天然气发动机气缸盖热负荷及冷却水腔内沸腾传热研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
冷却系统是发动机的重要组成部分,起到控制发动机热负荷水平的作用,其性能的优劣还影响到整机的结构紧凑性、动力性、燃油经济性和排放性能。在发动机冷却系统的开发过程中,合理地利用沸腾传热机制的高换热能力有利于强化冷却水腔内的换热强度,从而提高冷却系统的工作效率、改善整机的工作性能。然而,过度的沸腾也可能导致冷却系统内“气阻”故障的发生或“过热点”的出现,以至影响到发动机的正常运行。现代发动机冷却系统的设计理念认为冷却水腔内最理想的传热方式是以对流换热为主而辅以适度的沸腾换热,这样就可以综合利用强制对流换热的稳定性与泡核沸腾传热的高换热能力。因此,这就需要对冷却水腔内的换热形式与换热强度,尤其是冷却水腔内的沸腾状况实现准确地预测与合理地控制。
     本文以车用天然气发动机为研究对象,进行了冷却系统的工作状况对发动机热平衡与气缸盖工作温度影响的试验研究。结果表明,该发动机冷却水腔内存在着不同程度的沸腾现象,由于沸腾传热的存在,导致发动机冷却水温与冷却系统的工作压力对气缸盖各区域工作温度存在不同程度的影响;其中,冷却水温对高温区域的影响较小、对低温区域的影响较大,而冷却系统压力对高温区域的影响较大、对低温区域的影响较小。
     为了准确地预测发动机冷却水腔内的换热形式与换热强度,一方面,基于Kandlikar的分区方法与冷却水腔模拟通道内的试验数据,建立了适应性更好、计算精度更高的沸腾传热模型;另一方面,结合直接耦合算法与顺序耦合算法,建立了包括冷却水腔内流动换热、气缸盖内固体导热及缸内进排气燃烧在内的三维气固液多场耦合仿真系统。结果表明,在发动机多场耦合仿真系统中嵌入以上沸腾传热模型可以提高其计算精度,并实现冷却水腔内沸腾状况的有效预测。
     为了分析发动机冷却水腔内的气泡分布状况,基于欧拉均相流控制方程,建立了适应性更好的沸腾两相流模型,并将其用于该发动机冷却水腔内沸腾两相流的计算与分析。结果表明,由于流动死水区的存在,导致在气缸盖上层水腔靠近排气道的区域出现了气泡聚集的状况,指出该发动机冷却水腔内的水流分布状况有待进一步优化。
     结合试验测量与数值模拟,分析了发动机在不同冷却液温度与不同冷却系统压力下冷却水腔内的沸腾状况及其对气缸盖热负荷的影响趋势。结果表明,单纯地降低冷却水的温度或提高冷却系统的压力可以提高冷却系统的抗气蚀压力,从而降低冷却系统发生气蚀的故障率;然而,过低的冷却水温与过高的冷却系统压力削弱了冷却水腔内的沸腾状况,导致气缸盖热应力有所增大,使其热疲劳强度有所降低。分析结果进一步表明,在气缸盖工作温度处于材料允许温度范围内时,通过同时提高冷却水的温度与冷却系统的压力可以强化冷却水腔热关键区域的沸腾状况,从而在保证冷却系统抗气蚀压力的前提下降低气缸盖承受的热应力与气缸盖的热负荷水平。
     通过以上研究,最终实现了冷却水腔内换热形式与换热强度的有效预测,并为冷却水腔内沸腾状况的合理控制提供了参考依据。
The cooling system is an important part of an engine, serving to control the engine thermal load, whose performance also affects the structure size, power, fuel economy and exhaust emission of the engine. The local heat transfer would be greatly enhanced if boiling regime is properly utilized in the development of the cooling system of an engine, which improves the work efficiency of the cooling system and the performance of the whole engine. However, excessive boiling inside the cooling gallery would cause vapor lock failures and hot spots in heated components, which further affect the normal operation of the engine. The modern design concept of cooling systems considers that the best heat transfer mechanism inside cooling galleries is convective heat transfer supplemented with moderate boiling, which promotes comprehensive utilization of stability of convective heat transfer and high heat transfer ability of boiling. Thus accurate prediction and reasonably control of the heat transfer mechanism and boiling intensity inside the cooling galleries must be achieved.
