WMSNs在云计算中心节能减排中的关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着云计算数据中心的规模和数量的不断扩大,以及内部单位面积能耗的不断增加,制冷能耗已经成为了制约云计算数据中心发展的主要瓶颈之一。在美国,所有数据中心在2006年的能耗约占全美当年电力消耗的1.5%;在我国,据推算在2009年约占全国全年电力消耗1%。然而,这些能耗的40~50%被用于对数据中心的温度控制。因此,提高数据中心制冷效率,是对数据中心在节能减排方面研究的主要途径之一,由于其可以节省大量能源,IBM、HP等数据中心研发机构均在积极研究相关内容。
     本文针对云计算中心内部热量分布不平衡的问题,基于无线多媒体传感器网络(WMSNs),实时监测局部高温(即热点)现象,并利用任务迁移等方式降低热点区域的热负荷,达到平衡热量分布、提高制冷效率的目的。文中基于WMSNs提出了云计算中心局部温度管理新体系,通过对云计算中心室内热量分布实时监测,以“热点发现—热点定位—特征提取—热点消除”为主线,实现了消除热点、提高制冷效率的目的。本文具体在以下几个方面取得了一定成果:
     基于WMSNs的动态频谱分配技术。局部温度管理新体系中的热成像传感器网络使用了通用的无线多媒体传感器模块,在必要时需要实时地连续传输热点的特征序列。鉴于无线多媒体传感器模块受计算能力和通信能力的限制,本文利用网内各节点的接收信号强度(RSSI),提出了具有轮换机制的分布式频谱感知和管理方法,利用认知无线电技术解决了系统内各节点之间及其与其它无线设备之间的共存问题。
     基于热成像传感器网络的热点联合定位技术。文中首先基于形态学原理提出了单节点在单幅温度图像中检测真实热点的方法。然后,提出节点在发现真实热点后,如何利用热点相对位置信息引导其它节点搜索该热点,以及利用多个节点对热点进行联合定位的方法。所有方法在满足传感器节点的有限计算能力和存储能力的同时,达到了满足应用要求的准确性。
     基于传感器节点的热点特征提取及重建技术。通过热点特征,可以获取热点状态、热点变化和热点产生原因,并自动选择最有效方式消除热点。本文针对热点二维形态特征的数据量较大问题,提出了非对称热点形态特征提取及热点二维重建算法,并提出了利用热点特征判别热点产生原因的方法和消除热点的任务迁移策略。
     通过实验证明,本文提出的局部温度管理新体系在发现热点后,通过对其的后续处理可以达到消除热点、平衡热量分布的目的,使得在CRAC低速供气的条件下,服务器可以处于较低的温度环境,从而节省一定制冷成本。
Energy consumption in cooling has been one of the main factors restricting the development of cloud computing centers due to their increasing, both quantity and scale, and the increasing in heat dissipated per unit surface area. In the U.S., the power consumption of data centers is 1.5% of total national electrical power consumption of the full year in 2006. In China, the power consumption of data centers account for about 1% of total national electrical power consumption of the full year in 2009. However,40% to 50% of the power consumption is cost to cool data centers. Therefore, a means of energy saving and emission reduction is to improve cooling efficiency of data centers, that is the current research of IBM, HP and other R&D Institutions of data centers.
     This dissertation focus on the imbalanced distribution of heat inside the data center, using the Wireless Multimedia Sensor Networks (WMSNs) to test the local hot spots instantly and cool the hot spots by job migration etc. to balance the distribution of heat in data center. This dissertation addresses the cloud computing center's local temperature management system based on WMSNs, which performs the real-time monitoring heat distribution to optimize datacenter performance in terms of energy consumption and throughput. The main tasks of the system are to detect and localize hotspots, and extract their characteristics for remove them. The specific contributions are as follows:
     The first is the dynamic spectrum allocation technology based on WMSNs. The thermal camera network in the local temperature management system uses the general wireless multimedia sensor platforms. It need real-time transmit characteristics series of hotspots in a hardware constrained environment. Thus this dissertation proposes the spectrum sensing and management method to prevent interference between WMSNs and other wireless devices.
     The second is cooperative localizing hotspots using the thermal camera network. This dissertation proposes the method to detect the real hotspot in the thermal using one thermal camera node, and the method to guide other thermal camera nodes find the hotspot by its information. Also this dissertation proposes the algorithm to cooperatively local the hotspot by multiple thermal camera nodes. The simulations prove that the location accuracy meets application requirements, and the algorithms can be used in hardware constrained environments.
     Last but not least, the characteristics of hotspots are extracted and compressed by nodes. The characteristics can indicate state, change and cause of the hotspot. It is conducive to selective effective way to remove hotspot. In addition, an asymmetrical compression method is proposed to extract two dimensional morphological characteristics of hotspots and to reconstruct it.
     Experiments prove that the local thermal management system proposed in this dissertation can remove hotspots and imbalance the distribution of heat, so that the servers in the cloud computing center can run in low temperature environment with low airflow from CRAC, and some energy can be saved.
