过渡金属铌、铑团簇及其与小分子气相反应机理的密度泛函研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
过渡金属团簇由于其特殊的物理和化学性质一直被关注,而二元过渡金属合金团簇也因具备新奇的性质成为实验和理论研究的热点。本论文研究了前后过渡金属Nb-Rh团簇并讨论了其电子性质和成键规律。很多过渡金属也是高效的催化剂,过渡金属表面催化各种小分子的反应引起了人们的兴趣。过渡金属铑是常用的汽车尾气催化剂,汽车尾气污染的主要成分是NO和CO等,研究NO在过渡金属铑团簇上的吸附与解离反应对于揭示复杂的表面化学反应有重要的意义。过渡金属铂与铑一样也具有很好的催化性能,它们都可以作为工业上催化甲烷和氨来合成氰化氢和氢气的催化剂。尽管目前这些过渡金属与小分子气体的反应有很多实验观测,相关理论仍欠缺。本论文用密度泛函理论研究了过渡金属铌和铑团簇以及它们与小分子在气相中的反应机理。主要结论如下:
     (1)过渡金属等比团簇(NbRh)_(n=1-5)具有丰富的异构体,其中立体结构比二维结构稳定。一般金属团簇中化学键都是离域键,但是Nb-Rh团簇的平面和线形异构体中存在定域键。Nb-Rh团簇容易形成对称性较低且自旋较低的结构,最稳定的异构体为密堆积结构。铌原子趋于相互成键形成内核,铑原子则趋于分散在铌原子形成的三角面上。金属原子铌Nb-Nb之间的相互作用大于铌与铑Nb-Rh之间的相互作用,但团簇尺寸增大后,Nb-Rh键比Nb-Nb键强,且Nb-Rh键越多,团簇越稳定。体系有明显的电荷转移现象,电荷由电负性小的铌原子转移到电负性大的铑原子上。团簇的电子性质与团簇的几何结构和尺寸有密切关系。
     (2)通过计算NO分子分别在端位、边桥位和面桥位吸附于团簇Rh_n~(-/0/+)(n=1-5)上的反应,发现铑团簇可以有效的吸附NO,NO与Rh的相互作用是电子的贡献与反馈作用,即NO的电子贡献给Rh,然后Rh反馈电子给NO。这种作用直接导致了N-O键的性质变化:随着团簇尺寸的增加、电荷的增加以及NO连接的Rh原子越多,N-O键的键长增加,对应的频率减小,则N-O键越来越弱。
     在研究了NO于铑团簇上的吸附作用后,我们以Rh_7~+团簇为例探讨了NO分子解离还原成N_2的反应机理。反应分为两步:Rh_7~++NO→[Rh_7NO]~+,[Rh_7NO]~++NO→N_2+Rh_7O_2~+。反应第一步是阳离子团簇Rh_7~+吸附并解离第一个NO分子而生成氮原子和氧原子分离的化合物[Rh_7NO]~+,反应是放热的,可以顺利进行。对于反应的第二步,根据产物氮气中氮原子的来源不同而分为两种可能的路径:一种是来自产生的中间体N_2O:另一种是解离的氮原子直接化合成氮气。由于第一种路径需要克服的能垒较小,热力学上利于反应的进行,所以认为产物N_2是由N_2O分解得来的几率较高,与实验结论一致。
     (3)对于脱氢反应RhMCH_2~++NH_3→RhMC~+(NH_3)+H_2(M=Pt,Rh),脱离的氢气来自于RhMCH_2~+中的CH_2基团,而不是来自于NH_3中的氢原子。对于PtRhCH_2~+和NH_3的反应,按脱氢过程分别在在Pt端和Rh端上发生可分为两种路径,比较而言脱氢反应在Rh原子上发生的路径能量上更加有利。在反应过程中存在不同自旋多重度的反应势能面,而先从三重态的反应物开始,在第一个氢原子开始转移时经过自旋转换得到单重态的产物,这样的路径能量上更加有利。而对于Rh_2CH_2~+和NH_3的反应,二重态的反应势能面能量比四重态的更佳,整个反应也是放热的。在与NH_3的反应中,PtRhCH_2~+和Rh_2CH_2~+具有同Pt_2CH_2~+一样的脱氢反应机理。
     (4)应用相对论密度泛函计算研究了(M_2O_5)_(m=1,2)~+(M=V,Nb,Ta)与C_2H_4的气相反应机理。钒氧化物阳离子团簇(V_2O_5)_m~+(m=1,2)和C_2H_4能够发生氧转移反应,它通过与乙烯的结合并且氢原子转移而削弱与碳相连的V-O键,使之容易断开,从而实现(V_2O_5)_m~+(m=1,2)中的一个氧原子转移到乙烯上,形成乙醛。对于V_2O_5~+与C_2H_4的反应,反应过程有顺式和反式两种机理,由于反式机理中形成过渡态需要吸收的能量比相应的顺式机理少,而且反式的整个反应最终放热比顺式反应放热更多,所以认为产物V_2O_4~+以反式为多。铌和钽的氧化物阳离子团簇(M_2O_5)_m~+(m=1,2)只能微量甚至不能和乙烯反应,其主要原因在于对应的Nb-O、Ta-O键比V-O键强的多,能量上不利于反应的发生。
As the special physical and chemical properties, the transition metal clusters have been most studied, and the bimetallic clusters also have become a subject of intensive interest experimently and theoretically. The early-late transition metal Nb-Rh clusters have been studied in this dissertation, the properties and geometry structures are discussed. The transition metal also is the effective catalyst. Catalytic reactions mediated by transition metal surfaces and small molecules have attacted considerable attention in recent years. NO and CO are the main components of gas pollution, and metal rhodium is used to reduce them. It is very important to study the adsorption and dissociation reactions between NO and rhodium clusters. Both the metal platinum and rhodium have excellent catalytic applications, they can be used to catalyze methane and ammonia and produce HCN and H_2. Although there are many experimental studies, the theoretical investigations are still lacked. In this dissertation, transition metal niobium and rhodium clusters and their reactive mechanisms with small molecules in the gas phase have been studied by density functional theory. The following conclusions have been drawn from our calculations:
     (1) The binary transition-metal clusters (NbRh)_(n=1-5) have many isomers. The clusters prefer three-dimensional structures. Generally the bonds of the metal clusters are non-localized, but for the linear and planar structures of Nb-Rh clusters, the localized states exist. The Nb-Rh clusters are easy to form the structures with low symmetry and low spin. The most stable structures have compact conformation, in which the Nb atoms prefer to form an inner core and the Rh atoms are capped to facets of the core. The bond strength follows the order: Nb-Nb>Nb-Rh>Rh-Rh. As the cluster size increases, the bond strength Nb-Rh>Nb-Nb, and the Nb-Rh bonds are the important factor to the stability of the clusters. The Nb atoms transfer some charges to Rh atoms to make the structure stable. The properties of the clusters are related to the cluster geometry and size.
     (2) The adsorption of nitrogen monoxide NO with charged and neutral Rh_n~(-/0/+)(n=l-5) clusters at atop, bridge and threefold hollow sites had been investigated by density functional theory calculations. The results showed that rhodium clusters had strong orbital interactions with NO. These interactions could be described through the donation and back-donation of their frontier orbitals. And it would lead to the weakening of the N-0 bonds, then the N-0 bond length would be prolonged and its vibrational frequency lowered. In general, the donation and back-donation interactions followed the tendencies: anionic>neutral>cationic, big size>small size, threefold hollow site>bridge site>atop site.
     After studying the adsorption of NO with rhodium clusters, we study the dissociation of NO with Rh_7~+ cluster subsequently. The reactions have two steps: Rh_7~++NO→[Rh_7NO]~+,[Rh_7NO]~++ NO→N_2 + Rh_7O_2~+.The first step is that the cluster Rh_7~+ adsorb and dissociate the first NO molecule and form the compound [Rh_7NO]~+, this step is exothermic. As to the second step, it has two pathways according to the different source of nitrogen atoms which are formed N_2. One pathway is that the nitrogen atoms come from the intermediate N_2O, the other pathway is that product N_2 come from the dissociated nitrogen atoms. Because the former pathway has lower energy barrier, it is the energetically favorable way, so it can be concluded that the product N_2 comes from the intermediate N_2O. This is well in line with the experimental results.
     (3) The dehydrogenation reactions RhMCH_2~+ + NH_3→RhMC~+(NH_3)+H_2(M=Pt, Rh) have been investigated by density functional calculations. In the reaction of RhMCH_2~+(M=Pt, Rh) with NH_3, elimination of H_2 exclusively arises from the moiety of CH_2, not from ammonia. In the reaction of PtRhCH_2~+ with NH+3, the dehydrogenation reactions can act at both Pt and Rh terminals, but the Rh-mediated pathway is energetically favorable. The low-energy dehydrogenation process starts on the triplet potential energy surface of complex of RhPtCH_2~+ with NH_3, and then moves on the singlet potential energy surface. In the reaction of Rh_2CH_2~+ with NH_3, the doublet channel is generally favorable energetically. Present results show that both metal-carbene cations PtRhCH_2~+ and Rh_2CH_2~+have similar reactivity with that of Pt_2CH_2~+ toward NH_3.
     (4) The reaction mechanisms of the group V transition metal oxide cations (M_2O_5)_(m=1,2)~+ (M =V, Nb, Ta) with ethylene have been studied by density functional calculations with BP86 method. For the reaction of (V_2O_5)_m~+(m=l,2) with C_2H_4, the bond V-0 was broken after the transition state and the oxygen transfer happened. There are cis and trans paths for the reaction of V_2O_5~+ and C2H4, but the trans path was energetically favorable. The calculations showed that when reacted with C2H4, the (V_2O_5)_m~+ was highly exothermic, but the (M_2O_5)_m~+ (M = Nb, Ta) were slightly or even not exothermic.This is well in line with the experimental results. The different reactivity of the group V transition metal oxide cluster ions was attributed to the different bond strength of the metal-oxygen bonds.
引文
(1) Wang, L. S.; Li, X.; Zhang, H. F. Chem. Phys. 2000, 262, 53.
    
