铂胶体的制备及其对氯苯催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
粒径在1~10 nm的纳米金属簇在学术界和工业中特别是催化领域受到了广泛的关注。表面活化剂稳定的纳米簇并不稳定,甚至在比较温和的反应条件下都会发生团聚,而高分子稳定的金属簇是稳定的,因此可以应用于许多催化反应中。
     氯代芳烃毒性极大,并在环境中难以降解。本文选择低氯取代的一氯代苯为研究对象,进行了以下几个方面的研究:
     首先,以PVP为保护剂,甲醇为还原剂,甲醇和水为混合溶剂,通过调节H_2PtCl_6·6H_2O的量、PVP用量以及回流过程中搅拌停止的时间等制备得到一系列不同的Pt纳米金属胶体催化剂,并用透射电镜进行了表征。PVP用量以及H_2PtCl_6·6H_2O的量发生改变时,胶体粒径没有发生明显的变化,但是,胶体制备过程中PVP用量过少时,胶体颗粒呈现一定程度的聚集。在胶体制备过程中,停止搅拌时间越长,得到的胶体粒径越大,分布越宽,当停止搅拌时间为30 s时,胶体的平均粒径由3.63 nm增大至4.39 nm,粒径分布最宽(σ= 0.78 nm)并且出现大量胶体粒子聚集的现象。
     第二,在常温常压下,以PVP-Pt胶体为催化剂,进行了氯苯的催化氢化反应。PVP-Pt胶体加速了氯苯的还原脱氯。反应可以在温和的条件下有效进行。氯苯10 h内脱氯率达到99.34 %,对环己烷的选择性达到98.09 %,反应15 h时,氯苯完全转化为环己烷。催化剂的制备条件及反应条件的改变对氯苯的脱氯反应有明显的影响。
     1、胶体制备过程中,PVP用量不同得到的金属胶体的催化性能排序如下:PVP-Pt4>PVP-Pt5>PVP-Pt3。
     2、反应过程中补加PVP,氯苯的转化率及对环己烷的选择性都有一定程度的下降,这说明PVP对反应有轻微的阻碍作用;在反应体系中增大补加PVP的用量(PVP-Pt42,PVP:Pt = 80:1),对环己烷的选择性下降,但是氯苯的转化率几乎没有发生变化。数据表明,PVP更易影响反应的选择性。
     3、胶体制备过程中金属前体的浓度降低,反应的转化率,选择性都随之下降,对环己烷的选择性下降尤为明显。
     4、催化剂制备过程中停止搅拌时间不同,得到的催化剂的催化性能明显不同,停止搅拌时间越长,催化剂的催化性能越差。当停止搅拌时间为30 s时,催化剂的平均粒径由3.63 nm增大至4.39 nm,出现大量聚集的现象。氯苯的转化率由99.34 %降低到79.06 %,对环己烷的选择性也由98.09 %降低到74.40 %。
     5、在底物量相同的情况下,催化剂浓度低于1.7×10~(-6) mol/mL时,氯苯的转化率随着催化剂浓度的增加呈非线性增加,当催化剂浓度高于1.7×10~(-6) mol/mL时,氯苯的转化率不受催化剂浓度的影响;在催化剂浓度相同的情况下,氯苯转化率对氯苯浓度是一级反应。
     6、通过氯苯脱氯的动力学研究,发现氯苯的脱氯符合准一级反应,速率常数为0.5026 h~(-1)。
     第三,研究了金属离子对PVP-Pt催化氯苯氢化反应的修饰作用。结果表明,在氯苯选择氢化为环己烷的反应中,加入的金属阳离子能显著影响铂胶体催化剂的催化性能。其中Al3+的修饰作用最好,Al3+使氯苯的转化率由77.49 %提高到90.64 %,对环己烷的选择性由65.58 %提高到72.24 %。
     第四,研究了有机配体和金属络合物对PVP-Pt催化氯苯氢化反应的修饰作用。结果表明,金属配合物和配体的引入对催化剂的催化活性和选择性有很大的影响。当以纯PVP-Pt胶体为催化剂时,氯苯的转化率为77.49 %,对环己烷的选择性为65.58 %。乙酰丙酮配体可以同时提高催化活性及选择性,催化活性由77.49 %提高到90.85 %,选择性由65.98 %提高到68.45 %。研究表明,金属配合物对金属胶体的修饰作用并不仅仅是金属离子和配体的简单加和。金属配合物效应与金属络合物、反应底物、反应产物和金属催化剂之间的相互作用有关。由于金属配合物存在逐级解离,产生了配体和金属离子不同配比的多级配合物,从而导致金属配合物的修饰作用机理十分复杂。
Metal nanoclusters in the range of 1-10 nm are very important in academia and industry, especially in the field of catalysis. However, the surfactant-stabilized metal clusters are not stable and intend to agglomerate during reaction even under very mild conditions. Thus, the polymer-stabilized metal clusters are extremely important for their catalytic use.