引文
[1]Sadagopan S. Greenpeace:Cloud, Consumption & Climate Change[R]. Greenpeace,2010.
    [2]Carr N G. It Doesn'T Matter[J]. Harvard Business Review.2003,81(5):41-49.
    [3]Armbrust M, Fox A, Griffith R, et al. Above the Clouds:A Berkeley View of Cloud Computing[R]. Electrical Engineering and Computer Sciences University of California at Berkeley,2009.
    [4]北京盛世创富广告传媒有限公司.2010-2011年中国IDC业务市场发展研究报告[R].2011.
    [5]Moore J, Chase J, Ranganathan P, et al. Making Scheduling "Cool":Temperature-Aware Workload Placement in Data Centers[C]. The annual conference on USENIX Annual Technical Conference, Berkeley, CA, USA,2005:5.
    [6]Rao K T, Kiran P S, Reddy L S S. Energy Efficiency in Datacenters through Virtualization:A Case Study[J]. Journal of Computer Science and Technology.2010,10(3):2-6.
    [7]罗承,刘亮.云计算对IDC发展的影响分析[J].电信工程技术与标准化.2010,23(12):20-23.
    [8]吕国英.2008中国IDC产业调查报告[R].赛迪顾问,2009.
    [9]Ashrae. Thermal Guidelines for Data Processing Environments[R].2008.
    [10]Jeff Dean On Google Infrastructure. http://perspectives.mvdirona.com/2008/06/11/JeffDeanOnGoogleInfrastructure.aspx.
    [11]赵璐,无右.给“云计算”降温节能[J].新知客.2010(11):54-55.
    [12]金真.八招应对IDC节能减排[J].信息系统工程.2008,21(2):76-77.
    [13]2009中国绿色数据中心发展与实践高峰论坛.http://www.c114.net/topic/1662/a445296.html.
    [14]数据中心制冷:绿色节能的突破口.http://www.idcps.com/Article.asp?id=17400.
    [15]谷立静,周伏秋,孟辉.我国数据中心能耗及能效水平研究[J].中国能源.2010(11):42-45.
    [16]Stanojevic R, Shorten R. Distributed Dynamic Speed Scaling[C]. The 29th Conference on Computer Communications (INFOCOM), San Diego, CA, USA,2010:426-430.
    [17]Greenpeace Says the Cloud is Fuelled by Coal. http://www.komplettblog.ie/8420/greenpeace-says-the-cloud-is-fuelled-by-coal/.
    [18]Cbsi Smart Planet-Steve Sam'S Video Transcript. http://www-935.ibm.com/services/us/cio/pdf/cbsi-smartplanet-steve-sams-video-transcript.pdf.
    [19]Mingay S. Green It:The New Industry Shock Wave, G00153703[R].2007.
    [20]The Climate Group. Smart 2020:Enabling the Low Carbon Economy in the Information Age[R]. 2008.
    [21]Freeman T. Five Ways to Improve Data Center Roi[J]. News Link.2010(1):6-9.
    [22]Shah A, Patel C, Bash C, et al. Impact of Rack-Level Compaction On the Data Center Cooling Ensemble [C]. The 11th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITHERM), Orlando, Florida, USA,2008:1175-1182.
    [23]这个暑期数据中心不宕机.http://www.jifang360.com/news/201055/n52635979.html.
    [24]Clidaras J, Stiver D W, Hamburgen W. Water-Based Data Center[P]. USA,7525207.2008.8.28.
    [25]Emerson Network Power, Energy Logic:Reducing Data Center Energy Consumption by Creating Savings that Cascade Across Systems, a White Paper From the Experts in Business-Critical Continuity[R].2008.
    [26]Garday D, Costello D. Air-Cooled High-Performance Data Centers:Case Studies and Best Methods[R]. Intel Corporation White Paper,2006.
    [27]Schmidt R R, Cruz E E, Iyengar M. Challenges of Data Center Thermal Management[J]. IBM Journal of Research and Development.2005,49(4):709-723.
    [28]Datacool Brochure. Datacool the New Thinking in Environmental Control, the Power to Cool the Most Extreme Environments[S]. Emerson Energy Systems, Richardson, Texas 75085.
    [29]Bash C B, Patel C D, Sharma R K. Dynamic Thermal Management of Air Cooled Data Centers[C]. Thermal and Thermomechanical Phenomena in Electronics Systems (ITHERM), San Diego, CA, USA,2006:445-452.
    [30]Sharma R K, Bash C E, Patel C D, et al. Balance of Power:Dynamic Thermal Management for Internet Data Centers[J]. IEEE Internet Computing.2005,9:42-49.
    [31]IBM Systems and Technology Group. Keeping Your Data Center Cool:There is Another Way[R]. IBM Corporation,2005.
    [32]刘安全.一种节能空调设备及制冷方法[P].中国,发明专利,200710121943.X.2008.2.6.
    [33]陈学勤.应用自然冷却技术的冷水机组[P].中国,实用新型专利,200720173533.2008.9.3.
    [34]朱洪波,陈云水.一种机房空调机组[P].中国,发明专利,200710175601.2008.2.20.