    (2) Fedrigo, S.; Harbich, W.; Buttet, J. J. Phys. Rev. B 1993, 47, 10706.
    
    (3) Fedrigo, S.; Harbich, W.; Buttet, J. J. Chem. Phys. 1993, 99, 5712.
    
    (4) DiLella, D. P.; Gohin, A.; Lipon, R. H.; McBreen, P.; Moskovits, M. J. Chem. Phys. 1980,73,4282.
    
    (5) Andres, R. P.; Bielefeld, J. D.; Henderson, J. I.; Janes, D. B.; Kolagunta, V. R.;, Kubiak, C.P.; Mahoney, W. J.; Osifchin, R. G. Science 1996, 273, 1690.
    
    (6) Binnig, G.; Rohrer, H. Angew. Chem. Int. 1987, 26, 606.
    
    (7) Sidgwick, N. V.; Powell, H. E. Proc. Roy. Soc. A. 1940,176,153.
    
    (8) Lipscomb, W. N. Boron Hydrdes, Benjamin: New York, USA, 1963; Mutterties, E. L.Boron Hydride Chemistry, Academic Press: New York, USA, 1995.
    
    (9) Dickerson, R. E.; Lipscomb, W. N. J. Chem. Phys. 1957, 27, 212.
    
    (10) Wade, K. Adv. Inorg. Chem. Radiochem. 1976,18, 1.
    
    (11) Harrison, J. F. Chem. Rev. 2000,100, 679.
    
    (12) Morse, M. D. Chem. Rev. 1986, 86, 1049.
    
    (13) Koga, N.; Morokuma, K. Chem. Rev. 1991, 91, 823.
    
    (14) Agbossou, F.; Carpentier, J. F.; Mortreux, A. Chem. Rev. 1995, 95, 2485.
    
    (15) Ungvary, F. Coord. Chem. Rev. 1997,167, 233.
    
    (16) Alonso, J. A. Chem. Rev. 2000,100, 637.
    
    (17) Frenking, G; Frohlich, N. Chem. Rev. 2000,100, 717.
    
    (18) Ceulemans, A.; Chibotaru, L. F.; Heylen, G. A.; Pierloot, K.; Vanquickenborne, L. G.Chem. Rev. 2000,100, 787.
    
    (19) Bondybey, V. E.; Beyer, M. K. J. Phys. Chem. A 2001,105, 951.
    
    (20) Yanagisawa, S.; Tsuneda, T.; Hirao, K. J. Comput. Chem. 2001, 22, 1995.
    
    (21) Bartlett, R. J.; Lotrich, V. F.; Sohweigert, L. V. J. Chem. Phys. 2005,123, 062205.
    
    (22) Wu, Z. J. Chem. Phys. Lett. 2004, 383, 251.
    
    (23) Vinod, C. P.; Harikumar, K. R.; Kulkarni, G. U.; Rao, C. N. R. Iopics In Cata. 2000,11,293.
    (24) 冯端,金属物理学,第一卷,北京:科学出版社,2000.
    (25) Parks, E. K.; Kerns, M. P.;Riley S. J. Chem.Phys. 2000, 262, 151.
    (26) Wang, J. Q.; Xiao, G. Phys. Rev. B 1994, 49, 3982.
    (27) Anderson, P. W. Phys. Rev. 1958,109, 1492.
    (28) Xu, Z. Y. Shape-memory Materials, Shanghai, Shanghai Jiaotong University Press 2000.
    (29) Tang, W.; Sundman, B.; Sandstrom, R.; Qiu, C. Acta Mater. 1999, 47, 3457.
    (30) Fukuda, T.; Kakeshita, T.; Houjoh, H.; Shiraishi, S.; Saburi, T. Materials Science and Engineering A 1999,166, 273.
    (31) 蔡强,魏长平,许永谊,高等学校化学学报,1999,20,344.
    (32) 严前古,于作龙,远松月,高等学校化学学报,1998,19,626.
    (33) Qu, X. D.; Sun, W. S.; Zhang, G. F. Metallic Functional Materials 1998, 5,161.
    (34) Zhang, W. K.; Ma,C; Yang, X. G. Rare Metal Materials and Engineering 1999, 28,4202.
    (35) Hausleitner C; Hafner J. Phys. Rev. 1992, 45, 115.
    (36) Chertihin, G. V.; Andrews, L.; Neurock, M. J. Phys. Chem. 1996,100, 14609.
    (37) Andrews, L. J. Elect. Spectr. Rel.Phenom,1998, 97, 63.
    (38) Kushto, G. P.; Souter, P. F.; Chertihin, G. V; Andrews, L. J. Chem. Phys. 1999,110, 9020.
    (39) Citra, A.; Andrews, L. J. Am. Chem. Soc.1999,121,11567.
    (40) Citra, A.; Andrews, L. J. Phys. Chem. A 2000,104,1152.
    (41) Andrews, L.; Souter, P. F.; Bare, W. D.; Liang, B. Y. J. Phys. Chem. A 1999,103, 4649.
    (42) Citra, A.; Andrews, L. J. Phys. Chem. A 1999,103, 3410.
    (43) Chen, B.; Castleman, Jr.A.W.; Khanna, S. N. Chem. Phys. Lett. 1999, 304, 423,.
    (44) Zhou, M.; Citra,A.; Liang, B.; Andrews, L. J. Phys. Chem. A 2000,104, 3457.
    (45) Citra, A.; Andrews, L. J. Phys. Chem. A 2000,104, 8689.
    (46) Liang, B. Y; Andrews, L. J. Phys. Chem. A 2002,106, 4042.
    (47) Liang, B.; Andrews, L. J. Phys. Chem. A 2002,106, 4042.
    (48) 熊国兴,陈德安,催化展望,北京大学出版社1993
    (49) Shilov, A. E.; Shulpin, G. B. Activation and catalytic reactions of saturated hydrocarbons in the Presence of metal complex Kluwer Academic: Dordrecht, 2000.
    (50) Data from http://webbook.nist.gov.
    
