用于H_2中CO优先氧化的CuO-CeO_2/FeCrAl整体式催化剂研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
供给燃料电池的氢气要求CO含量在10ppm以下,一氧化碳优先氧化(CO-PROX)是净化氢气中一氧化碳的重要途径,实用中的CO-PROX催化剂需要制备为规整形状的整体式结构。金属整体式载体上负载氧化物催化剂需要解决的核心问题是使金属和氧化物以高强度粘结;负载以后将可能带来的重要问题则是载体与氧化物之间的相互作用可能影响催化剂的结构,因此影响催化性能。本文就是针对这两个问题展开研究,针对第一个问题探索新的负载方法;在改进粘附性能研究取得好的或较好的效果的基础上,研究载体效应-即载体与氧化物催化剂的相互作用、此相互作用导致的结构变化及其对催化性能的影响。
     CuO-CeO2催化剂对CO-PROX具有优良的催化性能。催化剂中铜以一价和二价两种价态存在,其中的一价铜包含进入氧化铈晶格通过氧与铈相连的铜和纳米氧化铜与氧化铈相接触的界面处的铜。该一价铜可能是关键活性组分。
     使用溶胶-高温热解法可以制备出高活性和高粘附稳定性的金属整体催化剂。热解过程中产生的高表面能晶核导致活性组分与金属载体之间容易形成相互作用,因而具有高的粘附稳定性。
     以微乳液法负载的铜铈金属整体催化剂,特殊的制备原理致使催化剂每次的涂覆量少,反复的涂覆焙烧过程加强了金属载体和活性组分的相互作用,这就确保整体催化剂表现了较好的粘附稳定性。另外,这种特殊的制备方法促进了铜铈之间的协同作用,也产生了更多的氧空位,因此提高了催化性能。
     原位溶液燃烧法负载的铜铈金属整体催化剂中,掺杂元素的加入不仅改变了活性组分之间、活性组分和金属载体之间的相互作用,而且改变了氧化铜、氧化铈和表面吸附氧的还原行为,从而对催化性能以及整体催化剂的粘附稳定性都产生了影响。其中掺杂Zr或Nd显著提高了CO被完全净化的温度窗口。
     金属载体的存在改变了氧化物的分布和相互作用。氧化铈在金属载体上的均匀分散使它的颗粒变小,同时氧化铈和金属载体表面氧化铝之间的相互作用削弱了氧化铜和氧化铈之间的相互作用,致使少量的氧化铜在载体表面发生了聚集。
     和颗粒催化剂相比,整体催化剂在优先氧化一氧化碳反应中同样表现了高的催化性能。优良的传热特性避免了过热点,抑制了逆水煤气反应的发生。
Fuel cells are extremely sensitive to even trace amounts (10ppm) of CO. Preferential oxidation of carbon monoxide is regarded as the favorable method for the purification of the hydrogen-rich streams. Catalysts for preferential CO oxidation need to be prepared as monolithic shape for use. The key problem is how to ensure high adherence between oxides and metallic supports. Then, the interaction between oxides and metallic supports could influence the structure of the catalysts and further influence the catalytic performance. The paper intends to resolve these two problems. New preparation methods are developed to prepare the monolithic catalysts with good adhesion stability. Based on this work, the interaction between oxides and supports is studied, and such interaction may lead to the change of the structure and the catalytic performance.
     CuO-CeO2 catalyst exhibits high activity for PROX. Cu1+ may be the key active component in the CuO-CeO2 catalyst, which either enters into the CeO2 lattice or exists in the interface between copper oxide and CeO2.
     The monolithic catalysts prepared by the sol-pyrolysis method present high adherence and catalytic performance. High surface energy of the crystal nucleus and interaction between the catalyst and the support promote the adhesion stability. The monolithic catalysts prepared by the microemulsion method also present good adherence. It must use many times to coat active components due to its special property of microemulsion. In addition, the special property of the microemulsion facilitates the interaction between copper oxide and creia. These are favorable for adhesion stability and the catalytic performance.
     For the monolithic catalyst prepared by in situ combustion synthesis method, the additives not only change the interaction between the active component and the support, but also change the redox properties of copper oxide, creia and the surface adsorbed oxygen, hence influence the adhesion stability and catalytic activity of the catalysts. The additives of Zr and Nd increase the selectivity of the monolithic catalysts.
     The presence of the support influences distribution and the interaction of the active components. Ceria is highly dispersed on the surface of the support,so CeO2 crystallite sizes become smaller. The interaction between ceria and alumina weakens the interaction between copper oxide and ceria, so partial CuO aggregates in the monolithic catalyst.