    [35]Akyildiz I F, Melodia T, Chowdhury K R. A Survey On Wireless Multimedia Sensor Networks[J]. Computer Networks.2007,51(4):921-960.
    [36]Akyildiz I F, Su W, Sankarasubramaniam Y, et al. Wireless Sensor Networks:A Survey[J]. Computer Networks.2002,38(4):393-422.
    [37]Cucchiara R. Multimedia Surveillance Systems[C]. The third ACM international workshop on Video surveillance \& sensor networks (VSSN), Singapore,2005:3-10.
    [38]Tao D, Ma H, Liu Y. Energy-Efficient Cooperative Image Processing in Video Sensor Networks[J]. Advances in Mulitmedia Information Processing.2005,3768:572-583.
    [39]Gurses E, Akan O B. Multimedia Communication in Wireless Sensor Networks[J]. Annals of Telecommunications.2005,60(7-8):799-827.
    [40]Misra S, Reisslein M, Xue G. A Survey of Multimedia Streaming in Wireless Sensor Networks[J]. Communications Surveys Tutorials, IEEE.2008,10(4):18-39.
    [41]Rahimi M, Baer R, Iroezi O I, et al. Cyclops:In Situ Image Sensing and Interpretation in Wireless Sensor Networks[C]. The 3rd international conference on Embedded networked sensor systems (SenSys), San Diego, USA,2005:192-204.
    [42]Srinivasan S, Latchman H, Shea J, et al. Airborne Traffic Surveillance Systems:Video Surveillance of Highway Traffic[C]. The ACM 2nd international workshop on Video surveillance \& sensor networks (VSSN), New York, NY, USA.2004:131-135.
    [43]Foresti G L, Snidaro L. A Distributed Sensor Network for Video Surveillance of Outdoor Environments[C]. International Conference on Image Processing, Rochester, New York, USA, 2002:525-528.
    [44]Marchesotti L, Piva S, Regazzoni C. An Agent-Based Approach for Tracking People in Indoor Complex Environments[C]. The 12th International Conference on Image Analysis and Processing (ICIAP), Mantova, Italy,2003:99-102.
    [45]Chang C, Huang J. Video Surveillance for Hazardous Conditions Using Sensor Networks[C]. IEEE International Conference on Networking, Sensing and Control, Taipei, China,2004:1008-1013.
    [46]Akyildiz I F, Lee W, Vuran M C, et al. Next Generation/Dynamic Spectrum Access/Cognitive Radio Wireless Networks:A Survey[J]. Computer Networks.2006,50(13):2127-2159.
    [47]Haykin S. Cognitive Radio:Brain-Empowered Wireless Communications[J]. Selected Areas in Communications, IEEE Journal on.2005,23(2):201-220.
    [48]Girod B, Aaron A M, Rane S, et al. Distributed Video Coding[J]. Proceedings of the IEEE.2005, 93(1):71-83.
    [49]APC,46号白皮书“超高密度机柜和刀片服务器的散热策略”[R].
    [50]俞龙祥.机房制冷上演新革命[J].上海信息化.2010(3):68-71.
    [51]Moore J, Sharma R, Shih R, et al. Going Beyond Cpus:The Potential of Temperature-Aware Solutions for the Data Center[C]. The First Workshop on Temperature-Aware Computer Systems, Munich, Germany,2004
    [52]Kang S, Schmidt R, Kelkar K M, et al. A Methodology for the Design of Perforated Tiles in Raised Floor Data Centers Using Computational Flow Analysis[J]. IEEE TRANSACTIONS ON COMPONENTS AND PACKAGING TECHNOLOGIES.2001,24(2):177-183.
    [53]Kang S, Schmidt R R, Kelkar K M, et al. A Methodology for the Design of Perforated Tiles in Raised Floor Data Centers Using Computational Flow Analysis[J]. IEEE Transactions on Components and Packaging Technologies.2001,24(2):177-183.
    [54]Radmehr A, Schmidt R R, Karki K C, et al. Distributed Leakage Flow in Raised-Floor Data Centers[C]. ASME Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems, San Francisco, California, USA,2005:401-408.
    [55]Karki K C, Radmehr A, Patankar S V. Use of Computational Fluid Dynamics for Calculating Flow Rates through Perforated Tiles in Raised-Floor Data Centers[J]. HVAC&R Research.2003,9(2): 153-166.
    [56]Schmidt R R, Karki K C, Kelkar K M, et al. Measurements and Predictions of the Flow Distribution through Perforated Tiles in Raised-Floor Data Centers[C]. The Pacific Rim/ASME International Electronic Packaging Technical Conference and Exhibition (IPACK), Kauai, Hawaii, USA,2001
    [57]Karki K C, Patankar S V, Radmehr A. Techniques for Controlling Airflow Distribution in Raised-Floor Data Centers[C]. ASME International Electronic Packaging Technical Conference and Exhibition (IPACK), Maui, Hawaii, USA,2003:621-628.
    [58]Schmidt R, Cruz E. Cluster of High-Powered Racks within a Raised-Floor Computer Data Center: Effect of Perforated Tile Flow Distribution On Rack Inlet Air Temperatures [J]. Journal of Electronic Packaging.2004,126(4):510-518.