     Chlorinated organic compounds have been used on a large scale in chemical, petrochemical, and electronic industries. Those compounds are widespread environmental contaminants. They are of great health and environmental concern besaused of their acute toxicity and strong bioaccumulation potential. Among all, the chlorinated aromatic compounds are most toxic and thermally stable. Once released into environment, they will accumulate in the surrounding and endanger human as well as its ecological environment over a long period of time. In this paper, chlorobenzene was chosen as model compounds for the study of hydrogenation over polymer-stabilized platinum colloidal catalysts. Methanol was chosen as the solvent since it allows us to investigate the HDC reaction at a high concentration of the water-insoluble halogenated compound.
     Firstly, poly (N-vinyl-2-pyrrolidone)-stabilized platinum colloids (PVP-Pt) were prepared by varying the amount of H_2PtCl_6·6H_2O, the amount of PVP and stirring stopping time after discoloring solution for 5 min in methanol and water mixed sol-vents. The metal colloids were characterized by TEM. No significant effect on parti-cle size was observed by varying the amount of H_2PtCl_6·6H_2O and the amount of PVP. But the Pt nanoparticles have a tendency to aggregate because of the small amount of the stabilizing polymer. The longer stirring stopping time was in the preparation of colloidal platinum, the larger the particle size and size distribution were. When the time of stopping stirring was 30s, the largest particle size (4.39 nm) and the widwst size distribution (σ= 0.78 nm) could be obtained.
     Secondly, hydrogenation of monochlorobenzene (MCB) was carried out in a batch mode using hydrogen over PVP-Pt at 298 K and atmospheric pressure. The product consisted of benzene and cyclohexane during the reaction, and nearly 100 % selectivity to cyclohexane can be obtained at ~ 100 % conversion of MCB. The catalytic performance of the PVP-Pt colloids is dependent on the preparation conditions. The small amount of the stabilizing polymer (PVP) in the preparation of colloidal platinum could not protect the platinum colloid commendably, but the large amount of PVP hindered the contact of reactant with catalyst surface and desorption of product. Extra PVP added in the reaction system has some inhibiting effect on the reaction activity, and also resulting in some decrease in selectivity to cyclohexane. The performance of catalyst was proportional to the concentration of H2PtCl6?6H2O. The catalytic properties of catalysts were affected remarkably by the time of stopping stirring in the preparation of catalysts. The conversion and the selectivity could be down to 79.06 % and 74.40 %, respectively, by prolonging the time of stopping stirring to 30 s. The reaction was verified to be first order to the concentration of MCB. The reaction is kinetic control at lower catalyst concentration (< 1.7×10-6 mol/mL), and the diffusion controls the reaction when the catalyst concentration beyond 1.7×10-6 mol/mL. The reaction took place on the metal surface in a pseudo-first-order reaction, and the rate constant was 0.5026 h-1.
     Thirdly, effect of metal ions on hydrogenation of chlorobenzene (MCB) over poly-vinylpyrrolidone stabilized platinum colloid (PVP-Pt) was studied. It was shown that the catalytic properties of platinum clusters for the hydrogenation of chlorobenzene to cyclohexane were remarkably affected by the metal cations added. Among these cations, the most favorable influence on the activity and selectivity was obtained when Al3+ was used as modifier. The conversion of chlorobenzene was enhanced remarkably from 77.49 % to 90.64 %, and the selectivity for cyclohexane was increasd from 65.58 % to 72.24 %.
     Finally, effect of metal complex on hydrogenation of chlorobenzene (MCB) over PVP-Pt has been studied. It was shown that the addition of metal complexes and ligands to the catalytic system had great effect on activity and selectivity of the catalyst. When the neat platinum cluster was served as the catalyst, only 77.49 % conversion of chlorobenzene and moderate selectivity for the cyclohexane (65.58 %) were obtained. On the addition of the ligands acetylacetone, the conversion and the selectivity were increased together (the conversion was 90.85 %, the selectivity was 68.45 %). It was indicated that the effect resulted from the incorporation of metal complexed was not the simple sum of those of the corresponding metal central ions and the ligands. The complex effect is related to the interaction of metal complex with reaction substrate, reaction product or the metallic catalyst, etc. Owing to the equilibrium of step dissociation of metal complexes, there is a mixture of multistep complexes at an integer molar ratio of ligand to metal. This causes the mechanism of metal complexes effect very complicated.