     A vehicle natural gas engine was taken as the research object in this thesis, a thermal balance test and cylinder head temperature measurement experiment at different cooling system working conditions was conducted. The results show that various degrees of boiling are expected inside the cooling gallery and the coolant temperature and system pressure affect different zones in the cylinder head by different level, upon which the coolant temperature has negligible effects on the high temperature zones and shows apparent effects on the low temperature zones, while the system pressure has apparent effects on the high temperature zones and shows negligible effects on the low temperature zones.
     In order to realize accurate prediction of the boiling intensity inside the cooling gallery, a boiling heat transfer model with improved flexibility and calculation accuracy was proposed based on Kandlikar's division description method and experiment data obtained in a cooling gallery simulator passage, otherwise, a multi-field coupled system including the flow heat transfer inside the cooling gallery, the heat conduction in the cylinder head and the combustion process inside the cylinder was established. The results show that the computational error is reduced and effective prediction of the heat transfer mechanism and intensity inside the cooling gallery is realized due to the incorporation of the proposed model in the multi-field coupled system.
     In order to analyze the vapor distribution inside the engine cooling gallery, a two-phase boiling flow model is established based on the framework of Euler mixture equations. On that basis, the two-phase boiling flow inside the engine cooling gallery is simulated and analyzed. The results show that bubble congestion is expected in the area located in the upper water gallery besides the exhaust port due to the presence of flow stagnation zone, suggesting that the flow distribution condition inside the engine cooling gallery need to be further optimized.
     The boiling condition inside the engine cooling gallery as well as its effect on the thermal load of the cylinder head was analyzed by experiment measurement and numerical simulation. The results show that both reduction in coolant temperature and rise in system pressure could increase the anti-cavitation pressure of the cooling system, which reduce the cavitation failure rate of the cooling system, however, the thermal stress on the cylinder head is increased as it weak the boiling intensity inside the cooling gallery, leading to decrease in the engine thermal fatigue strength. The results further indicate that when the metal temperature is among the allowable range of the cylinder head material, simultaneously increasing the coolant temperature and the system pressure could enhance the boiling intensity in thermal critical areas and decrease the thermal stress as well as the thermal load of the cylinder head after ensuring the anti-cavitation pressure of the cooling system.
     Through above study, effective prediction of the heat transfer mechanism and intensity inside the cooling gallery was realized, and guidance for reasonable control of the boiling condition was provided.
引文
[1]中国汽车工业协会:http://www.caam.org.cn
    [2]中国内燃机工业协会:http://www.ciceiaorg.cn
    [3]项友谦,王启等.天然气燃烧过程与应由手册:北京:中国建筑工业出版社,2008
    [4]国际天然气汽车协会:http://www.iangv.org