    (51) Crabtree, R. H. J. Chem. Soc. Dalton Trans. 2001, 254,2437.
    
    (52) Labinger, J. A.; Bercaw, J. E. Nature, 2002, 417, 507.
    
    (53) Irikura, K. K.; Beauchamp, J. L. J. Am. Chem. Soc. 1991,113, 2769.
    
    (54) Irikura, K. K.; Beauchamp, J. L. J. Phys. Chem. 1991, 95, 8344.
    
    (55) Schwarz, H. Angew. Chem. Int. Ed. Engl. 1991, 30, 820.
    
    (56) Hendrickx, M.; Ceulemans, M.; Gong, K.; Vanquickenborae, L. J. Phys. Chem. A 1997,101, 2465.
    
    (57) Yoshizawa, K.; Suzuki, A.; Yamabe, T. J. Am. Chem. Soc. 1999,121, 5266.
    
    (58) Yoshizawa, K. J. Organomet. Chem. 2001, 635,100.
    
    (59) Blomberg, M. R. A.; Siegbahn, P. E. M.; Svensson, M. J. Phys. Chem. 1994, 98, 2062.
    
    (60) Irikura, K. K.; Goddard, W. A. J. Am. Chem. Soc. 1994,116, 8733.
    
    (61) Heinemann, C; Hertwig, R.; Wesendrup, R.; Koch, W.; Schwarz, H. J. Am. Chem. Soc.1995,117,495.
    
    (62) Crabree, R. H. Chem. Rev. 1985,55, 245.
    
    (63) Crabree, R. H. Chem. Rev. 1995, 95, 987.
    
    (64) Lunsford, J.H.Angew. Chem. 1995, 107, 1059.
    
    (65) Diefenbach, M.; Aschi, M.; Schroder, D.; Schwarz, H. J. Am. Chem. Soc. 1999, 121,10614.
    
    (66) Schwarz, H. Angew. Chem. Int. Ed. 2003, 42, 4442.
    
    (67) Koszinowski, K.; Schroder, D.; Schwarz, H. Organometallics 2004, 23, 1132.
    
    (68) Koszinowski, K.; Schroder, D.; Schwarz, H. Angew. Chem. Int. Ed. Engl. 2004, 43, 121.
    
    (69) Koszinowski, K.; Schroder, D.; Schwarz, H. J. Am. Chem. Soc. 2003,125, 3676.
    
    (70) Koszinowski, K.; Schroder, D.; Schwarz, H. Chem. Phys. Chem. 2003, 4, 1233.
    
    (71) Brunier, R. C; Cody, R. B.; Freiser, B. S. J. Am. Chem. Soc. 1982,104, 7436.
    