引文
[1] Tundo P, Perosa A. A mild catalytic detoxification method for PCDDs and PCDFs. Appl. Catal. B: Environ., 2001, 32(1-2): L1-L7
    [2] Ukisu Y, Miyadera T. Dechlorination of polychlorinated dibenzo-p-dioxins catalyzed by no-ble metal catalysts under mild conditions. Chemosphere, 2002, 46(4): 507-510
    [3]夏传海,徐杰,吴文忠,等.二噁英降解方法的研究.化学进展,2004,16(1):123-131
    [4] Dickson L C, Lenoir D, Hutzinger O. Quantitative comparison of de novo and precursor for-mation of polychlorinated dibenzo-p-dioxins under simulated municipal solid waste incin-erator postcombustion conditions. Environ. Sci. Technol. 1992, 26(9): 1822-1828
    [5] Stanmore B R. The formation of dioxins in combustion systems. Combust. Flame. 2004, 136(3): 398-427
    [6] Zwiernik M J, Quensen J F, Boyd S A, et.al. FeSO4 amendments stimulate extensive an-aerobic PCB dechlorination. Environ. Sci. Technol. 1998, 32(21: 3360-3365
    [7] Kuipers B, Cullen W R, Morn W W. Reductive dechlorination of nonachlorobiphenyls and selected octachlorobiphenyls by microbial enrichment cultures. Environ. Sci. Technol. 1999, 33(20): 3579-3585.
    [8] Deweerd K A, Bedard D L. Use of halogenated benzoates and other halogenated aromatic compounds to stimulate the microbial dechlorination of PCBs. Environ. Sci. Technol. 1999, 33(12): 2057-2063.
    [9] Chaychian M, Jones C, Poster D, et.al. Radiolytic dechlorination of polychlorinated biphen-yls in transformer oil and in marine sediment. Radiat. Phys. Chem. 2002, 65(4-5): 473-478.
    [10] Muto H, Saitoh, K, Funayama H. PCDD/DF formations by the heterogeneous thermal reac-tions of phenols and their TiO2 photocatalytic degradation by batch-recycle system. Chemosphere. 2001, 45(2): 129-136.
    [11]吴德礼,马鲁铭,王铮.氯代有机物结构性质对还原脱氯速率的影响.工业用水与废水,2005,36(1):22-25.
    [12] Marques C A, Selva M, Tundo P. Facile hydrodehalogenation with hydrogen and palla-dium/carbon catalyst under multiphase conditions. J. Org. Chem., 1993, 58(19): 5256-5260.
    [13] Anwer M K, Spatola A F. Applications of ammonium formate catalytic transfer hydro-genolysis. IV: A facile method for dehalogenation of aromatic chlorocarbons. Tetrahedron Lett. 1985, 26(11): 1381-1384.
    [14] Grushin V V, Alper H. Transformations of Chloroarenes, Catalyzed by Transition-Metal Complexes. Chem. Rev., 1994, 94(4): 1047-1062.
    [15] Yurii I M, Moshe S. Catalytic Abatement of Water Pollutants. Ind. Eng. Chem. Res., 1998,37(2): 309-326.
    [16]周红艺,何志桥,潘志彦,等.金属铁及其化合物还原脱氯有机氯化物的研究.浙江工业大学学报,2002,30(1):63-67.
    [17]周红艺,汪大翚,周明华,等.金属铁还原脱氯处理有机氯化物的研究进展.环境污染治理技术与设备,2001,2(3):14-20.
    [18] Gillham R W, O’Hannesin S F. Enhanced degradation of halogenated aliphatics by zero-valent iron. Ground Water. 1994, 32(6): 958.
    [19] Morrison S J, Metzler D R, Dwyer B P. Removal of As, Mn, Mo, Se, U, V and Zn from groundwater by zero-valent iron in a passive treatment cell: reaction progress modeling. J. Contam. Hydrol., 2002, 56(1-2): 99-116.
    [20]吴双桃,陈少瑾,胡劲召,等.零价铁对土壤中硝基苯类化合物的还原作用.中国环境科学,2005,25(2):188-191.
    [21]邓兰萍,金孟.零价铁还原降解2,4-二氯苯酚的实验研究.甘肃科技,2005,21(4):90-91.
    [22]胡劲召,陈少瑾,吴双桃,等.零价铁对土壤中六氯乙烷还原脱氯研究.广东化工,2005,32(8):23-26.
    [23]胡劲召,陈少瑾,吴双桃,等,零价铁对土壤中4-氯苯酚还原脱氯研究.生态环境,2005,l4(3):349-35.
    [24]张二华,陈少瑾,陈宜菲.Pd/Fe催化剂脱氯的稳定性研究.广东化工,2006,33(4):30-31.
    [25]童少平,胡丽华,魏红,等.Ni/Fe二元金属脱氯降解对氯苯酚的研究.环境科学,2005,26(4):59-62.
    [26]张选军,戴友芝,曹建平,等.纳米铁协同超声降解氯苯的研究.环境污染治理技术与设备,2004,8(5):34.
    [27]徐新华,周红艺,王大翚.金属催化还原技术对p-二氯苯的脱氯.环境科学,2004,25(6):101.
    [28] Ponder S M, Darab J G, Mallouk T E. Remediation of Cr (VI) and Pb (Ⅱ) aqueous solutions using supported nanoscale zero- valent iron. Environ. Sci. Technol., 2000, 34(12): 2564-2569.