    [5]姚忠鹏,王新国.车辆冷却传热:主编杨牧之,北京:北京理工大学出版社,2001
    [6]范岚岚,何邦全.天然气发动机的研究现状.小型内燃机与摩托车,2007,(1):74-79
    [7]Jaichandar S, Tamilporai P. Low Heat Rejection Engines. SAE Paper, No2003-01-0405,2003
    [8]Jaichandar S, Tamilporai P. The Status of Experiental Investigations on Low Heat Rejection Engines. SAE Paper, No2004-01-1453,2004
    [9]Shabir M F, Authars S, Ganesan S, et al. Low Heat Rejection Engines-Review. SAE Paper, No2010-01-1510,2010
    [10]张少杰Phaser210TiN天然气发动机热负荷分析:[硕士学位论文].河北工业大学2008
    [11]Norris P M, Wepfer W, Hoag K L, et al. Experimental and Analytical Studies of Cylinder Head Cooling. SAE Paper, No931122,1993
    [12]Finlay I C, Harris D, Boam D J, et al. Factors Influenceing Combustion Chamber Wall Temperatures in a Liquid-Cooled, Automotive, Spark-Ignition Engine. Proceedings of the Institution of Mechanical Engineers. Part D, Transport engineering,1985,199(3):207-214
    [13]Norris P M, Wepfer W, Hastings M. An Experimental Investigation of Liquid Coolant Heat Transfer in a Diesel Engine. SAE Paper, No891898,1989
    [14]鲁钟琪.两相流与沸腾传热:北京:清华大学出版社,2002
    [15]Robinson K, Hawley J G, Campbell N A F. Experimental and modelling aspects of flow boiling heat transfer for application to internal combustion engines. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering,2003,217(10):877-889
    [16]Hawley J G, Wilson M, Campbell N A F, et al. Predicting boiling heat transfer using computational fluid dynamics. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering,2004,218(5):509-520
    [17]Robinson K, Campbell N A F, Hawley J G, et al. A Review of Precision Engine Cooling. SAE Paper, No1999-01-0578,1999
    [18]Aoyagi Y, Takenaka Y, Niino S, et al. Numerical Simulation and Experimental Observation of Coolant Flow Around Cylinder Liners in V-8 Engine. SAE Paper, No880109,1988
    [19]朱义伦,邓康耀.发动机缸头冷却水流场试验研究.上海交通大学学报,2000,(4):463-465
    [20]Wang Z, Huang R, Chen X. Optimization Study on Coolant-flow for Heavy-duty Vehicle Diesel Engine by Experiment Study & Numerical Simulation. SAE Paper, No2007-01-3628,2007
    [21]Zhang Z. Piston Temperature Measurement Using Voltage Recorder and Numerical Simulation of the Temperature Field. SAE Paper, No2011-01-2230,2011
    [22]Oude Nijeweme D J, Kok J B W, Stone C R, et al. Unsteady in-cylinder heat transfer in a spark ignition engine:Experiments and modelling. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering,2001,215(6):747-760
    [23]Lee K, Assanis D, Lee J, et al. Measurements and Predictions of Steady-State and Transient Stress Distributions in a Diesel Engine Cylinder Head. SAE Paper, No1999-01-0973,1999
    [24]许振忠,李伟,吴长玉,等CA498柴油机冷却水流LDV测量.汽车技术2004,(7):22-25
    [25]李斌,崔国起,谷芳,等.气缸盖冷却水腔内湍流模型.四川兵工学报,2010,(10):75-78
    [26]陈群.车用柴油冷却水套的计算流体力学分析:[博士学位论文].吉林大学,2003
    [27]刘巽俊,陈群,李骏,等.车用柴油机冷却系统的CFD分析.内燃机学报,2003,(2):125-129
    [28]Agnew D D, Covey J, Ye J. Coolant Flow Optimization in a Racing Cylinder Block and Head Using Cfd Analysis and Testing. SAE Paper, No2004-01-3542,2004
    [29]王兆文.重载车用柴油机缸盖内冷却水流动分析及强化传热研究:[博士学位论文].华中科技大学2008
    [30]Robinson K, Hawley J G, Hammond G P, et al. Convective coolant heat transfer in internal combustion engines. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering,2003,217(2):133-146
    [31]Robinson K, Wilson M, Leathard M J, et al. Computational modelling of convective heat transfer in a simulated engine cooling gallery. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering,2008,221(9):1147-1157