    [59]Rambo J D, Joshi Y K. Physical Models in Data Center Airflow Simulations[C]. International Mechanical Engineering Congress (IMECE), Washington, D.C., USA,2003:153-159.
    [60]Patel C D, Bash C E, Belady C. Computational Fluid Dynamics Modeling of High Compute Density Data Centers to Assure System Inlet Air Specifications[C]. The Pacific Rim/ASME International Electronic Packaging Technical Conference and Exhibition (IPACK), Kauai, Hawaii, USA,2001: 1-9.
    [61]Shrivastava S, Sammakia B, Schmidt R, et al. Comparative Analysis of Different Data Center Airflow Management Configurations[C]. Heat Transfer Summer Conference (InterPACK), San Francisco, California, USA,2005:329-336.
    [62]Patel C D, Sharma R, Bash C E, et al. Thermal Considerations in Cooling Large Scale High Compute Density Data Centers[C]. Thermal and Thermomechanical Phenomena in Electronic Systems (ITHERM), San Diego, California, USA,2002:767-776.
    [63]Sharma R K, Bash C E, Patel R D. Dimensionless Parameters for Evaluation of Thermal Design and Performance of Large-Scale Data Centers[C]. The 8th Joint AIAA/ASME Thermophysics and Heat Transfer Conference, St. Louis, Missouri, USA,2002
    [64]Schmidt R, Cruz E. Raised Floor Computer Data Center:Effect On Rack Inlet Temperatures of Chilled Air Exiting Both the Hot and Cold Aisles[C]. Thermal And Thermomechanical Phenomena In Electronic Systems (ITHERM), San Diego, California, USA,2002:580-594.
    [65]Rambo J D, Joshi Y K. Multi-Scale Modeling of High Power Density Data Centers[C]. International Electronic Packaging Technical Conference and Exhibition (InterPACK), Maui, Hawaii, USA, 2003:521-527.
    [66]Bhopte S, Agonafer D, Schmidt R, et al. Optimization of Data Center Room Layout to Minimize Rack Inlet Air Temperature[J]. Journal of Electronic Packaging.2006,128(4):380-387.
    [67]Bash C E, Patel C D, Sharma R K. Efficient Thermal Management of Data Centers—Immediate and Long-Term Research Needs[J]. HVAC&R Research.2003,9(2):137-152.
    [68]Shah A J, Carey V P, Bash C E, et al. Exergy Analysis of Data Center Thermal Management Systems[J]. Journal of heat transfer.2008,130(2).
    [69]Shah A J. Exergy-Based Analysis and Optimization of Computer Thermal Management Systems[D]. University of California, Berkeley,2005.
    [70]Shah A J, Carey V P, Bash C E, et al. Exergy Analysis of Data Center Thermal Management Systems[C]. International Mechanical Engineering Congress and Exposition (IMECE), Washington, DC, USA,2003:437-446.
    [71]Karki K C, Patankar S V. Airflow Distribution through Perforated Tiles in Raised-Floor Data Centers[J]. Building and Environment.2006,41(6):734-744.
    [72]Shah A J, Van P. Carey, Bash C E, et al. An Exergy-Based Figure-of-Merit for Electronic Packages[J]. Journal of Electronic Packaging.2006,128(4):360-369.
    [73]Mcallister S, Carey V P, Shah A, et al. Strategies for Effective Use of Exergy-Based Modeling of Data Center Thermal Management Systems[J]. Microelectron. J.2008,39(7):1023-1029.
    [74]Tang Q, Gupta S K S, Varsamopoulos G. Energy-Efficient Thermal-Aware Task Scheduling for Homogeneous High-Performance Computing Data Centers:A Cyber-Physical Approach[J]. IEEE Transactions on Parallel and Distributed Systems.2008,19(11):1458-1472.
    [75]Moore J, Chase J S, Ranganathan P. Weatherman:Automated, Online and Predictive Thermal Mapping and Management for Data Centers[C]. IEEE International Conference on Autonomic Computing (ICAC), Dublin, Ireland,2006:155-164.
    [76]Patel C D, Bash C E, Beitelmal A H. Smart Cooling of Data Centers[P]. USA,6574104.
    [77]Qinghui T, Mukherjee T, Gupta S K S, et al. Sensor-Based Fast Thermal Evaluation Model for Energy Efficient High-Performance Datacenters[C]. The 4th International Conference on Intelligent Sensing and Information Processing (ICISIP), Bangalore, India,2006:203-208.
    [78]Nanyan J, Parashar M. Enabling Autonomic Power-Aware Management of Instrumented Data Centers[C]. IEEE International Symposium on Parallel & Distributed Processing (IPDPS), Rome, Italy,2009:1-8.
    [79]Mukherjee T, Qinghui T, Ziesman C, et al. Software Architecture for Dynamic Thermal Management in Datacenters[C]. Communication Systems Software and Middleware (COMSWARE), Bangalore, India,2007:1-11.