    [29] Schrick B, Hydutsky B W, Blough J L. Delivery vehicles for zerovalent metal nanoparticles in soil and groundwater. Chem. Mater., 2004, 16(11): 2187-2193.
    [30]吴西宁,庞菊玲,曹武轩,等.催化氧化法分解邻二氯苯.工业催化,2003,11(11):46-48.
    [31]崔龙哲,丁泰燮,尹炳硕.过渡金属催化剂对邻二氯苯的催化氧化研究.环境科学与技术,2004,27(5):22-23.
    [32]徐涛,肖贤明,刘红英. UV/ H2O2光氧化降解水中邻二氯苯的研究.环境化学,2004,23(6):636-640.
    [33]李治国,周威明,董里,等.Fe2+/H2O2催化氧化2,4-二氯苯氧乙酸的机理研究.环境化学,2004,23(5):540-543.
    [34]徐向阳,谢雨生,吕一锋,等.氯代芳香族化合物厌氧还原脱氯降解菌的研究进展.中国沼气,1999,17(3):8-12.
    [35]朱晓军,朱建华.脱氯技术现状与研究进展.化工生产与技术,2005,12(1):24-28.
    [36] Kalnes T N, James R B. Hydrogenation and recycle of organic waste streams. Environ. Prog., 1988, 7(3): 185-191.
    [37] Akita Y, Ohta A. Dechlorination of some chloropyrazines and their N-oxides. Heterocycles, 1981, 16(1): 325-327.
    [38]张源魁,廖世健,徐筠.稀土氯化物催化作用下纳米氢化钠对芳基卤化物的还原脱卤.催化学报,1996,17(6):489-490
    [39] Logan M E, Oinen M E. Dechlorination of aryl chlorides with sodium formate using a ho-mogeneous palladium catalyst. Organometallics, 2006, 25(4): 1052-1054.
    [40]康汝洪,于海涛.氯代芳烃催化氢转移脱氯的研究.环境化学,1998,17(2):159-162
    [41] Lassova L, Lee H K, AndyHor T S. Catalytic dehalogenation of highly chlorinated benzenes and aroclors using PdCl2(dppf) and NaBH4: efficiency, selectivity, and base support. J. Org. Chem., 1998, 63(11): 3538-3543.
    [42] Grushin V V, Alper H. Rhodium (III) biphasic and phase-transfer-catalyzed hydrogenolysis of chloroarenes under exceptionally mild conditions. Organometallics, 1991, 10(5): 1620-1622.
    [43] Dini P, Bart J, Giordano N. Properties of polyamide-based catalysts. Part I. hydrodehaloge-nation of chlorobenzene. J. Chem. Soc., Perkin Trans.2, 1975: 1479-1481.
    [44] Kerdesky F A J, Seif L S. Catalytic hydrogenation of halothiazoles. Synth. Commun., 1995, 25(24): 4081-4086.
    [45]范晖.卤代苯催化加氢脱除卤素反应的研究.化学通报,2001,6:378-380
    [46] McNab W W, Ruiz R, Pray L. In-situ destruction of chlorinated hydrocarbons in groundwa-ter using catalytic reductive dehalogenation in a reactive well: Testing and operational ex-periences. Environ. Sci. Technol., 2000, 34(1): 149-153.
    [47]缪应纯,侯能帮,翟忠标.合成条件对Pt负载γ-Al2O3催化剂在邻苯基苯酚成中催化性能的影响.河北化工,2007,30(9):12-14.
    [48] Balko N, Przybylski E, Tretini F. Exhaustive liquid-phase catalytic hydrodehalogenation of chlorobenzenes. Appl. Cata.l B Environ., 1993, 2(1): 1-8.
    [49] Lingaiah N, Uddin M, Muto A, et al. Vapour phase catalytic hydrodechlorination of chloro-benzene over Ni–carbon composite catalysts. J. Mol. Catal. A Chem., 2000, 161(1-2): 157-162.
    [50] Gopinath R, Lingaiah N, Sreedhar B, et al. Highly stable Pd/CeO2 catalyst for hydrodechlo-rination of chlorobenzene. Appl. Cata.l B Environ., 2003, 46(3): 587-594.
    [51] Santoro D, Jong V, Louw R. Hydrodehalogenation of chlorobenzene on activated carbon and activated carbon supported catalysts. Chemosphere, 2003, 50(9): 1255-1260.
    [52] Hashimoto Y, Uemichi Y, Ayame A. Low-temperature hydrodechlorination mechanism of chlorobenzenes over platinum-supported and palladium-supported alumina catalysts. Appl. Cataly. A Gen., 2005, 287(1): 89-97.
    [53] Hashimoto Y, Uemichi Y, Ayame A. Low-temperature Hydrodechlorination of Chloroben-zenes on Palladium-supported Alumina Catalysts. J Jap Pet Ins., 2005, 48(3): 127-136.