     Compared with the particle catalyst, the monolithic catalysts also present high catalytic performance for PROX. Good ability of heat transfer weakens the unfavorable effect of the reverse water gas shift reaction on CO preferential oxidation.
引文
[1] Moretti E, Lenarda M, Storaro L, Talon A, Frattini R, Polizzi S, Rodriguez-Castellon E, Jimenez-Lopez A, Catalytic purification of hydrogen streams by PROX on Cu supported on an organized mesoporous ceria-modified alumina, Applied Catalysis B: Environmental, 2007, 72 (1-2): 149~156
    [2] Naknam P, Luengnaruemitchai A, Wongkasemjit S, Osuwan S, Preferential catalytic oxidation of carbon monoxide in presence of hydrogen over bimetallic AuPt supported on zeolite catalysts, Journal of Power Sources, 2007, 165(1): 353~358
    [3] Goerke O, Pfeifer P, Schubert K, Water gas shift reaction and selective oxidation of CO in microreactors, Applied Catalysis A: General, 2004, 263 (1): 11~18
    [4] Lindstr?m B, Agrell J, Pettersson L J, Combined methanol reforming for hydrogen generation over monolithic catalysts, Chemical Engineering Journal, 2003, 93 (1): 91~101
    [5] Seo D J, Yoon W L, Yoon Young-Gi, Park Seok-Hee, Park Gu-Gon, Kim Chang-Soo, Development of a micro fuel processor for PEMFCs, Electrochimica Acta, 2004, 50 (2-3): 719~723
    [6] Park G G, Seo D J, Park S H, Yoon Y G, Kim C S, Yoon W L, Development of microchannel methanol steam reformer, Chemical Engineering Journal, 2004, 101 (1-3): 87~92
    [7] Pedrero C, Waku T, Iglesia E, Oxidation of CO in H2–CO mixtures catalyzed by platinum: alkali effects on rates and selectivity, Journal of Catalysis, 2005, 233 (1): 242~255
    [8] Tanaka H, Ito S I, Kameoka S, Tomishige K, Kunimori K, Catalytic performance of K-promoted Rh/USY catalysts in preferential oxidation of CO in rich hydrogen, Applied Catalysis A: General, 2003, 250 (2): 255~263
    [9] Echigo M, Tabata T, Development of novel Ru catalyst of preferential CO oxidation for residential polymer electrolyte fuel cell systems, Catalysis Today, 2004, 90 (3-4): 269~275
    [10] Wakita H, Kani Y, Ukai K, Tomizawa T, Takeguchi T, Ueda W, Effect of SO2 and H2S on CO preferential oxidation in H2-rich gas over Ru/Al2O3 and Pt/Al2O3 catalysts, Applied Catalysis A: General, 2005, 283 (1-2): 53~61
    [11] Rosso I, Galletti C, Saracco G, Garrone E, Specchia V, Development of A zeolites-supported noble-metal catalysts for CO preferential oxidation: H2 gaspurification for fuel cell, Applied Catalysis B: Environmental, 2004, 48 (3): 195~203
    [12] Ratnasamy P, Srinivas D, Satyanarayana C V V, Manikandan P, Kumaran R S S, Sachin M and Shetti V N, Influence of the support on the preferential oxidation of CO in hydrogen-rich steam reformates over the CuO–CeO2–ZrO2 system, Journal of Catalysis, 2004, 221 (2): 455~465
    [13] Echigo M, Shinke N, Takami S, Tabata T, Performance of a natural gas fuel processor for residential PEFC system using a novel CO preferential oxidation catalyst, Journal of Power Sources, 2004, 132 (1-2): 29~35
    [14] Pozdnyakova O, Teschner D, Wootsch A, Kr?hnert J, Steinhauer B, Sauer H, Toth L, Jentoft F C, Knop-Gericke A, Paál Z, Schl?gl R, Preferential CO oxidation in hydrogen (PROX) on ceria-supported catalysts, part I: Oxidation state and surface species on Pt/CeO2 under reaction conditions, Journal of Catalysis, 2006, 237 (1): 1~16
    [15] Srinivas S, Gulari E, Preferential CO oxidation in a two-stage packed-bed reactor: Optimization of oxygen split ratio and evaluation of system robustness, Catalysis Communications, 2006, 75 (10): 819~826
    [16] Watanabe M, Uchida H, Ohkubo K, Igarashi H, Hydrogen purification for fuel cells: selective oxidation of carbon monoxide on Pt–Fe/zeolite catalysts, Applied Catalysis B: Environmental, 2003, 46 (3): 595~600