    [80]Yong F, Chenyang L, Hongan W. Robust Control-Theoretic Thermal Balancing for Server Clusters[C]. IEEE International Symposium on Parallel & Distributed Processing (IPDPS), Anchorage, Alaska, USA,2010:1-11.
    [81]Bash C, Forman G. Cool Job Allocation:Measuring the Power Savings of Placing Jobs at Cooling-Efficient Locations in the Data Center[C]. USENIX Annual Technical Conference, Santa Clara, CA, USA,2007:363-368.
    [82]Boucher T D, Auslander D M, Bash C E, et al. Viability of Dynamic Cooling Control in a Data Center Environment[J]. Journal of Electronic Packaging.2006,128(2):137-144.
    [83]Mukherjee T, Banerjee A, Varsamopoulos G, et al. S.K.S.:Spatio-Temporal Thermal-Aware Job Scheduling to Minimize Energy Consumption in Virtualized Heterogeneous Data Centers [J]. Computer Networks, Special Issue on Resource Management in Heterogeneous Data Centers.2009, 53(17):2888-2904.
    [84]Erdem U M, Sclaroff S. Automated Camera Layout to Satisfy Task-Specific and Floor Plan-Specific Coverage Requirements[J]. Computer Vision and Image Understanding.2006,103(3):156-169.
    [85]Song B, Ding C, Roy-Chowdhury A, et al. Persistent Observation of Dynamic Scenes in an Active Camera Network[J]. Distributed Video Sensor Networks.2011:259-271.
    [86]Yao Y, Chen C, Abidi B, et al. Sensor Planning for Automated and Persistent Object Tracking with Multiple Cameras[C]. IEEE Conference On Computer Vision And Pattern Recognition (CVPR), Anchorage, AK,2008:1-8.
    [87]Melodia T, Pompili D, Akyildiz I F. On the Interdependence of Distributed Topology Control and Geographical Routing in Ad Hoc and Sensor Networks[J]. IEEE Journal on Selected Areas in Communications.2005,23(3):520-532.
    [88]Melodia T, Pompili D, Akyildiz I F. A Communication Architecture for Mobile Wireless Sensor and Actor Networks[C]. IEEE Intl. Conf. on Sensor and Ad-hoc Communications and Networks (SECON), Reston, VA, USA,2006:109-118.
    [89]Melodia T, Pompili D, Gungor V C, et al. A Distributed Coordination Framework for Wireless Sensor and Actor Networks[C]. ACM Intl. Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc), Urbana-Champaign, IL, USA,2005:99-110.
    [90]Ermis E B, Clarot P, Jodoin P, et al. Activity Based Matching in Distributed Camera Networks[J]. Trans. Img. Proc.2010,19(10):2595-2613.
    [91]郭龙源,卢阿丽,杨静宇.基于相位一致性变换的红外图像区域匹配算法研究[J].红外与毫米波学报.2009(1):35-37.
    [92]中华人民共和国工业和信息化部.中华人民共和国无线电频率划分规定.2010.
    [93]Shannon C E. A Mathematical Theory of Communication[J]. Bell System Technical Journal.1948, 27(4):379-423,623-656.
    [94]Fcc. Spectrum Policy Task Force[R].2002.
    [95]Zhao Q, Sadler B M. A Survey of Dynamic Spectrum Access[J]. Signal Processing Magazine, IEEE. 2007,24(3):79-89.
    [96]Xu L, Tonjes R, Paila T, et al. Drive-Ing to the Internet:Dynamic Radio for Ip Services in Vehicular Environments[C]. The 25th Annual IEEE Conference on Local Computer Networks, Tampa, Florida, USA,2000:281-289.
    [97]Hatfield D N, Weiser P J. Property Rights in Spectrum:Taking the Next Step[C]. New Frontiers in Dynamic Spectrum Access Networks, Baltimore, MD, USA,2005:43-55.
    [98]Raman C, Yates R D, Mandayam N B. Scheduling Variable Rate Links Via a Spectrum Server[C]. First IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks (DySPAN), Baltimore, MD, USA,2005:110-118.
    [99]Ileri O, Samardzija D, Mandayam N. Demand Responsive Pricing and Competitive Spectrum Allocation Via a Spectrum Server[C]. The First IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks (DySPAN), Baltimore, MD, USA,2005:194-202.
    [100]Chung S T, Kim S J, Lee J, et al. A Game-Theoretic Approach to Power Allocation in Frequency-Selective Gaussian Interference Channels [C]. IEEE International Symposium on Information Theory, Pacifico Yokohama, Kanagawa, Japan,2003:316.
    [101]Etkin R, Parekh A, Tse D. Spectrum Sharing for Unlicensed Bands[J]. Selected Areas in Communications, IEEE Journal on.2007,25(3):517-528.
    [102]Huang J, Berry R, Honig M. Spectrum Sharing with Distributed Interference Compensation[C]. First IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks (DySPAN), Baltimore, MD, USA,2005:88-93.
    [103]Mitola Iii J. Cognitive Radio:An Integrated Agent Architecture for Software Defined Radio[D]. KTH Royal Institute of Technology Stockholm, Sweden,2000.