    [54] Li H, Liao S, Xu Y, et al. Highly active polymer-supported palladium-cobalt catalysts for the hydrodechlorination of organic chlorides. Synth. Commun., 1997, 27: 829-836.
    [55]高燕,王复东.PVP负载Pd-Co催化剂催化六氯苯的加氢脱氯.催化学报,1999,20(3):236-238.
    [56]董玉环,孟庆朝,周长山.PVP-PdCl2-SnCl4/M on tK10-PEG400的制备及催化芳香卤化物水相脱卤研究.分子催化,2003,17(2):124-128.
    [57] Srinivas S T, Lakshmi L J, Lingaiah N, et al. Selective vapour-phase hydrodechlorination of chlorobenzene over alumina supported platinum bimetallic catalysts. Appl. Catal. A Gen., 1996, 135(2): 201-207.
    [58] Chary K, Lakshmi K, Murthy M, et.al. Hydrodechlorination of 1,2,4-trichlorobenzene over niobia supported nickel catalysts. Cata.l Comm., 2003, 4 (10): 531-535.
    [59]张少华,陈少瑾,陈宜菲.催化剂脱氧的稳定性研究.广东化工,2006,33(156):30-31
    [60] Nord F F. Preparation of palladium and platinum synthetic high polymer catalysts and the relationship between particle size and rate of hydrogenation. J. Am. Chem. Soc., 1941, 63(10): 2745-2749.
    [61] Cotton F, Bratton W. Multiple bond between technetium atoms in an octachloroditechnetate Ion. J. Am. Chem. Soc., 1965, 87 (4): 921-921.
    [62] Feld H, Leute A, Rading D, et al. Formation of very large gold super-clusters (clusters of clusters) as secondary ions up to (Au13)55 secondary ion mass spectrometry. J. Am. Chem. Soc., 1990, 112 (22): 8166-8167.
    [63] Poulin J C, Kagar H B, Vargaftik M N, et.al, Scanning tunneling microscopy observation of giant palladium-561 clusters. J. Mol. Catal. A Chem., 1995, 95(2): 109-113.
    [64] Schmid G, Lehnert A, The complexation of gold colloids. Angew Chem. Int. Ed. Engl., 1989, 28: 780-782.
    [65] Hirai H, Chawany H, Toshima N. Selective hydrogenation of cyclooctadienes catalyzed by colloidal palladium in poly(N-vinyl-2-pyrrolidone. Die Makromolekulare Chemie, 1981, 2 (1): 99-103.
    [66] Hirai H, Nakao Y, Toshima N. Dielectric spectroscopy of metal nanoparticle doped liquid crystal displays exhibiting frequency modulation response. J Dis Techno, 1981, 2(2): 121-129.
    [67] Bradley J S, Hill E W, Klein C, et al. Synthesis of monodispersed bimetallic palla-dium-copper nanoscale colloids. Chem. Mater., 1993, 5(3): 254-256.
    [68] Toshima N, Wang Y. Preparation and Catalysis of novel colloidal dispersions of cop-per-noble metal bimetallic clusters. Langmuir, 1994, 10(12): 4574-4580.
    [69] Yu W, Wang Y, Liu H, et al. Preparation and characterization of polymer-protected Pt/Co bimetallic colloids and their catalytic properties in the selective hydrogenation of cinna-maldehyde. J. Mol. Catal. A Chem., 1996, 112(1): 105-113.
    [70] Yu W, Liu H. Synthesis of nanoscale platinum colloids by microwave dielectric heating. Langmuir, 1999, 15(1): 6-9.
    [71]冯丽娟,赵宇靖,陈诵英.超细粒子催化剂.石油化工,1991,20(9):633-639.
    [72] Schmid G. Large clusters and colloids metals in the einbryonic state. Chem. Rev., 1992, 92(8): 1709-1727.
    [73]张汝冰,刘宏英,李凤生.纳米材料在催化领域的应用及研究进展.化工新型材料,1999,27(5):3-51.
    [74] Lewis L N, Lewis N. Platinum-catalyzed hydrosilylation-colloid formation as the essential step. J. Am. Chem. Soc., 1986, 108(23): 7228-7231.
    [75] Hirai H, Wakabayashi H, Komiyama M. Preparation of polymer-protected colloidal dis-persions of copper. Chem. Soc. Jpn.., 1986, 59(2): 367-372.
    [76] Kilo M, Weigel J, Wokaun A , et.al. Effect of the addition of chromium- and manganese ox-ides on structural and catalytic properties of copper/zirconia catalysts for the synthesis of methanol from carbon dioxide. J. Mol. Catal. A: Chem., 1997, 126(2-3): 169-184.
    [77] Milan H, Zuzana C, Milan K, Hydrogenation of benzene to cyclohexene over poly-mer-supported ruthenium catalysts. J. Mol. Catal. A: Chem., 1996, 83 (1): 25-30.
    [78] Toshima N, Kuriyama M, Yamada Y, et.al. Colloidal platinum catalyst for light-induced hy-drogen evolution from water, A particle size effect. Chem. Lett., 1981, 10(6): 793-796.