    [32]Collier J G T J. Convective Boiling and Condensation. 3rd edition:Oxford Engineering Science Series,1996
    [33]成晓北,潘立,鞠洪玲.现代车用发动机冷却系统研究进展.车用发动机,2008,(1):1-7
    [34]Rajoo S A L, Noor A M, Bakar R A. Coolant Temperature Effect on Gasoline Engine Fuel Consumption:3rd Pacific-Asia Conference on Mechanical Engineering.3rd Pacific-Asia Conference on Mechanical Engineering, August29-31,2003, Manila Philippines.:
    [35]Torregrosa A J, Olmeda P, Martin J, et al. Experiments on the influence of inlet charge and coolant temperature on performance and emissions of a DI Diesel engine. Experimental Thermal and Fluid Science,2006,30(7):633-641
    [36]谭秉仁,张金兴.汽油发动机的高温冷却.上海交通大学学报,1993,(3):17-24
    [37]蔡锐彬,卢振雄,罗晓波.小型柴油机高温冷却效果的研究.华南理工大学学报(自然科学版),1995,23(5):142-148
    [38]胡君,蒋习军,朱红国,等.冷却液温度对柴油机性能影响研究.汽车技术,2009,(1):45-48
    [39]张德满,李舜酩,李凯,等.冷却水温度对柴油机污染物排放的影响.内燃机学报,2010,(6):510-513
    [40]任惠民,任继文,吴建全,等.现代军车动力的经典——890系列柴油机.车用发动机,2006,(5):1-6
    [41]Pang H H, Brace C J. Review of engine cooling technologies for modem engines. Proceedings of the Institution of Mechanical Engineers, Part D (Journal of Automobile Engineering),2004, 218(D11):1209-1215
    [42]Priede T, Anderton D. LIKELY ADVANCES IN MECHANICS, COOLING, VIBRATION AND NOISE OF AUTOMOTIVE ENGINES. Proceedings of the Institution of Mechanical Engineers, Part D:Transport Engineering,1984,198(7):95-106
    [43]Clough M J. Precision Cooling of a Four Valve per Cylinder Engine. SAE Paper, No1993-04-01, 1993
    [44]Etemad S. Homogeneous engine cooling, an efficient cross-cooling strategy-CFD-analysis and measurements. Proceedings of the 2002 ASME Joint U.S.-European Fluids Engineering Conference, July 14,2002-July 18,2002, Montreal, Que., United states:American Society of Mechanical Engineers,
    [45]Lee H S, Cholewczynski L W. A study on convection and boiling heat-transfer modes in a standard engine cooling system:Vehicle Thermal Management Systems, VTMS 6, May 18,2003-May 21,2003. Vehicle Thermal Management Systems, VTMS 6, May 18,2003-May 21,2003, Brighton, United kingdom.
    [46]Nikhil A, Brian J E, Scott A M. Nucleate Boiling Identification and Utilization for Improved Internal Combustion Engine Efficiency. Proceedings of the ASME 2010 Internal Combustion Engine Division Fall Technical Conference, Semptember 12-15,2010, San Antonio, Texas, USA.
    [47]Moeckel M D. Computational Fluid Dynamic (CFD) Analysis of a Six Cylinder Diesel Engine Cooling System With Experimental Correlations. SAE Paper, No941081,1994
    [48]Porot P A, Menegazzi P, Ap N S. Understanding and Improving Evaporative Engine Cooling at High Load, High Speed by Engine Tests and 3D Calculations. SAE Paper, No971792,1997
    [49]Kessler M K M A. Numerical Analysis of Flow at Water Jacket of an Internal Combustion Engine. SAE Paper, No2007-01-2711,2007
    [50]黄荣华,王兆文,成晓北,等.降低车用6缸柴油机热负荷的研究.内燃机工程,2007,(5):28-34
    [51]Wang Z, Cheng X, Huang R, et al. Tests and numerical simulations on the thermal load of the cylinder head in heavy-duty vehicle diesel engines. Pueblo, CO, United states:American Society of Mechanical Engineers,2007
    [52]钱若军,董石麟,袁行飞.流固耦合理论研究进展.空间结构,2008,(1):3-15
    [53]Xin J, Shih S, Itano E. Integration of 3D Combustion Simulations and Conjugate Heat Transfer Analysis to Quantitatively Evaluate Component Temperatures. SAE Paper, No2003-01-3128, 2003