    (72) Cody, R.B.; Freiser, B.S. Int. J. Mass Spectrom. Ion Phys. 1982, 41, 199.
    (1) Thomas, L. H. Proc.Camb.Phil. Soc.1927, 23, 542.
    (2) Fermi, E. Z. Phys. 1928, 48,13.
    (3) Hohenberg, P.; Kohn, W. Phys. Rev. B 1964,136, 864.
    (4) Kohn, W.; Sham, L. J. Phys. Rev. A 1965,140,1133.
    (5) Geerlings,P.;Proft,De.Langenaeker, W. Chem.Rev. 2003,103,1793.
    (6) 谢希德,陈栋.固体能带理论.上海:复旦大学出版社,1998.
    (7) Parr,R.G;and Yang, W. T. Density-functional Theory of Atoms and Molecules. OXFORD Univ.Press: New York,1989.
    (8) Koch, W. and Holthausen. M. C. A Chemist's Guide to Density Functional Theory, 2nd ed.;WILEY-VCH:New York, 2001.
    (9) Kohanoff, J. Density Functional Theory: Basics, New Trends and Applications.Oxfordshire: UK, 2002.
    (10) Jones, R.O.;Gunnarsson,O.Rev. Mod. Phys. 1989, 61, 689.
    (11) Vosko, S. H.; Wilk, L.; Nusair, M. Can. J. Phys. 1980, 58, 1200.
    (12) Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, L. A.; Pederson, M. R.; Singh, D. J.;Fiolhais, C. Phys. Rev. B 1993, 48, 4978.
    (13) Perdew, J. P.; Burke, K.; Wang, Y. Phys. Rev. B 1996, 54, 16533.
    (14) Langreth, D. C; Mehl, M. J. Phys. Rev. Lett. 1981, 47, 446; Phys. Rev. B. 1983, 28, 1809.
    (15) Perdew, J. P.; Wang, Y. Phys. Rev. B 1986, 33, 8800.
    (16) Perdew, J. P. Phys. Rev. B. 1986, 33, 8822.
    (17) Perdew, J. P.and Wang, Y Phys. Rev. B. 1991, 45, 13244.
    (18) Becke, A. D. Phys. Rev. A. 1988, 38, 3098.
    (19) Lee, C; Yang, W; Parr, R. C. Phys. Rev. B. 1988, 37, 785.
    (20) Xu, X.; Zhang, Q. S.; Muller, R. P.; Goddard Ⅲ, W. A. J. Chem. Phys. 2005, 122,14105.
    (21) Lee, Y. S.; Ermler, W. C; Pitzer, K. S. J. Chem. Phys. 1977, 67, 5867.
    (22) Pepper, M.; Bursten, B. E. Chem. Rev. 1991, 91, 719.
    (23) Shukla, A.; Banerjee, A. J. Chem. Phys. 1994,100, 3695.
    (24) Lee, S. Y.; Lee, Y. S. Chem.Phys. Lett. 1991,187, 302.
    (25) Wittborn, C; Wahlgen, U. Chem. Phys. 1995, 201,357.
    (26) Sakai, Y; Huzinaga, S. J. Chem. Phys. 1982, 76,2537.
    (27) Klobukowski, M. J. Comp. Chem. 1983, 4, 350.
    (28) Huzinaga, S.; Seijo, L.; Barandiaran, Z.; Klobukowski, M. J. Chem. Phys. 1987, 86,2132.
    (29) Barandiaran, Z.; Seijo, L. Can. J. Chem. 1992, 70, 409.
    (30) Hellman, H. J. Chem. Phys. 1935, J, 61.
    (31) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 270; 1985, 82, 284; 1985, 82, 299.
    (32) Cundari, T. R.; Stevens, W. J. J. Chem. Phys. 1993, 98, 5555.
    (33) Hurley, M. M.; Pacios, L. F.; Christiansen, P. A.; Ross, R. B.; Ermler, W. C. J. Chem.Phys. 1986, 84, 6840.
    (34) Lajohn, L.; Christiansen, P. A.; Ross, R. B.; Atashroo, T. and Ermler, W. C. J. Chem.Phys. 1987,57,2812.
    (35) Poss, R. B.; Powers, J. M; Atashroo, T.; Ermler, W. C; Lajohn, L.; Christiansen, P. A. J.Chem. Phys. 1990, 93, 6654.
    (36) Ross, R. B.; Gayen, S.; Ermler, W. C. J. Chem. Phys. 1994,100, 8145.
    (37) McWeeny, R.; Suthcliffe,B. T. Methods of Molecular Quantum Mechanics ( Academic,London, 1976).
    (38) van Lenthe, E.; Baerends, E. J.; Snijders, J. G. J. Chem. Phys. 1993, 99, 4597.
    (39) van Lenthe, E.; Baerends, E. J.; Snijders, J. G. J. Chem. Phys. 1994,101, 9783
    (40) van Lenthe, E.; Snijders, J. G; Baerends, E. J. J. Chem. Phys. 1996,105, 6505.
    (41) van Lenthe, E.; Ehlers, A. E.; Baerends, E. J. J. Chem. Phys. 1999,110, 8943.
    (42) Chang, C; Pelissier, M.; Durand, P. Phys. Scr. 1986, 34, 394.
    (1) Chen, X.; Zhao, J.; Wang, G. H. Appl. Phys. Lett. 1994, 65, 2419.
    (2) Ma, J. X.; Han, M; Zhang, H. Q.; Gong, Y. C; Wang, G. H. Appl, Phys. Lett. 1994, 65,1513.
    (3) Bergeron, D. E.; Castleman, Jr. A. W; Moristato, T.; Khanna, S. N. Science 2004, 304,84.
    (4) Hoffmann, R. Nobel Lecture, 1981.
    (5) Alonso, J. A. Chem. Rev. 2000,100, 637.
    (6) Lombardi, J. R.; Davis, B. Chem. Rev. 2002, 102, 2431.
    (7) Vinod, C. P.; Harikumar, K. R.; Kulkarni, G. U.; Rao, C. N. R.Iopics In Catal.2000,11,293.
    (8) Prüsse, U.; Vorlop, K. D. J. Mol.Catal. 2001, 173, 313.
    (9) Berkowitz, A. E.; Mitekell, J. R.; Correy, M. J.; Young, A.P.; Zhang, S.; Spada, F. E.;Parker, F. T.; Hutten, A.; Thomas, G Phys. Rev. Lett. 1992, 68, 3745.
    (10) Xiao, J. Q.; Jiang, J. S.; Chien, C. J. Phys. Rev. Lett. 1992, 68, 3749.
    (11) Wang, J. Q.; Xiao, G. Phys. Rev. 1994, B49, 3982.
    (12) Yavari, A. R. Ordering and disordering in alloys, Elsevier Applied Science: London and New York,1991
    (13) Yang, J. L.; Xiao, C. Y; Xia, S. D.; Wang, K. L. Phys. Rev. B 1993, 48, 12155.
    (14) Sun, H. Q.; Ren, Y; Wang, G. H. Phys. Stat. Sol. (b) 2001, 225, 301.
    (15) Pick, S.; Turek, I.; Dreysse, H. Solid State Communication 2002,124, 21.
    (16) James, A. M.; Kowalczyk, P.; Fournier, R.;Simard, B. J. Chem. Phys. 1993, 99, 8504.
    (17) Majundar, D.; Balasubramanian, K. J. Chem. Phys. 2001,115, 885.
    (18) Kumar, V.; Kawazoe, Y. Phys. Rev. B 2002, 65, 125403.
    (19) Goodwin, L.; Salahub, D. R. Phys. Rev. A 1993, 47, R774.
    (20) Gronbeck, H.; Rosen, A.; Andreoni, W. Phys. Rev. A 1998, 58, 4630.
    (21) Majundar, D.; Balasubramanian, K. J. Chem. Phys. 1998,108, 2495.
    (22) Reddy, B. V.; Nayak, S. K.; Khanan, S. N.; Rao, B. K.; Jena, P. Phys. Rev. B 1999, 59,5214.
    (23) Aguilera-Granja, R; Rodriguez-Lopez, J. L.; Michaelian, K.; Berlanga Ramirez, E.O.;Vega, A. Phys. Rev. B 2002, 66, 224410.
    (24) Zitoun, D.; Respaud, M.; Fromen, M. C;Casanove, M. J. Phys. Rev. Lett. 2002, 89,037203.
    (25) Dennler, S.; Morillo, J.; Pastor, G. M. J. Phys.: Condens. Matter. 2004,16, S2263
    (26) Jamet, M.; Dupuis, V.; Melinon, P.; Guiraud, G.; Perez, A.; Wernsdorfer, W.; Traverse,A.; Baguenard, B.; Phys. Rev. B 2000, 62(1), 493.
    (27) Dupuis, V.; Jamet, M.; Favre, L.; Tuaillon-Combes, J.; Melinon, P.; Perez, A. J. Vac.Sci. Technol.A 2003,21,1519.
    (28) Pick, S.; Turek, I.; Dreysse, H. Solid State Commun. 2002,124, 21.
    (29) Wang, Y. P.; Dong, K. M;Tan, K.; Wang, X.; Lin, M. H.; Lin, L. T; Zhang, Q. E. Chem.J. Chinese. U. 2002, 23,453.
    (30) Tan, K.; Lin, M. H.; Zhang, Q. E. Chem. Res. Chinese. U. 2002,18, 38.
    (31) Gu, Y. B.; Tan, K.; Lin, M. H. Chinese J. Struct. Chem. 2004, 23, 87.
    (32) Wang, X.; Lin, M. H.; Zhang, Q. E. Acta.Chimica. Sinica. 2004, 62, 1689.
    (33) Tan, K.; Gu, Y. B.; Lin, M. H. Chem. Res. Chinese. U. 2005, 21,96.
    (34) Chen, J.; Lin, M. H.; Zhang, Q. E. Acta. Chimica. Sinica. 2005, 63, 1957.
    (35) Wang, X.; Cao, Z. X.; Xin, L.; Lin, M. H.; Zhang, Q. E. J. Chem. Phys. 2005, 123,064315.
    (36) Te Velde, G.; Baerends, E. J. J. Comput.Phys. 1992, 99, 84. ADF 2004, SCM,Theoretical Chemistry, Vrije Universiteit, Amsterdam, Netherlands (Available from:).
    (37) Lenthe, E.V.; Baerends, E. J.; Snijders, J.G. J. Chem. Phys. 1993, 99, 4597.
    (38) Lenthe, E.V.;Baerends, E. J.; Snijders, J.G. J. Chem. Phys. 1994,101,9783.
    (39) Becke, A. D. Phys. Rev. A 1988, 38, 2398.
    (40) Perdew, J. P. Phys. Rev. B 1986, 33, 8822; 1986, 34, 6937.
    (41) Gingerich, K. A.; Cocke, D. L. J. Chem. Soc.Chem. Commun. 1972,1,536.
    (42) Langenberg, J. D.; Morse, M. D. J. Chem. Phys. 1998,108, 2331.
    (43) Wu, Z. J. Chem. Phys. Lett. 2004, 383, 251.
    (44) Guo, P.; Ren, Z. Y.; Wang, F.; Bian, J.; Han, J. G.; Wang, G. H. J. Chem.Phys. 2004,121,1.
    (45) Adlhart, C; Uggerud, E. J. Chem. Phys. 2005,123,214709.
    (46) Anderson, P. W. Phys. Rev. 1958,109,1492.
    (47) Feng, D.; Jin, G J. (Eds.) Condensed Matter Physics, Beijing, 2003.
    (48) Micheal, P. M. (Ed.) Condensed Matter Physics, Texas University, New York, 2000.
    (49) Zhu, D. B. (Ed.) Advances in Function Material, Beijing, 2005.
    (50) Zhu, D. B.; Wang, F. S. (Eds.) Organic Solids, Shanghai, 1999.
    (1) Wallace, W. T.; Whetten, R. L. J. Phys. Chem. B 2000,104, 10964.
    