    [104]刘航,孔祥维,刘桂林.无线多媒体传感器网络中的动态频谱分配技术研究[J].电子与信息学报.2010(9):2039-2044.
    [105]郑国强,李建东,周志立.无线传感器网络MAC协议研究进展[J].自动化学报.2008,34(3):305-316.
    [106]李瑞芳,李仁发,罗娟.无线多媒体传感器网络MAC协议研究综述[J].通信学报.2008(8):111-123.
    [107]Ye W, Heidemann J, Estrin D. Medium Access Control with Coordinated Adaptive Sleeping for Wireless Sensor Networks[J]. ACM/IEEE Transactions on Networking.2004,12(3):493-506.
    [108]Arisha K, Youssef M, Younis M. Energy-Aware Tdma-Based Mac for Sensor Networks[C]. IEEE Workshop on Integrated Management of Power Aware Communications, Computing and Networking (IMPACCT), New York, USA,2002:21-40.
    [109]Proakis J G. Digital Communications[M].3rd ed. Mc Graw Hill,1995.
    [110]Gardner W A. Signal Interception:A Unifying Theoretical Framework for Feature Detection[J]. IEEE Transactions on Communications.1988,36(8).
    [111]Cabric D, Mishra S M, Brodersen R W. Implementation Issues in Spectrum Sensing for Cognitive Radios[C]. The Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, Monterey, CA, USA,2004:772-776.
    [112]Yuan Y, Bahl P, Chandra R, et al. Knows:Cognitive Radio Networks Over White Spaces[C]. IEEE
    International Symposium on New Frontiers in Dynamic Spectrum Access Networks (DySPAN), Dublin, Ireland,2007:416-427.
    [113]Liu X, N. S S. Sensing-Based Opportunistic Channel Access[J]. Mobile Networks and Applications. 2006,11:577-591.
    [114]Cabric D, Tkachenko A, Brodersen R W. Spectrum Sensing Measurements of Pilot, Energy, and Collaborative Detection[C]. Military Communications Conference (MILCOM), Washington, DC, USA,2006:1-7.
    [115]Ghasemi A, Sousa E S. Optimization of Spectrum Sensing for Opportunistic Spectrum Access in Cognitive Radio Networks[C]. Consumer Communications and Networking Conference (CCNC), Las Vegas, Nevada, USA,2007:1022-1026.
    [116]Datla D, Rajbanshi R, Wyglinski A M, et al. Parametric Adaptive Spectrum Sensing Framework for Dynamic Spectrum Access Networks[C]. IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks (DySPAN), Dublin, Ireland,2007:482-485.
    [117]Mishra S M, Ten Brink S, Mahadevappa R, et al. Cognitive Technology for Ultra-Wideband/Wimax Coexistence[C]. IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks (DySPAN), Dublin, Ireland,2007:179-186.
    [118]Tang H. Some Physical Layer Issues of Wide-Band Cognitive Radio Systems[C]. The First IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks (DySPAN), Baltimore, MD, USA,2005:151-159.
    [119]Wylie-Green M P. Dynamic Spectrum Sensing by Multiband Ofdm Radio for Interference Mitigation[C]. The First IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks (DySPAN), Baltimore, MD, USA,2005:619-625.
    [120]Jones S D, Merheb N, Wang I J. An Experiment for Sensing-Based Opportunistic Spectrum Access in Csma/Ca Networks[C]. The First IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks (DySPAN), Baltimore, MD, USA,2005:593-596.
    [121]Papadimitratos P, Sankaranarayanan S, Mishra A. A Bandwidth Sharing Approach to Improve Licensed Spectrum Utilization[J]. Communications Magazine, IEEE.2005,43(12):10-14.
    [122]Leu A E, Steadman K, Mchenry M, et al. Ultra Sensitive Tv Detector Measurements[C]. The First IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks (DySPAN), Baltimore, MD, USA,2005:30-36.
    [123]Lehtomaki J J, Vartiainen J, Juntti M, et al. Spectrum Sensingwith Forward Methods[C]. Military Communications Conference (MILCOM), Washington, DC, USA,2006:1-7.
    [124]Weidling F, Datla D, Petty V, et al. A Framework for R.F. Spectrum Measurements and Analysis[C]. The First IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks (DySPAN), Baltimore, MD, USA,2005:573-576.
    [125]Shankar N S, Cordeiro C, Challapali K. Spectrum Agile Radios:Utilization and Sensing Architectures[C]. The First IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks (DySPAN), Baltimore, MD, USA,2005:160-169.
    [126]Sahai A, Hoven N, Tandra R. Some Fundamental Limits On Cognitive Radio[C]. The Forty-second Allerton Conference on Communication, Control, and Computing, Monticello, IL, USA,2004
    [127]Schmidt R. Multiple Emitter Location and Signal Parameter Estimation[J]. IEEE Transactions on Antennas and Propagation.1986,34(3):276-280.
    [128]Olivieri M P, Barnett G, Lackpour A, et al. A Scalable Dynamic Spectrum Allocation System with Interference Mitigation for Teams of Spectrally Agile Software Defined Radios[C]. The First IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks (DySPAN), Baltimore, MD, USA,2005:170-179.