    [54]Urip E, Yang S L. An Efficient IC Engine Conjugate Heat Transfer Calculation for Cooling System Design. SAE Paper, No2007-01-0147,2007
    [55]李迎.内燃机流固耦合传热问题数值仿真与应用研究:[博士学位论文].浙江大学2006
    [56]李迎,俞小莉,陈红岩,等发动机冷却系统流固耦合稳态传热三维数值仿真.内燃机学报,2007,(3):252-257
    [57]陈海波.汽油机固—液耦合及沸腾传热研究:[博士学位论文].吉林大学2009
    [58]刘国庆,舒歌群,张志福,等考虑沸腾换热的内燃机流固耦合传热分析.内燃机学报2011,(6):543-548
    [59]Kandlikar S G. Heat transfer characteristics in partial boiling, fully developed boiling, and significant void flow regions of subcooled flow boiling. Transactions of the ASME. Journal of Heat Transfer,1998,120(2):395-401
    [60]Chen J C. A Correlation for Boiling Heat Transfer to Saturated Fluids in Convection Flow. Industrial and Engineering Chemistry, Process Design and Development,1966,5:322-329
    [61]Steiner D, Taborek J. How boiling heat transfer in vertical tubes correlated by an asymptotic model. Heat Transfer Engineering,1992,13(2):43-69
    [62]Gungor K E, Winterton R H S. A general correlation for flow boiling in tubes and annuli. International Journal of Heat and Mass Transfer,1986,29(3):351-358
    [63]Steiner H, Kobor A, Gebhard L. A wall heat transfer model for subcooled boiling flow. International Journal of Heat and Mass Transfer,2005,48(19-20):4161-4173
    [64]Ramstorfer F, Steiner H, Brenn G, et al. Subcooled boiling flow heat transfer from plain and enhanced surfaces in automotive applications. Journal of Heat Transfer,2008,130(1)
    [65]Prodanovic V, Fraser D, Salcudean M. On the transition from partial to fully developed subcooled flow boiling. International Journal of Heat and Mass Transfer,2002,45(24):4727-4738
    [66]Kroes J P, Van Der Geld C W M, van Velthooven E. Modeling of Nucleate Boiling in Engine Cylinder Head Cooling Ducts:Fifth International Conference on Transport Phenomena in Multiphase Systems. HEAT2008, Fifth International Conference on Transport Phenomena in Multiphase Systems, June 30-July 3,2008, Bialystok, Poland.:
    [67]Cardone M, Senatore A, Buono D, et al. G. D. and Gaudino, P. A model for application of Chen's boiling correlation to a standard engine cooling system. S AE Paper, No2008-01-1817,2008
    [68]Dong F, Fan Q, Cai Y, et al. Numerical simulation of boiling heat transfer in water jacket of DI engine. SAE Paper, No2010-01-0262,2010
    [69]Warrier G R, Dhir V K. Heat transfer and wall heat flux partitioning during subcooled flow nucleate Boiling-a review. Transactions of the ASME. Journal of Heat Transfer,2006,128(12): 1243-1256
    [70]Boyd R D, Xiaowei M. Boiling curve correlation for subcooled flow boiling. International Journal of Heat and Mass Transfer,1995,38(4):758-760
    [71]Kandlikar S G, Bulut M. An experimental investigation on flow boiling of ethylene-glycol/water mixtures. Journal of Heat Transfer,2003,125(2):317-325
    [72]Kurul N P M Z. On the Modeling of Multidimensional Effects in Boiling Channels. SAE Paper, 1991
    [73]Zeitoun O, Shoukri M. Axial void fraction profile in low pressure subcooled flow boiling. International Journal of Heat and Mass Transfer,1997,40(4):869-879
    [74]Koncar B, Kljenak I, Mavko B. Modelling of local two-phase flow parameters in upward subcooled flow boiling at low pressure. International Journal of Heat and Mass Transfer,2004, 47(6-7):1499-1513