    (2) Berg, C; Beyer, M.; Schlinder, T.; Niedner-Schatteburg, G.; Bondybey, V. J. Chem. Phys.1996,104,20.
    
    (3) Berg, C; Beyer, M.; Achatz, U.; Joos, S.; Niedner-Schatteburg, G.; Bondybey, V. E.J. Chem. Phys. 1998,108, 5398.
    
    (4) Bondybey, V.; Beyer, M. J. Phys. Chem. A 2001,105, 951.
    
    (5) Achatz, U.; Beyer, M; Joos, S.; Fox, B. S.; Niedner-Schatteburg, G.; Bondybey, V. E.J. Phys. Chem. A 1999,103, 8200.
    
    (6) Mineva, T.; Russo, N.; Freund, H. J. J. Phys. Chem. A 2001,105,10723.
    
    (7) Knickelbein, M. B.; Koretsky, G. M. J. Phys. Chem. A 1998,102, 580.
    
    (8) Knickelbein, M. B. J. Chem. Phys. 2001,115, 1983.
    
    (9) Gronbeck, H.; Rosen, A.; Andreoni, W. Z. Phys. D 1997, 40, 206.
    
    (10) Lupinetti, A.; Fau, S.; Frenking, G.; Strauss, S. H. J. Phys. Chem. A 1997,101, 9551.
    
    (11) Knichelbein, M. B. Annu. Rev. Phys. Chem. 1999, 50, 79.
    
    (12) Cox, D. M.; Reichmann, K. C.; Trevor, D. J.; Kaldor, A. J. Chem. Phys. 1988, 88, 111.
    
    (13) Ervin, K. M. Int. Rev. Phys. Chem. 2001, 20, 127.
    
    (14) Majumdar, D.; balasubramanian, K. J. Chem. Phys. 1997,106, 7215.
    
    (15) Balteanu, I.; Achatz, U.; Balaj, O. P.; Fox, B. S.; Beyer M. K.; Bondybey, V. E.Int. J. Mass. Sped. 2003, 229, 61.
    
    (16) Fielicke, A.; Helden, G. V.; Meijer, G.; Pedersen, D. B.; Simard B.; Rayner, D. M.J. Phys. Chem. B 2004,108,14591.
    
    (17) A. Fielicke, G. V. Helden, G. Meijer, D. B. Pedersen, B. Simard and D. M. Rayner, J.Chem. Phys. 124, 194305 (2006).
    
    (18) Citra, A.; Wang, X.; Andrews, L. J. Phys. Chem. A 2002,106, 3287.
    
    (19) Lee, J. Y.; Schwank, J. J. Catal. 1986,102, 207.
    
    (20) Debeila, M. A.; Coville, N. J.; Scurrell, M. S.; Hearne, G. R. Catal. Today 2002, 72, 79.
    
    (21) Solymosi, F.; Bansagi, T.; Zakar, T. S. Catal. Lett. 2003, 87,7.
    
    (22) Solymosi, F.; Bansagi, T.; Zakar, T. S. Phys. Chem. Chem. Phys. 2003, 5, 4724.
    (23) Hammer, B. J. Catal. 2001,199, 171.
    
    (24) Shelef, M.; Graham, G. W. Catal. Rev. 1994, 56, 433.
    
    (25) Zhou, M.; Andrews, L. J. Phys. Chem. A 2000,104, 3915.
    
    (26) Andrews, L.; Citra, A. Chem. Rev. 2002,102, 885.
    
    (27) Fielicke, A.; von Helden, G.; Meijer, G.; Simard, B.; Rayner, D. M. Phys. Chem. Chem.Phys. 2005, 7, 3906.
    
    (28) Ball, D. W.; Chiarelli, J. A. J. Mol. Struct. 1995, 372, 113.
    
    (29) Ford, M. S.; Anderson, M. L.; Barrow, M. P.; Woodruff, D. P.; Drewello, T.; Derrick, P.J.; Mackenzie, S. R. Phys. Chem. Chem. Phys. 2005, 7, 975.
    
    (30) Anderson, M. L.; Ford, M. S.; Derrick, P. J.; Drewello, T.; Woodruff, D. P.; Mackenzie,S. R. J. Phys. Chem. A 2006,110, 10992.
    
    (31) Ding, X.L.; Li, Z.L.; Yang, J.L.; Hou, J. G..; Zhu, Q. S. J. Chem. Phys. 2004,121, 2558.
    
    (32) Harding, D.; Mackenzie, S. R.; Walsh, T. R. J. Phys. Chem. B 2006,110, 18272.
    
    (33) Endou, A.; Yamauchi, R.; Kubo, M.; Stirling, A.; Miyamoto, A. Applied Surface Science 1997,779,318.
    
    (34) Schmatloch, V.; Jirka, I.; Heinze, S.; Kruse, N. Surf. Sci. 1995, 331, 23.
    
    (35) Borg, H. J.; Reijerse, J. F. C.-J. M.; Van Santen, R. A.; Niemantsverdriet, J. W. J. Chem.Phys. 1994,101, 10052.
    
    (36) Fougre, S. G.; Balfour, W. J.; Cao, J.; Qian, C. X. W. J. Mol. Spectrosc. 2000,199, 18.
    
    (37) Van Santen, R. A.; Jansen, A. P. J. J. Chem. Phys. 2003, 77S, 7081.
    
    (38) Zaera, F.; Gopinath, C. S. J. Chem. Phys. 1999, 777, 8088.
    
    (39) Nakai, I.; Kondoh, H.; Shimada, T.; Nagasaka, M.; Yokota, R.; Amemiya, K.; Orita, H.;Ohta, T. J. Phys. Chem. B Lett. 2006, 770, 25578.
    
    (40) Popa, C; Flipse, C. F. J.; Jansen, A. P. J.; van Santen, R. A.; Sautet, P. Phys. Rev. B 2006, 73, 245408.
    
    (41) Nakamura, I.; Kobayashi, Y.; Hamada, H.; Fujitani, T. Surf. Sci. 2006, 600, 3235.
    