    [17] Cheekatamarla P K, Epling W S, Lane A M, Selective low-temperature removal of carbon monoxide from hydrogen-rich fuels over Cu–Ce–Al catalysts, Journal of Power Sources, 2005, 147 (1-2): 178~183
    [18] Lopez E, Kolios G, Eigenberger G, Preferential oxidation of CO in a folded-plate reactor, Chemical Engineering Science, article in press
    [19] Roberts G W, Chin P, Sun X L, Spivey J J, Preferential oxidation of carbon monoxide with Pt/Fe monolithic catalysts: interactions between external transport and the reverse water-gas-shift reaction, Applied Catalysis B: Environmental, 2003, 46 (3): 601~611
    [20] Ahluwalia R K., Zhang Q Z, Chmielewski D J, Lauzze K C, Inbody M A, Performance of CO preferential oxidation reactor with noble-metal catalyst coated on ceramic monolith for on-board fuel processing applications, Catalysis Today, 2005, 99 (3-4): 271~283
    [21] Son I H, Shamsuzzoha M and Lane A M, Promotion of Pt/γ -Al2O3 by New Pretreatment for Low-Temperature Preferential Oxidation of CO in H2 for PEM Fuel Cells, Journal of Catalysis, 2002, 210 (2): 460~465
    [22] Recupero V, Pino L, Cordaro M, Vita A, Cipiti F, Lagana M, CO clean-up transient device integrated to a preferential oxidation reactor for PEFC electric vehicles, Fuel Processing Technology, 2004, 85 (13): 1445~1452
    [23] Zhou S L, Yuan Z S, Wang S D, Selective CO oxidation with real methanol reformate over monolithic Pt group catalysts: PEMFC applications, International Journal of Hydrogen Energy, 2006, 31 (7): 924 ~933
    [24] Marino F, Descorme C, Duprez D, Supported base metal catalysts for the preferential oxidation of carbon monoxide in the presence of excess hydrogen (PROX), Applied Catalysis B: Environmental, 2005, 58 (3-4): 175~183
    [25] Chen G W, Yuan Q, Li H Q, Li S L, CO selective oxidation in a microchannel reactor for PEM fuel cell, Chemical Engineering Journal, 2004, 101 (1-3): 101~106
    [26] Cho S H, Park J S, Choi S H, Kim S H, Effect of magnesium on preferential oxidation of carbon monoxide on platinum catalyst in hydrogen-rich stream, Journal of Power Sources, 2006, 156 (2): 260~266
    [27] Kotobuki M, Watanabe A, Uchida H, Yamashita H, Watanabe M, Reaction mechanism of preferential oxidation of carbon monoxide on Pt, Fe, and Pt–Fe/mordenite catalysts, Journal of Catalysis, 2005, 236 (2): 262~269
    [28] Gamarra D, Hornes A, Koppany Z, Schay Z, Munuera G, Soria J, Martinez-Arias A, Catalytic processes during preferential oxidation of CO in H2-rich streams over catalysts based on copper–ceria, Journal of Power Sources, 2007, article in press
    [29] Han Y F, Kinne M, Behm R J, Selective oxidation of CO on Ru/γ-Al2O3 in methanol reformate at low temperatures, Applied Catalysis B: Environmental, 2004, 52 (2): 123~134
    [30] Mari?o F, Descorme C, Duprez D, Noble metal catalysts for the preferential oxidation of carbon monoxide in the presence of hydrogen (PROX), Applied Catalysis B: Environmental, 2004, 54 (1): 59~66
    [31] Simsek E, Ozkara S, Aksoylu A E, Onsan Z I, Preferential CO oxidation over activated carbon supported catalysts in H2-rich gas streams containing CO2 and H2O, Applied Catalysis A: General, 2007, 316 (2): 169~174
    [32] Monyanon S, Pongstabodee S, Luengnaruemitchai A, Catalytic activity of Pt–Au/CeO2 catalyst for the preferential oxidation of CO in H2-rich stream, Journal of Power Sources, 2006, 163 (1): 547~554
    [33] Parinyaswan A, Pongstabodee S, Luengnaruemitchai A, Catalytic performances of Pt–Pd/CeO2 catalysts for selective CO oxidation, International Journal of Hydrogen Energy, 2006, 31 (13): 1942~1949