    [75]Kreppcr E, Koncar B, Egorov Y. CFD modelling of subcooled boiling-Concept, validation and application to fuel assembly design. Nuclear Engineering and Design,2007,237(7):716-731
    [76]Yeoh G H, Tu J Y. Population balance modelling for bubbly flows with heat and mass transfer. Chemical Engineering Science,2004,59(15):3125-3139
    [77]Yeoh G H, Tu J Y. Numerical modelling of bubbly flows with and without heat and mass transfer. Applied Mathematical Modelling,2006,30(10):1067-1095
    [78]Yeoh G H, Cheung S C P, Tu J Y, et al. Fundamental consideration of wall heat partition of vertical subcooled boiling flows. International Journal of Heat and Mass Transfer,2008,51(15-16): 3840-3853
    [79]Narumanchi S, Troshko A, Bharathan D, et al. Numerical simulations of nucleate boiling in impinging jets:applications in power electronics cooling. International Journal of Heat and Mass Transfer,2008,51(1-2):1-12
    [80]Erfeng C, Yanzhong L, Xianghua C, et al. Modeling of low-pressure subcooled boiling flow of water via the homogeneous MUSIG approach. Nuclear Engineering and Design,2009,239(10): 1733-1743
    [81]陈二锋,厉彦忠,王斯民.竖直环管内低压水过冷沸腾数值模拟.西安交通大学学报,2008,(7):855-859
    [82]Bo T. CFD Homogeneous Mixing Flow Modelling to Simulate Subcooled Nucleate Boiling Flow. SAE Paper, No2004-01-1512,2004
    [83]Przulj V, Shala M. Multi-phase mixture modelling of nucleate boiling applied to engine coolant flows.5th International Conference on Computational and Experimental Methods in Multiphase and Complex Flow, Multiphase Flow 2009, June 15,2009-June 17,2009, New Forest, United kingdom:WITPress,
    [84]Shala M. Simulation of nucleate boiling flow using a multiphase mixture modelling approach. Great Clarendon Street, Oxford, OX2 6DP, United Kingdom:Oxford University Press,2012
    [85]傅松.缸盖冷却水套内沸腾传热特性的研究:[博士学位论文].山东大学2010
    [86]傅松,胡玉平,李新才,等.柴油机缸盖水腔流动与沸腾传热的流固耦合数值模拟.农 业机械学报2010,(4):26-30
    [87]Li G, Fu S, Liu Y, et al. A homogeneous flow model for boiling heat transfer calculation based on single phase flow. Energy Conversion and Management,2009,50(7):1862-1868
    [88]刘永长主编.内燃机原理:武汉:华中科技大学出版社,2000
    [89]沈维道,蒋智敏,童钧耕:工程热力学(第三版):北京:高等教育出版社,2001
    [90]肖永宁,潘克煜,韩国埏.内燃机热负荷和热强度:北京:机械工业出版社,1988
    [91]Rohsenow W M. A method of correlatiing heat transfer data for surface boiling. Transactions of ASME,1952
    [92]Steiner H, Breitschadel B, Brenn G, et al. Nucleate boiling flow-experimental investigations and wall heat flux modelling for automotive engine applications. Southampton, UK:WIT Press,2008
    [93]Steiner D, Taborek J. Flow boiling heat transfer in vertical tubes correlated by an asymptotic model. Heat Transfer Engineering,1992,13(2):43-69
    [94]Wintterle T, Eckart L, Egorov Y, et al. On the Customizing of a Subcooled Boiling Model for Industrial CFD Simulation:11th International Topical Meeting on Nuclear Reactor Thermal-Hydraulics (NURETH-11) Avignon, France, October,2005.:
    [95]骆清国,刘红彬,龚正波,等柴油机气缸盖流固耦合传热分析研究.兵工学报,2008,(07):769-773
    [96]王唯栋,孙平,张锐,等.柴油机机体-冷却水套流固耦合系统传热仿真.农业工程学报,2010,(07):118-122
    [97]Zhang P, Ouyang G, Bai L, et al. Study on solid-fluid coupled heat transfer simulation of cylinder head of high power density diesel engine. Changsha, China:IEEE Computer Society,2010
    [98]解茂昭.内燃机计算燃烧学:大连:大连理工大学出版社,2005
    [99]Woschni G. A Universally Applicable Equation for the Instantaneous Heat Transfer Coefficient in the Internal Combustion Engine. SAE Paper, No670931,1967,
    [100]AVL BOOST User's Guide.