    [79] Han M, Liu H. Butane isomerization over platinum promoted sulfated zirconia catalysts. J. Mol. Catal. A: Chem., 1990, 100: 35-48.
    [80]王茜,刘汉范,李小宝,等.碳负载胶体金属铑催化气相甲醇羰基化反应.催化学报,1996,17(1):3-7.
    [81] Hirai H, Toshima N. Various ligand-stabilized metal nanoclusters as homogeneous and het-erogeneous catalysts in the liquid phase: tailored metal catalysis. J. Mo.l Catal. A: Chem., 1986, 1: 121-140.
    [82]薛芳,林棋,杨朝芬,等,负载型纳米贵金属催化剂催化吡啶及其衍生物的加氢反应.催化学报,2006,27(10):921-926.
    [83] Yu W, Wang Y, Liu H. Preparation of polymer-protected Pt/Co bimetallic colloid and its catalytic properties in selective hydrogenation of cinnamaldehyde to cinnamyl alcohol. Po-lym. Adv. Technol., 1996, 7, 719-722.
    [84] (a) Yang X, Deng Z, Liu H. Modification of metal complex on hydrogenation of o-chloronitrobenzene over Polymer-stabilized platinum colloidal clusters. J. Mol. Catal. A: Chem., 1999, 144(1): 123-127; (b) Yang X, Liu H. Influence of metal ions on hydrogenation of chloronitrobenzene over platinum colloidal clusters. Appl. Catal., 1997, 164(1/2): 197-203.
    [85] Tu W, Liu H, Tang Y. The metal complex effect on the selective hydrogenation of m-and p-chloronitrobenzene over PVP-stabilized platinum colloidal catalysts. J. Mol. Catal. A: Chem., 2000, 159(1): 115-118.
    [86] Liu M, Yu W, Liu H. Selective hydrogenation of chloronitrobenzene over polymer-stabilized ruthenium colloidal clusters. J. Mol. Catal. A: Chem., 1999, 138(2/3): 295-299.
    [87] Yan X, Liu M,Liu H, et al. Metal complex effect on the hydrogenation of chloronitroben-zene over polymer-stabilizedcolloidal ruthenium clusters. J. Mol. Catal. A: Chem., 2001, 170(1/ 2): 203-206.
    [88] Yang X, Liu H, Zhong H. Hydrogenation of chloronitrobenzene over polymer-stabilized palladium-platinum bimetallicclusters. J. Mol. Catal. A: Chem., 1999, 147(55): 1-2.
    [89] Liu M, Yu W, Liu H. Preparation characterization of Polymer-stabilized ruthe-nium-platinum , ruthenium-palladium bimetallic colloids and their catalytic properties for hydrogenation of chloronitrobenzene. J. Colloid Interface Sci., 1999, 214(2): 231-238.
    [90] Bonnemann H, Braun G A. Enantioseletive hydrogenation on platinum colloids. Chem. Int. Ed. Engl., 1996, 35: 1992-1995.
    [91] Zuo X., .Liu H, Liu M. Asymmetric hydrogenation of-ketoesters over finely dispersedpolymer-stabilized platinum clusters. Tetrahedron Lett., 1998, 39(14): 1941-1944.
    [92] Zuo X., Liu H, Guo D, et al. Enantioselective hydrogenation of pyruvates over poly-mer-stabilized and supported platinum nanoclusters. Tetrahedron, 1999, 55(25): 7787-7804.
    [93]沈常美,高强,丁培培等.纳米ZrO2负载Pd-Ni催化剂催化氯苯加氢脱氯性能研究.工业催化,2005,13(8):60-63.
    [94] Nakao R, Rhee H, Uozumi Y. Hydrogenation and dehalogenation under aqueous conditions with an amphiphilic-polymer-supported nanopalladium catalyst . Org Lett, 2005, 7(1): 163-165.
    [95] Nutt M, Hughes J, Wong A. Designing Pd-on-Au bimetallic nanoparticle catalysts for tri-chloroethene hydrodechlorination. Environ. Sci. Technol., 2005, 39(5): 1346-1353.
    [96] Ishai D, Dana B, Brian B. Use of nanosized catalysts for transformation of chloro-organic pollutants. Environ. Sci. Technol., 2005, 39(5): 1283-1290.
    [97] Zhang W X, Wang Ch B, Lien H L. Treatment of chlorinated organic contaminants with nanoscale bimetallic particles. Catal. Today, 1998, 40(4): 387-395.
    [98] Lien H L, Zhang W X. Nanoscale iron particles for complete reduction of chlorinated ethe-nes. Colloids Surf., 2001, 191(1-2): 97-105.
    [99] Wang C B, Zhang W X. Synthesizing nanoscale iron particlesfor rapid and complete dechlorination of TCE and PCBs. Environ. Sci. Technol., 1997, 31(7): 2154-2156.