    (42) Te Velde, G.; Baerends, E. J. J. Comput. Phys. 1992, 99, 84. ADF 2004, SCM,Theoretical Chemistry, Vrije Universiteit, Amsterdam, Netherlands (Available from:).
    (43) Lenthe, E.V.; Baerends, E. J.; Snijders, J. G. J. Chem. Phys. 1993, 99, 4597.
    
    (44) Lenthe, E.V.; Baerends, E. J.; Snijders, J. G. J. Chem. Phys. 1994,101, 9783.
    
    (45) Stevens, F.; Speybroeck, V. V.; Carmichael, I.; Callens, F.; Waroquier, M.; Chem. Phys.Lett. 2006,427,281.
    
    (46) Becke, A. D. Phys. Rev. A 1988,38,2398.
    
    (47) Perdew, J. P. Phys. Rev. B 1986,33, 8822; 1986, 34, 6937.
    
    (48) Huber, K. P.; Herzberg, G. Molecular Spectra And Molecular Structure, Constants of Diatomic Molecules Vol. V (Van Nostrand Reinhold, New York, 1979).
    
    (49) Gingerich, K. A.; Cocke, D. L. J. Chem. Soc. Chem. Commun. 1972,1, 536.
    
    (50) Balasubramanian, K.; Liao, D. W. J. Phys. Chem. 1989, 93, 3989.
    
    (51) Nayak, S. K.; Weber, S. E.; Jena, P.; Wildberger, K.; Zeller, R.; Dederichs, P. H.;Stepanyuk, V. S.; Hergert, W. Phys. Rev. B 1997, 56, 8849.
    
    (52) Majumdar, D.; Balasubramanian, K. J. Chem. Phys. 1998,108, 2495.
    
    (53) Langenberg, J. D.; Morse, M. D. J. Chem. Phys. 1998,108, 2331.
    
    (54) Chien, C. H.; Barojas, E. B.; Pederson, M. R. Phys. Rev. A 1998, 58, 2196.
    
    (55) Reddy, B. V.; Nayak, S. K.; Khanan, S. N.; Jena, P. Phys. Rev. B 1999, 59, 5214.
    
    (56) Chien, C. H.; Barojas, E. B.; Pederson, M. R. J. Chem. Phys. 2000,112, 2301.
    
    (57) Granja, F. A.; Lopez, J. L. R.; Michaelian, K.; Ramirez, E. O. B.; Vega, A.Phys. Rev. B 2002, 66, 224410.
    
    (58) Roszak, S.; Balasubramanian, K. J. Chem. Phys. 1995,103, 1043.
    
    (59) Dai, D.; Roszak, S.; Balasubramanian, K. J. Chem. Phys. 1996,104, 1471.
    
    (60) Dai, D.; Balasubramanian, K. J. Chem. Phys. 1994,101, 2148.
    
    (61) Estiu, G. L.; Zerner, M. C. J. Phys. Chem. 1993, 97,13720.
    
    (62) Goursot, A.; Papai, I.; Salahub, D. R. J. Am. Chem. Soc. 1992,114, 7452.
    
    (63) Majumdar, D.; Balasubramanian, K. Chem. Phys. Lett. 1996, 262, 263.
    
    (64) Blyholder, G. J. Phys. Chem. 1964, 68, 2772.
    
    (65) Lloyd, D. R.; Quinn, C. M.; Richardson, N. V. Surf. Sci. 1977, 63, 174.
    
    (66) Apai, G.; Williams, R. S.; Stohr, J.; Shirley, D. A. Phys. Rev. Lett. 1976, 37, 1497.
    
    (67) Allyn, C. L.; Gustafson, T.; Plummer, E. W. Chem. Phys. Lett. 1977, 47, 127.
    (68) Rogosik, J.; Dose, V. Surf. Sci. 1986,176, L847.
    (69) Taylor, K. C. Catal.Rev. Sci. Eng. 1993, 35, 457.
    (70) Shelef, M.; Graham, G W. Rev. Sci. Eng. 1994,36,433.
    (71) Zhdanov, V. P.; Kasemo,B. Surf. Sci. Rep. 1997, 20, 31.
    (72) Zaera, F.; Gopinath C. S. Chem.Phys. Lett. 2000, 332, 209.
    (73) Zaera, F.; Gopinath C. S. Phys. Chem. Chem. Phys. 2003, 5, 646.
    (74) Zaera, F.; Wehner, S.; Gopinath C. S.; Sales, J. L.; Gargiulo, V. Zgrablich, G. J. Phys.Chem. 5 2001,105,1111.
    (1) Irikura, K.K.; Beauchamp, J.L. J. Am. Chem. Soc. 1991,113, 2769.
    
    (2) Irikura, K.K.; Beauchamp, J.L. J. Phys. Chem. 1991, 95, 8344.
    
    (3) Musaev, D.G.; Nobuaki, K.; Morokuma, K. J. Phys. Chem. 1993, 97, 4064.
    
    (4) Blomberg, M. R. A.; Siebahn, P. E. M.; Svensson, M. J. Phys. Chem. 1994, 98, 2062.
    
    (5) Heinemann, C; Hertwig, R.; Wesendrup, R.; Koch, W.; Schwarz, H. J. Am. Chem.Soc. 1995,117,495.
    
    (6) Chen, Y. M.; Armentrout, P. B. J. Phys. Chem. 1995, 99, 10775.
    
    (7) Heinemann, C; Wesendrup, R.; Schwarz, H. Chem. Phys. Lett. 1995, 239, 75.
    
    (8) Pavlov, M.; Bomberg, M. R. A.; Seigbahn, P. E.; Wesendrup, R.; Heinemann, C.;Schwarz, H. J. Phys. Chem. A 1997,101, 1567.
    
    (9) Abashkin, Y. G.; Stanley, K. B. J. Phys. Chem. A 1997,101, 8085.
    
    (10) Taylor, W. S.; Campbell, A. S.; Barnas, D. F.; Babcock, L. M.; Under, C. B. J. Phys.Chem. A 1997,101, 2654.
    
    (11) Westerberg, J.; Blomberg, M. R. A. J. Phys. Chem. A 1998,102, 7303.
    
    (12) Achatz, U.; Beyer, M; Joos, S.; Fox, B. S.; Niedner-Schatteburg, G.; Bondybey, V. E.J. Phys. Chem. A 1999,103, 8200.
    
    (13) Bronstrup, M.; Schroder, D.; Schwarz, H. Organometallics 1999,18, 1939.
    
    (14) Zhang, X.G.; Liyanage, R.; Armentrout, P. B. J. Am. Chem. Soc. 2001,123, 5563.
    
    (15) Koszinowski, K.; Schroder, D.; Schwarz, H. J. Phys. Chem. A 2003, 107, 4999.
    
    (16) Koszinowski, K.; Schroder, D.; Schwarz, H. Organometallics 2003, 22, 3819.
    
    (17) Crabtreee, R.H. Chem. Rev. 1995, 95, 987.
    
    (18) Lunsford, J.H. Angew. Chem. Int. Ed. Engl 1995, 43, 970.
    
    (19) Schroder, D.; Shaik, S.; Schwarz, H. Acc. Chem. Res. 2000, 33,139.
    
    (20) Plattner, D. A. Angew. Chem. Int. Ed 1999, 38, 82.
    
    (21) Perez, P.; Andres, J.; Safont, V. S.; Contreras, R.; Tapia, O. J. Phys. Chem. A 2005,109,4178.
    