    [101]ANSYS FLUENT User's Guide
    [102]蒋勇,邱榕,董刚,等耦合天然气详细反应机理的三维湍流预混火焰结构数值预测.燃烧科学与技术2005,(02)
    [103]李从心,张欣,王玉君.基于并行及耦合详细化学反应机理的煤层气发动机燃烧过程多维模拟.燃烧科学与技术2010,(06)
    [104]Song-Chamg K, Reitz R D. Numerical study of premixed HCCI engine combustion and its sensitivity to computational mesh and model uncertainties. Combustion, Theory and Modelling, 2003,7(2):417-433
    [105]Smith G P, Golden D M, Frenklach M, et al. GRI-MECH 3.0, http://wwwme.berkeley.edu/gri_mech/.:
    [106]Curran H J, Gaffuri P, Pitz W J, et al. A Comprehensive Modeling Study of n-Heptane Oxidation. Combustion and Flame,1998,114(1-2):149-177
    [107]Curran H J, Gaffuri P, Pitz W J, et al. A comprehensive modeling study of iso-octane oxidation. Combustion and Flame,2002,129(3):253-280
    [108]Zimont V, Polifke W, Bettelini M, et al. An Efficient Computational Model for Premixed Turbulent Combustion at High Reynolds Numbers Based on a Turbulent Flame Speed Closure. Journal of Engineering for Gas Turbines and Power,1998,120(3):526-532
    [109]Kong S, Han Z, Reitz R. The Development and Application of a Diesel Ignition and Combustion Model for Multidimensional Engine Simulation. SAE Paper, No950278,1995
    [110]Launder B E, Spalding D B. The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering,1974,3(2):269-289
    [111]Zhiyu H, Reitz R D. A temperature wall function formulation for variable-density turbulent flows with application to engine convective heat transfer modeling. International Journal of Heat and Mass Transfer,1997,40(3):613-625
    [112]Metghalchi M, Keck J C. Burning velocities of mixtures of air with methanol, isooctane, and indolene at high pressure and temperature. Combustion and Flame,1982,48(0):191-210
    [113]Peters N. Turbulent Combustion:Cambridge, England:Cambridge University Press,2000
    [114]灰铸铁的力学性能和物理性能.GB/T 9439-2010.
    [115]周云龙.多相流体力学理论及其应用:北京:科学出版社,2008
    [116]W B R. Physical Model Based on Bubble Detachment and Calculation of Steam Voidage in the Subcooled Region of a Heated Channel:OECD Halden Reactor Project Report HPR-10, Norway, 1962
    [117]Maurus R, Ilchenko V, Sattelmayer T. Study of the bubble characteristics and the local void fraction in subcooled flow boiling using digital imaging and analysing techniques. Experimental Thermal and Fluid Science,2002,26(2-4):147-155
    [118]张卫正,刘金祥,原彦鹏,等.内燃机失效分析与评估:北京:北京航空航天大学出版社2011
    [119]Fontanesi S, Carpentiero D, Malaguti S, et al. A New Decoupled CFD and FEM Methodology for Fatigue Strength Assessment of an Engine Head. SAE Paper2008-01-0972,2008
    [120]Le Corre J M., Shi-Chune Y, Amon C H. Two-Phase Flow Regimes and Mechanisms of Critical Heat Flux under Subcooled Flow Boiling Conditions. Nuclear Engineering and Design,2010, 240(2):245-51
    [121]Hata K, Shiotsu M., Noda, N. Critical Heat Flux of Subcooled Water Flow Boiling. Nuclear Science and Engineering,2006,154(1):94-109

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700