    [100] Choe H, Lee S H, Chang Y, et al. Rapid reductive destruction of hazardous organic com-pounds by nanoscale Fe0. Chemosphere, 2001, 42(4): 367-372.
    [101]徐新华,刘永,卫建军,等.纳米级Pd/Fe双金属体系对水中2,4-二氯苯酚脱氯的催化作用.催化学报,2004,25(2):138-142.
    [102] Schmid G. Aspects of homogenous catalysis. Netherlands: Kulwer Academic, 1990.
    [103] Hirai H. Formation and catalytic functionality of synthetic polymer-nible metal colloid. J. Macromol. Sci-Chem. A., 1979, 13(137): 633-649.
    [104] Hirai H, Nakao Y, Toshima N. Preparation of colloidal transition metals in polymers by reduction with alcohols or ethers. J. Macromol. Sci-Chem. A., 1979, 13(6): 727-750.
    [105] Hirai H, Toshima N. Tailored metal catalysts. Y. Iwasawa, D. Reidel Pub., 1986.
    [106]卢华,武艺,田爱军,等.含有不同脂肪环胺侧基的聚丙烯酰胺保护的贵金属胶体制备的研究.高分子学报,1993,1:105-108.
    [107]卢华,王惠,刘汉范.甲壳质、甲壳胺衍生物保护的贵金属胶体.高分子学报,1993,1:100-104.
    [108] Wang Q, Liu H, Han M, et. al, Carbonylation of methanol catalyzed by polymer-portected rhodium colloid. J. Mol. Catal. A: Chem., 1997, 118(2): 145-151.
    [109] Teranishi T, Hosoe M. Formation of monodispersed ultrafine platinum particle and their electrophoretic deposition on electrodes. Adv. Mater., 1997, 9(1): 165-167.
    [110] Yu W, Liu M, Liu H, et.al. Preparation of polymer-stabilized noble metal colloids. J. Col-loid Interface Sci., 1999, 210(1): 218-221.
    [111]刘新梅,陈骏如,赵松林,等.聚合物稳定的Ru-Pt/γ-Al2O3双金属催化剂催化2,5-二氯硝基苯选择性加氢.催化学报,2005,26(4):323-328.
    [112] Yu W, Liu M, Liu H, et.al. Preparation, characterization, and catalytic properties of poly-mer-stabilized ruthenium colloids. J. Colloid Interface Sci., 1998, 208(2): 439-444.
    [113] Liu M, Yu W, Liu H, et.al. Preparation and characterization of polymer-stabilized ruthe-nium–platinum and ruthenium–palladium bimetallic colloids and their catalytic properties for hydrogenation of o-chloronitrobenzene. J. Colloid Interface Sci., 1999, 214(2): 231-237.
    [114] Yu W, Liu H. Singular modification effects of metal cations and metal complexionson the catalytic performances of metal colloidal nanocatalysts. J. Mol. Catal. A: Chem., 2006, 243(1): 120-141.
    [115] Yu W, Liu H, Liu M, et.al. Selective hydrogenation of citronellal to citronellol over poly-mer-stabilized noble metal colloids. React. Funct. Polym., 2000, 44(1): 21-29.
    [116] Yu W, Liu H, Liu M, et.al. Immobilization of polymer-stabilized noble metal colloidal clusters by a modified coordination capture: preparation of supported nanoclusters with singular catalytic properties. J. Mol. Catal. A: Chem., 1999, 142(2): 201-211.
    [117] Yu W, Liu H, Liu M, et.al. Selective hydrogenation ofα,β-unsaturated aldehyde toα,β-unsaturated alcohol over polymer-stabilized platinum colloid and the promotion effect of metal cations. J. Mol. Catal., A: Chem., 1999, 138(2-3): 273-286.
    [118] Yu W, Liu H, An X. Novel catalytic properties of supported metal nanoclusters. J. Mol. Catal., A: Chem., 1998, 129(1): L9-L13.
    [119] Han M, Liu H. IUPAC 6th International Symposium on Macromolecule-Metal Complexes (MMCVI), Guangzhou, China, Nov. 2-5, 1995, preprints, p. 56.
    [120] Han M, Liu H. Reaction conducted under rather severe conditions for a colloidal of pro-pylene catalyzed by polymer-protected rhodium colloids. Macromol. Symp., 1996, 105: 179-183.
    [121] Wang Q, Liu H, Han M. IUPAC 6th International Symposium on Macromolecule-Metal Complexes (MMCVI), Guangzhou, China, Nov. 2-5, 1995, preprints, p. 115.
    [122] Yu W, Liu H, Tao Q. Modification of metal cations to metal cluster in liquid medium Chem. Commun., 1996, 32(15): 1773-1774.
    [123] Feng H, Liu H. The metal complex effect on metal clusters in liquid medium. J. Mol.Catal., A: Chem., 1997, 126(1): L5-L8.