    (22) Chiodo, S.; Kondakova, O.; Michelini, M. D. C.; Russo, N.; Sicilia, E. J. Phys.Chem. A 2004,108, 1069.
    
    (23) Filatov, M.; Shaik, S. J. Phys. Chem. A 1998,102, 3835.
    (24) Jin, N.; Groves, T. J. Am. Chem. Soc. 1999,121, 2923.
    
    (25) Hasenberg, D.; Schmidt, L. D. J. Catal. 1985, 91, 116.
    
    (26) Hasenberg, D.; Schmidt, L. D. J. Catal. 1986, 97, 156.
    
    (27) Hasenberg, D.; Schmidt, L. D. J. Catal. 1987,104, 441.
    
    (28) Waletzko, N.; Schmidt, L. D. AlChE J. 1988, 34, 1146.
    
    (29) Bockholt, A.; Harding, I. S.; Nix, R. M. J. Chem. Soc. Faraday Trans. 1997, 93,3869.
    
    (30) Aschi, M.; Bronstrup, M.; Diefenbach, M.; Jeremy, N. H.; Schroder, D.; Schwarz, H.Angew. Chem. Int. Ed. Engl. 1998, 37, 829.
    
    (31) Lunsford, J.H.Angew. Chem. 1995, 107, 1059.
    
    (32) Diefenbach, M.; Aschi, M.; Schroder, D.; Schwarz, H. J. Am. Chem. Soc. 1999,121,10614.
    
    (33) Schwarz, H. Angew. Chem. Int. Ed. 2003, 42, 4442.
    
    (34) Koszinowski, K.; Schroder, D.; Schwarz, H. Organometallics 2004, 23, 1132.
    
    (35) Koszinowski, K.; Schroder, D.; Schwarz, H. Angew. Chem. Int. Ed. Engl. 2004, 43,121.
    
    (36) Koszinowski, K.; Schroder, D.; Schwarz, H. J. Am. Chem. Soc. 2003,125, 3676.
    
    (37) Koszinowski, K.; Schroder, D.; Schwarz, H. Chem. Phys. Chem. 2003, 4, 1233.
    
    (38) Brunier, R. C.; Cody, R. B.; Freiser, B. S. J. Am. Chem. Soc. 1982,104, 7436.
    
    (39) Cody, R.B.; Freiser, B.S. Int. J. Mass Spectrom. Ion Phys. 1982, 41, 199.
    
    (40) Koszinowski, K.; Schlangen, M.; Schroder, D.; Schwarz, H. Int. J. Mass Spectrum 2004,23, 19.
    
    (41) Xia, F.; Chen, J.; Zeng, K.; Cao, Z. X. Organometallics 2005, 24, 1845.
    
    (42) Xia, F.; Chen, J.; Cao, Z. X. Chem. Phys. Lett. 2006, 418, 386.
    
    (43) Frisch, M. J.; Trucks, G. W.; Schlegel,H. B.; Scuseria, G. E.; Robb, M. A.;Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A.Jr.; Stratmann, R. E.;Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M.C.; Farkas, O.; Tomasi,; J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.;Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.;Cui, Q.; Morokuma, K.; Salvador, P.; Dannenberg, J.J.; Malick, D. K.; Rabuck, A.D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J.V.; Baboul, A.G.; Stefanov, B.B.; Liu, G; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.;Martin, R.L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C.Y.; Nanayakkara, A.;Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M.W.; Andres,J.L.; Gonzalez, C; Head-Gordon, M.; Replogle, E.S. and Pople, J.A. Gaussian 98,Inc., Pittsburgh PA, 1998.
    (44) Hay, P. J.; Wadt, W. R. J. Chem.Phys.1985, 82, 270.
    (45) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82,299.
    (46) Wadt, W. R.; Hay, P. J. J. Chem. Phys. 1985, 82, 284.
    (47) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
    (48) Lee, C; Yang, W.; Parr, R. G. Phys. Rew.B 1988, 37, 785.
    (49) Pyykko, P. Chem. Rev. 1988, 88, 563.
    (50) Kaltsoyannis, N. J. Chem. Soc, Dalton Trans. 1996,1,1.
    (51) Gonzalez,C.;Schlegel, H. B. J. Chem. Phys. 1989, 90, 2154.
    (52) Gonzalez, C; Schlegel, H. B. J. Chem. Phys. 1990, 94, 5523.
    (53) Nino, R.; Emilia, S. J. Am. Chem. Soc. 2001,123,2588.
    (54) Yoshizawa, K.; Shiota, Y; Yamabe, T. J. Chem. Phys. 1999, 111,538.
    (55) Yoshizawa, K.; Kagawa,Y. J. Phys. Chem. A 2000,104,9347
    (56) Zhang, G B.; Li, S. H.; Jiang, Y. S. Organometallics 2003, 22, 3820.
    (1) Gates, B. C. Chem. Rev. 1995, P5, 511.
    
    (2) Street, S. C.; Xu, C.; Goodman, D. W. Annu. Rev. Phys. Chem. 1997, 48,43.
    
    (3) Pope, M. T.; Miiller, A. Polyoxometalate Chemistry From Topology via Self-Assembly to Applications Kluwer, Boston, 2001.
    
    (4) Crans, D. C; Smee, J. J.; Gaidamauskas, E.; Yang, L. Chem. Rev. 2004,104, 849.
    
    (5) Rockenberger, J.; Scher, E. C.; Alivisatos, A. P. J. Am. Chem. Soc. 1999,121,11595.
    
    (6) Ayers, T. M.; Fye, J. L.; Li, Q.; Duncan, M. A. J. Cluster Sci. 2003,14, 97.
    
    (7) Cushing, B. L.; Kolesnichenko, V. L.; O'Conner, C. J. Chem. Rev. 2004,104, 3893.
    
    (8) Kang, E.; Park, J.; Hwang, Y.; Kang, M.; Park, J. G.; Hyeon, T. J. Phys. Chem. B 2004,108, 13932.
    
    (9) Fernandez-Garcia, M.; Martinez-Arias, A.; Hanson, J. C.; Rodriguez, J. A. Chem.Rev. 2004,104, 4063.
    
    (10) Berkowitz, J.; Chupka, W. A.; Inghram, M. G. J. Chem. Phys. 1957, 27, 87.
    
    (11) Farber, M.; Uy, O. M.; Srivastava, R. D. J. Chem. Phys. 1972, 56, 5312.
    
    (12) Bennett, S. L.; Lin, S. S.; Giles, P. W. J. Phys. Chem. 1974, 78, 266.
    
    (13) Kooi, S. E.; Castleman, A. W. J. J. Phys. Chem. A 1999,103, 5671.
    
    (14) Deng, H. T.; Kerns, K. P.; Castleman, A. W. J. J. Phys. Chem. 1996,100, 13386.
    
    (15) Fialko, E. F.; Kikhtenko, A. V.; Goncharov, V. B.; Zamaraev, K. I. J. Phys. Chem. A 1997,101, 8607.
    
    (16) Wang, X.; Gu, Z.; Qin, Q. Int. J. Mass. Spectrom. 1999,188, 205.
    
    (17) Foltin, M.; Stueber, G. J.; Bernstein, E. R. J. Chem. Phys. 1999, 111, 9577.
    
    (18) France, M. R.; Buchanan, J. W.; Robinson, J. C.; Pullins, S. H.; Tucker, J. L.; King,R. B.; Duncan, M. A. J. Phys. Chem. A 1997,101, 6214.
    