    [129]Gardner W A. Introduction to Random Processes:With Applications to Signals and Systems/ William a. Gardner[M]. New York, USA:Macmillan Pub. Co.,1986:434.
    [130]Gardner W A, Spooner C M. Signal Interception:Performance Advantages of Cyclic-Feature Detectors[J]. IEEE Transactions on Communications.1992,40(1):149-159.
    [131]Gardner W A. Exploitation of Spectral Redundancy in Cyclostationary Signals[J]. IEEE Signal Processing Magazine.1991,8(2):14-36.
    [132]Gardner W A, Brown W, Chih-Kang C. Spectral Correlation of Modulated Signals:Part Ii--Digital Modulation[J]. IEEE Transactions on Communications.1987,35(6):595-601.
    [133]Gardner W A. Spectral Correlation of Modulated Signals:Part Ⅰ-Analog Modulation[J]. IEEE Transactions on Communications.1987,35(6):584-594.
    [134]Gardner W A. Cyclostationarity in Communications and Signal Processing[M]. New Jersey, USA: IEEE Press,1994:504.
    [135]Oner M, Jondral F. Cyclostationarity-Based Methods for the Extraction of the Channel Allocation Information in a Spectrum Pooling System[C]. IEEE Radio and Wireless Conference, Atlanta, Georgia, USA,2004:279-282.
    [136]Oner M, Jondral F. Cyclostationarity Based Air Interface Recognition for Software Radio Systems[C]. IEEE Radio and Wireless Conference, Atlanta, Georgia, USA,2004:263-266.
    [137]Cabric D, Brodersen R W. Physical Layer Design Issues Unique to Cognitive Radio Systems[C]. IEEE Int. Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Berlin, Germany,2005:759-763.
    [138]Fehske A, Gaeddert J, Reed J H. A New Approach to Signal Classification Using Spectral Correlation and Neural Networks[C]. The First IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks (DySPAN), Baltimore, MD, USA,2005:144-150.
    [139]Ghozzi M, Marx F, Dohler M, et al. Cyclostatilonarilty-Based Test for Detection of Vacant Frequency Bands[C]. Cognitive Radio Oriented Wireless Networks and Communications (CROWNCOM), Mykonos Island, Greece,2006:1-5.
    [140]Han N, Shon S, Chung J H, et al. Spectral Correlation Based Signal Detection Method for Spectrum Sensing in Ieee 802.22 Wran Systems[C]. International Conference on Advanced Communication Technology (ICACT), Phoenix Park, Korea,2006:1765-1770.
    [141]Lunden J, Koivunen V, Huttunen A, et al. Spectrum Sensing in Cognitive Radios Based On Multiple Cyclic Frequencies[C]. Cognitive Radio Oriented Wireless Networks and Communications (CrownCom), Orlando, Florida, USA,2007:37-43.
    [142]Kyouwoong K, Akbar I A, Bae K K, et al. Cyclostationary Approaches to Signal Detection and Classification in Cognitive Radio[C]. New Frontiers in Dynamic Spectrum Access Networks (DySPAN), Dublin, Ireland,2007:212-215.
    [143]Hou-Shin C, Wen G, Daut D G. Spectrum Sensing Using Cyclostationary Properties and Application to Ieee 802.22 Wran[C]. IEEE Global Telecommunications Conference (GLOBECOM), Washington, DC, USA,2007:3133-3138. Kim K, Akbar I, Bae K, et al. Cyclostationary Approaches to Signal Detection and Classification in Cognitive Radio[C]. IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks (DySPAN), Dublin, Ireland,2007:212-215.
    [145]Sutton P, Nolan K, Doyle L. Cyclostationary Signatures for Rendezvous in Ofdm-Based Dynamic Spectrum Access Networks[C]. IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks (DySPAN), Dublin, Ireland,2007:220-231.
    [146]刘航,于丹,孔祥维.低信噪比条件下提高认知无线电的频谱感知能力的方法[J].电子与信息学报.2009(4):993-996.
    [147]张志伟,孔祥维,刘航.基于相关-循环谱方法的DSSS/BPSK信号检测与识别[J].通信对抗.2008(4):16-21.
    [148]Hang L, Dan Y, Xiangwei K. A New Approach to Improve Signal Classification in Low Snr Environment in Spectrum Sensing[C]. Cognitive Radio Oriented Wireless Networks and Communications (CrownCom), Singapore,2008:1-5.
    [149]Chair Z, Varshney P K. Optimal Data Fusion in Multiple Sensor Detection Systems[J]. IEEE Transactions on Aerospace and Electronic Systems.1986, AES-22(1):98-101.
    [150]Wild B, Ramchandra K. Detecting Primary Receivers for Cognitive Radio Application[C]. The First IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks (DySPAN), Baltimore, MD, USA,2005:124-130.
    [151]Lin Y, Chen K. Distributed Spectrum Sharing in Cognitive Radio Networks- Game Theoretical View[C]. The 7th IEEE conference on Consumer communications and networking conference (CCNC), Las Vegas, Nevada, USA,2010:471-475.