    [124] Carothers W H, Adams R. Platinum oxide as a catalyst in the reduction of organic com-pounds. VII. A study of the effects of numerous substances on the platinum catalysis of the reduction of benzaldehyde. J. Am. Chem. Soc., 1925, 47 (4): 1047-1063.
    [125] Carothers W H, Adams R. Platinum oxide as a catalyst in the reduction of organic com-pounds. II. Reduction of aldehydes activation of the catalyst by the salts certain metals. J. Am. Chem. Soc., 1923, 45 (4): 1071-1086.
    [126] Tuley W F, Adams R. The reduction of cinnamic aldehyde to cinnamyl alcohol in tne presence of platinum-oxide platinum black and prompters. XI. J. Am. Chem. Soc., 1925, 47 (12): 3061-3068.
    [127] Adams R, Garvey B S. Selective reduction of cirtral by means of platinum-oxide platinum black and a promoter. XII. J. Am. Chem. Soc., 1926, 48 (2): 477–482.
    [128] Schmid G. Clusters and Colloids: Bridges Between Molecular and Condensed Material. Endeavour, 1990, 14 (4): 172-178.
    [129]刘汉范,靳包平,于伟泳,等.铂纳米金属簇催化氢化不饱和醛以制备不饱和醇.化学研究与应用,1999,11(5):533-534.
    [130] Burns R A, Crittenden J C, Hand D W, et.al. Effect of inorganic ions in heterogeneous photocatalysis of TCE. J. Environ. Eng., 1999, 125(l): 77-82.
    [131]吴超飞,冯明灼.高浓度印染废水强化混凝脱色的研究.环境保护,1997,9: 8-10.
    [132]李薇,王怡中.无机离子对光催化水处理过程影响的研究进展.环境污染治理技术与设备,2004,5(3):15-17,22.
    [133] Maxted E B. Studies on the nature of chemisorptive bonds. Part I. Some observed regulari-ties. J. Chem. Soc., 1949, 1987-1991.
    [134] Maxted E B. The poisoning of metallic catalysts. Adv. Catal., 1951, 3: 129-178.
    [135]张契,刘汉范,王黎辉.金属离子修饰的铂纳米金属簇催化2, 3-戊二酮区域选择性氢化.催化学报,2000,21(5):441-442.
    [136]刘漫红,刘汉范,李斌.高分子稳定的钌纳米金属簇选择性催化氢化巴豆醛.合成化学,2006,14(5):422-445.
    [137] Tijani A, Coq B, Figuéras F. Hydrogenation of Para-chlorinitrobenzene over supported ruthenium-based catalysts. Appl. Catal., 1991, 76(2): 255-266.
    [138] Desphande V M, Patterson W R , Narasimhan C S. Studied on ruthenium-tin boride cata-lysts. J. Catal., 1990, 121(1): 165.
    [139] Han X, Zhou R, Lai G, et al. Influence of support and transition metal (Cr, Mn, Fe, Co, Niand Cu) on the hydrogenation of p-chloronitrobenzene over supported platinum catalysts. Catal. Today, 2004, 93-95: 433-437.
    [140] Tuley W F, Adams R. The reduction of cinnamic aldehyde to cinnamyl alcohol in tne presence of platinum-oxide platinum black and prompters. XI. J. Am. Chem. Soc., 1925, 47 (12): 3061-3068.
    [141] Galvagno S, Donato A, Neri G, et.al. Hydrogenation of C=C and C=O groups on ruthe-nium-tin catalysts. Catal. Lett., 1991, 8(1): 9-14.
    [142] Gallezot P, Richard D. Selective hydrogenation ofα,β-unsaturated aldehydes. Cat. Rev. - Sci. Eng., 1998, 40(1-2): 81-126.
    [143] Jacobsen E N, Marko I, France M B, et.al. Kinetic role of the alkaloid ligands in asymmet-ric catalytic dihydroxylation. J. Am. Chem. Soc., 1989, 111 (2): 737-739.
    [144] Yan X, Liu M, Liu H, et al. Role of boron species in the hydrogenation of o-chloronitrobenzene over polymer-stabilized ruthenium colloidal catalysts. J. Mol. Catal. A: Chem., 2001, 169(1-2): 225-233.
    [145] Margitfalvi J L, Talas E, Tfirst E, Kumar C V, Gergely A. The role of cinchona alkaloids in enantioselective hydrogenation reactions: are they modifiers or hosts involved in su-pramolecular heterogeneous catalysis?. Appl. Catal. A: Gen., 2000, 191(1): 177-191.
    [146] Li Y, Liu H. Modification of metal complex on the stereoselective hydrogenation of 2,3-butanedione.Chin. Chem. Lett., 2001, 12(2):127-128.
    [147] Martell A E, Smith R M. Critical Stability Constants. Plenum Press, New York, 1974.
    [148] Kragten J. Atlas of Metal-Ligand Equilibria in Aqueous Solution. Ellis Horwood, New York, 1978.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700