion batteries,Journal of Power Sources,2003, 114: 113~120
    [69]Wang Y,Lee J Y, Preparation of SnO2—graphite nanocomposite anodes by ureamediated hydrolysis, Electrochemistry Communications,2003,5(4):292~296
    [70]Idota I,Kubota T,Matsufuji A, et al, Tin—based amorphous oxide:a high—capacity lithium—ion storage material, Science,1997,276:1395~1397
    [71]Sarradin J,Benjelloun N,Taillades G, et al, Tin/tin oxide thin film electrodes for lithium ion batteries , Journal of Power Sources, 2001,97~98:208~210
    [72]Wan K,Li S F,Gao Z, et al, Tin—based oxide anode for lithium—ion batteries with low irreversible capacity,Journal of Power Sources,1998, 75: 9~12
    [73]Tamura N,Ohshita R,Fujimoto M, et al, Study on the anode behavior of Sn and Sn—Cu alloy thin—film electrodes, Journal of Power Sources, 2002, 107:48~55
    [74]吴国涛,王春生,齐仲甫等,巴基管嵌锂电极性能的研究,电化学,1998,4:313~317
    [75]Wu G T,Wang C S,Zhang X B, et al, Lithium inserting into CuO/carbon nanotubes, Journal of Power Sources, 1998, 75: 175~179
    [76]Takeda Y,Yang J,Imanshi N, Advanced composite anodes containing lithium cobalt nitride for secondary lithium, Solid State Ionics,2002, 152~153: 35~41
    [77]刘业翔,胡国荣,禹筱元, 锂离子电他研究与开发的新进展, 电池,2002,32(5):269~273
    [78] Mao O, and Dahn J, Mechanically alloyed Sn-Fe-(-C) powders as anode materials for Li-ion batteries Ⅰ:the Sn2Fe-C system, Journal of The Electrochemical Society, 1999, 146: 405~413
    [79]Netz A, Huggins A, Weppner W, The formation and properties of amorphous silicon as negative electrode reactant in lithium systems, Journal of Power Sources, 2003, 119-121: 95~100
    [80]Xing W B, Wilson A, Eguchi K, et al, Pyrolyzed polysiloxanes for use as anode materials in Lithium-ion batteries, Journal of The Electrochemical Society, 1997, 144: 2410~2416
    [81]Kim H, Choi J, Sohn H, et al, The insertion mechanism of lithium into Mg2Si anode material for Li-ion batteries,Journal of The Electrochemical Society, 1999, 146: 4401~4405
    [82]Li H, Huang X J, Chen L Q, et al, Solid State Ionics, 2000, 135: 181
    [83]Il-seok Kim, Blomgren G, and Kumta P, Nanostructured Si/TiB2 Composite Anodes for Li-ion Batteries, Electrochemical and Solid-State Letters, 2003, 6(8): A157~A161
    [84]Hanai K, Liu Y, Imanishi N, et al, Electrochemical studies of the Si-based composites with large capacity and good cycling stability as anode materials for rechargeable lithium ion batteries,Journal of Power Sources, 2005, 146: 156~160
    [85]Sanchez P, Belin C, Crepy C, et al, Preparation and characterization of lithium-boron alloys:electrochemical studies as anodes in molten salt media and comparison with pure lithium-involving systems, J.Mater.Sci., 1992, 27(1): 240~241
    [86]Robert A Huggins, Alternative materials for negative electrodes in lithium systems, Solid State Ionics, 2002, 152—153: 61~68
    [87]Sanchez P, Belin C, Crepy C, et al, Electrochemical studies of Lithium-boron alloys in non-aqueous media—comparison with pure lithium, Journal of Applied Electrochemistry, 1989, 19(3): 421~428
    [88]尹健,LiB 负极材料结构及性能研究,硕士学位论文,中南大学,2005
    [89]Thomas D, Ronald J, and Richard C, Nonaqueous Electrochemistry of Magnesium:Applications to Energy Storage,J.Electrochem. Soc., 1990, 137(3): 775~780
    [90]Huatang Yuan, Lifang Jiao, Jiansheng Cao, et al, Development of Magnesium-Insertion Positive Electrode for Rechargeable Magnesium Batteries, J.Mater.Sci.Technol., 2004, 20(1): 41~45
    [91]De-Cheng Tian and Xiao-Bing Wang, Electronic structure and equation of state of TiB2, J.Phys.:Condens.Matter., 1992, 4: 8765~8772

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700