    [152]Srikanth V, Babu I R. Cluster Head Selection for Wireless Sensor Networks:A Survey[J]. The Icfai University Journal of Information Technology.2009,5(1):44-53.
    [153]Iwanicki K, van Steen M. Multi-Hop Cluster Hierarchy Maintenance in Wireless Sensor Networks:A Case for Gossip-Based Protocols[C]. The 6th European Conference on Wireless Sensor Networks (EWSN), Cork, Ireland,2009:102-117.
    [154]Sin H, Lee S, Lee J, et al. Self-Organized Cluster Based Multi-Hop Routing for Wireless Sensor Networks[C]. The 11th Asia-Pacific Symposium on Network Operations and Management (APNOMS), Beijing, China,2008:499-502.
    [155]Crossbow. Imote2 Hardware Reference Manual[R].2007.
    [156]李俊山,杨威,张雄美.红外图像处理、分析与融合[M].北京:科学出版社,2009.
    [157]Epperly R A, Heberlein G E, Eads L G. A Tool for Reliability and Safety:Predict and Prevent Equipment Failures with Thermography[C]. Petroleum and Chemical Industry Conference, Banff, Alberta,1997:59-68.
    [158]刘松涛,杨绍清.基于元胞自动机的红外弱小目标图像分割[J].红外与毫米波学报.2008(1):42-46.
    [159]Ermis E B, Clarot P, Jodoin P M, et al. Activity Based Matching in Distributed Camera Networks[J]. IEEE Transactions on Image Processing.2010,19(10):2595-2613.
    [160]Harris C, Stephens M. A Combined Corner and Edge Detection[C]. The Fourth Alvey Vision Conference, Manchester, Uk,1988:147-151.
    [161]Lowe D G. Distinctive Image Features From Scale-Invariant Keypoints[J]. International Journal of Computer Vision.2004,60(2):91-110.
    [162]Kadir T, Brady M. Saliency, Scale and Image Description[J]. International Journal of Computer Vision.2001,45(2):83-105.
    [163]Prakash S, Lee P Y, Caelli T.3D Mapping of Surface Temperature Using Thermal Stereo[C]. The 9th International Conference on Control, Automation, Robotics and Vision (ICARCV), Singapore, 2006:1-4.
    [164]Hajebi K, Zelek J S. Structure From Infrared Stereo Images[C]. Canadian Conference on Computer and Robot Vision, Los Alamitos, CA, USA,2008:105-112.
    [165]Hajebi K, Zelek J S. Sparse Disparity Map From Uncalibrated Infrared Stereo Images[C]. The The 3rd Canadian Conference on Computer and Robot Vision, Washington, DC, USA,2006:17.
    [166]Munoz-Salinas R, Medina-Carnicer R, Madrid-Cuevas F J, et al. People Detection and Tracking with Multiple Stereo Cameras Using Particle Filters[J]. Journal of Visual Communication and Image Representation.2009,20(5):339-350.
    [167]Wallace G K. The Jpeg Still Picture Compression Standard[J]. Communications of the ACM.1991, 34(4):30-44.
    [168]Shapiro J M. Embedded Image Coding Suing Zerotrees of Wavelet Coefficients[J]. IEEE Transactions on Signal Process.1993,41(12):3445-3462.
    [169]Said A, Pearlman W A. A New Fast/Efficient Image Codec Based On Set Partitioning in Hierarchical Trees[J]. IEEE Transactions on Circuits and Systems for Video Technology.1996,6(12):243-250.
    [170]Taubman D. High Performance Scalable Image Compression with Ebcot[J]. IEEE Transactions on Image Processl.2000,9(7):1158-1170.
    [171]Burt P J, Adelson E H. The Laplacian Pyramid as a Compact Image Code[J]. IEEE Transactions on Communications.1983,31(4):532-540.
    [172]Zhang C N, Wu X. A Hybrid Approach of Wavelet Packet and Directional Decomposition for Image Compression[C]. IEEE Canadian Conference on Electrical and Computer Engineering, Edmonton, Alta, Canada,1999:755-760.
    [173]Kocher M, Kunt M. Image Data Compression by Contour Texture Modeling[C]. Society for Photo-Optical Instrumentation Engineers (SPIE), Bellingham, WA, USA,1983:132-139.
    [174]Vasuki A, Vanathi P T. A Review of Vector Quantization Techniques[J]. IEEE Potentials.2006, 25(4):39-47.
    [175]Chew L W, Ang L, Seng K P. Survey of Image Compression Algorithms in Wireless Sensor Networks[C]. International Symposium On Information Technology (ITSim), Kuala Lumpur, Malaysia,2008:1-9.
    [176]Fitzgibbon A, Pilu M, Fisher R B. Direct Least Square Fitting of Ellipses[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence.1999,21(5):476-480.
    [177]Cinque L, Levialdi S, Malizia A. Shape Description Using Cubic Polynomial Bezier Curves[J]. Pattern Recognition Letters.1998,19(9):821-828.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700