    (19) Schroder, D.; Schwarz, H.; Shaik, S. Struct. Bonding 2000, 97, 91.
    
    (20) Jackson, P.; Fischer, K. J.; Willett, G. D. Chem. Phys. 2000, 262, 179.
    
    (21) Wang, X.; Neukermans, S.; Vanhoutte, F.; Janssens, E.; Verschoren, G.; Silverans,R. E.; Lievens, P. Appl. Phys. B: Lasers Opt. 2001, 73, 417.
    
    (22) Fielicke A.; Rademann, K. Phys. Chem. Chem. Phys. 2002, 4, 2621.
    
    (23) Vardhan, D.; Liyanage, R.; Armentrout, P. B. J. Chem. Phys. 2003,119,4166.
    (24) Zhou, M.; Andrews, L. J. Phys. Chem. A 1998,102, 8251.
    
    (25) Wang, L. S.; Wu, H.; Desai, S. R.; Lou, L. Phys. Rev. B 1996, 53, 8028.
    
    (26) Yang D. S.; Hackett, P. A. J. Electron Spectrosc. Relat. Phenom. 2000,106,153.
    
    (27) Green, S. M. E.; Alex, S.; Fleischer, N. L.; Millam, E. L.; Marcy, T. P.; Leopold, D.G.; J. Chem. Phys. 2001,114, 2653.
    
    (28) Pramann, A.; Nakamura, Y.; Nakajima, A.; Kaya, K. J. Phys. Chem. A 2001,105,7534.
    
    (29) Yoder, B. L.; Maze, J. T.; Raghavachari, K.; Jarrold, C. C. J. Chem.Phys. 2005,122,094313.
    
    (30) von Helden, G.; Kirilyuk, A.; van Heijnsbergen, D.; Sartakov, B.; Duncan, M. A.;Meijer, G. Chem. Phys. 2000, 262, 31.
    
    (31) Fielicke, A.; Meijer, G.; von Helden, G. J. Am. Chem. Soc. 2003,125, 3659.
    
    (32) Asmis, K. R.; Brummer, M.; Kaposta, C.; Santambrogio, G.; von Helden, G.; Meijer,G.; Rademann, K.; Woeste, L. Phys. Chem. Chem. Phys. 2002, 4, 1101.
    
    (33) Sambrano, J. R.; Andres, J.; Beltran, A.; Sensato, F.; Longo, E. Chem. Phys. Lett.1998, 287, 620.
    
    (34) Chakrabarti, A.; Hermann, K.; Druzinin, R.; Witko, M.; Wagner, F.; Petersen, M.Phys. Rev. B 1999, 59, 10583.
    
    (35) Zimmermann, R.; Steiner, P.; Claessen, R.; Reinert, F.; Hufhert, S.; Blaha, P.;Dufek, P. J. Phys.: Condens. Matter 1999, 11, 1657.
    
    (36) Wachs, I. E.; Briand, L. E.; Jehng, J.; Burcham, L.; Gao, X. Catal. Today 2000, 57,323.
    
    (37) Vyboischikov S. F.; Sauer, J. J. Phys. Chem. A 2000,104, 10913.
    
    (38) Albaret, T.; Finocchi, F.; Noguera, C. J. Chem. Phys. 2000,113, 2238.
    
    (39) Calatayud, M.; Silvi, B.; Andres, J.; Beltran, A. Chem. Phys. Lett. 2001, 333, 493.
    
    (40) Cox, P. A. Transition Metal Oxides. An Introduction to Their Electronic Structure and Properties Oxford : Clarendon Press, 1992.
    
    (41) Rao, C. N. R.; Raveau, B. Transition metal oxides VCH Publishers: New York,1995.
    
    (42) Ruth, K.; Burch, R.; Kieffer, R. J. Catal. 1998,175, 27.
    (43) Escribano, V. S.; Busca, G.; Lorenzelli, V. J. Phys. Chem.1990, 94, 8945.
    (44) Oyama,S.T.;Somorjai, G. A. J. Phys. Chem. 1990, 94, 5022.
    (45) Grzybowska-SA wierkosz, B. Appl.Catal A 1997,157, 409.
    (46) Bell, R.C; Zemski, K. A.; Kerns, K. P.; Deng,H. T.; Castleman,A.W. J. Phys.Chem. A 1998,102, 1733.
    (47) Bell, R. C; Zemski, K. A.; Castleman Jr., A.W. J. Phys. Chem. A 1998,102, 8293.
    (48) Bell, R. C; Zemski, K. A.; Castleman Jr., A.W. J. Phys. Chem. A 1999,103, 2992.
    (49) Bell, R. C; Zemski, K. A.; Castleman Jr., A.W. J. Phys. Chem. A 1999,103, 1585.
    (50) Vyboishchikov, S. F. J. Mol.Stru.:THEO 2005, 723, 53.
    (51) Bell, R. C; Zemski, K. A.; Castleman Jr., A.W. J. Cluster Sci.1999,10,509.
    (52) Zemski, K. A.; Bell, R. C; Castleman Jr., A.W. Int. J. Mass. Spectrom.1999,184,119.
    (53) Zemski, K. A.; Justes, D. R.; Bell, R. C; Castleman Jr., A.W. J. Phys. Chem. B 2002,106, 6136.
    (54) Justes, D. R.; Mitric, R.; Moore, N. A.; Bonacic-Koutecky, V.; Castleman, Jr., A. W.J. Am. Chem. Soc.2003,125,6289.
    (55) Justes, D. R.; Moore, N. A.; Castleman, Jr., A. W. J. Phys. Chem. B 2004,108,3855.
    (56) Bergeron, D. E.; Castleman, Jr., A. W.; Jones, N. A.; Khanna, S. N. Nano Lett. 2004,4,261.
    (57) Sun, Q.; Rao, B. K.; Jena, P.; Stolcic, D.; Kim, Y. D.; Gantefoer, G.; Castleman, Jr.,A. W. J. Chem. Phys. 2004,121, 9417.
    (58) Zemski, K. A.; Justes, D. R.; Castleman Jr., A. W. J. Phys. Chem. A 2001,105,10237.
    (59) Moore, N. A.; Mitric' R.; Justes, D. R.; Bonac(?)ic'-Koutecky' V.;Castleman Jr., A.W.J. Phys. Chem. 5 2006,110,3015.
    (60) Amsterdam Density Functional (ADF) 2004, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, Netherlands (www.scm.com).
    (61) Baerends, E. J.; Ellis, D. E.; Ros, P. Chem. Phys. 1973, 2, 41.
    (62) Boerrigter, P. M; te Velde, G; Baerends, E. J. Int. Quantum Chem. 1988, 33, 87.
    (63) te Velde, G; Baerends, E. J. J. Chem. Phys. 1992, 99, 84.
    (64) Perdew, J. P. Phys. Rev. B 1986,33, 8822.
    
    (65) Perdew, J. P. Phys. Rev. A 1988,38, 2398.
    
    (66) Calatayud, M.; Andres, J.; Beltran, A. J. Phys. Chem. A 2001,105, 9760.
    
    (67) Fielicke A.; Mitric' R.; Meijer, G.; Bona(?)ic'-Koutecky' V.; Helden, G. V.J. Am. Chem. Soc. 2003,125, 15716.
    
    (68) Vyboishchikov, S. F.; Sauer, J. J. Phys. Chem. A 2001,105, 8588.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700