    [34] Kotobuki M, Watanabe A, Uchida H, Yamashita H, Watanabe M, High catalytic performance of Pt-Fe alloy nanoparticles supported in mordenite pores for preferential CO oxidation in H2-rich gas, Applied Catalysis A: General, 2006, 307 (2): 275~283
    [35] Li W, Gracia F J, Wolf E E., Selective combinatorial catalysis; challenges and opportunities: the preferential oxidation of carbon monoxide, Catalysis Today,2003, 81 (3): 437~447
    [36] Chin S Y, Alexeev O S, Amiridis M D, Preferential oxidation of CO under excess H2 conditions over Ru catalysts, Applied Catalysis A: General, 2005, 286 (2): 157~166
    [37] Wootsch A, Descorme C and Duprez D, Preferential oxidation of carbon monoxide in the presence of hydrogen (PROX) over ceria–zirconia and alumina-supported Pt catalysts, Journal of Catalysis, 2004, 225 (2): 259~266
    [38] Mhadeshwar A B, Vlachos D G, Hierarchical, multiscale surface reaction mechanism development: CO and H2 oxidation, water–gas shift, and preferential oxidation of CO on Rh, Journal of Catalysis, 2005, 234 (1): 48~63
    [39] Kwak C, Park T J, Suh D J, Effects of sodium addition on the performance of PtCo/Al2O3 catalysts for preferential oxidation of carbon monoxide from hydrogen-rich fuels, Applied Catalysis A: General, 2005, 278 (2): 181~186
    [40] Pozdnyakova O, Teschner D, Wootsch A, Kr?hnert J, Steinhauer B, Sauer H, Toth L, Jentoft F C, Knop-Gericke A, Paál Z, Schl?gl R, Preferential CO oxidation in hydrogen (PROX) on ceria-supported catalysts, part II: Oxidation states and surface species on Pd/CeO2 under reaction conditions, suggested reaction mechanism, Journal of Catalysis, 2006, 237 (1): 17~28
    [41]Snytnikov P V, Sobyanin V A, Belyaev V D, Tsyrulnikov P G, Shitova N B, Shlyapin D A, Selective oxidation of carbon monoxide in excess hydrogen over Pt-, Ru- and Pd-supported catalysts, Applied Catalysis A: General, 2003, 239 (1-2): 149~156
    [42] Petersson M, Jonsson D, Persson H, Cruise N, Andersson B, Ozone promoted carbon monoxide oxidation on platinum/γ-alumina catalyst, Journal of Catalysis, 2006, 238 (2): 321~329
    [43] Minemura Y, Kuriyama M, Ito S, Tomishige K, Kunimori K, Additive effect of alkali metal ions on preferential CO oxidation over Pt/Al2O3, Catalysis Communications, 2006, 7 (9): 623~626
    [44] Chin S Y, Alexeev O S., Amiridis M D, Structure and reactivity of Pt–Ru/SiO2 catalysts for the preferential oxidation of CO under excess H2, Journal of Catalysis, 2006, 243 (2): 329~339
    [45] Dudfield C D, Chen R, Adcock P L, A carbon monoxide PROX reactor for PEM fuel cell automotive application, International Journal of Hydrogen Energy, 2001, 26 (7): 763~775
    [46] Haruta M, Yamada N, Kobayashi T, Iijima S, Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide, Journal of Catalysis, 1989, 115 (2): 301~309
    [47]Schumacher B, Denkwitz Y, Plzak V, Kinne M and Behm R J, Kinetics,mechanism, and the influence of H2 on the CO oxidation reaction on a Au/TiO2 catalyst, Journal of Catalysis, 2004, 224 (2): 449~462
    [48] Luengnaruemitchai A, Osuwan S, Gulari E, Selective catalytic oxidation of CO in the presence of H2 over gold catalyst, International Journal of Hydrogen Energy, 2004, 29 (4): 429~435
    [49] Rossignol C, Arrii S, Morfin F, Piccolo L, Caps V, Rousset J L, Selective oxidation of CO over model gold-based catalysts in the presence of H2, Journal of Catalysis, 2005, 230 (2): 476~483
    [50] Schubert M M, Venugopal A, Kahlich M J, Plzak V and Behm R. J, Influence of H2O and CO2 on the selective CO oxidation in H2-rich gases over Au/α-Fe2O3, Journal of Catalysis, 2004, 222 (1): 32~40
    [51] Deng W L, Jesus J D, Saltsburg H, Flytzani-Stephanopoulos M, Low-content gold-ceria catalysts for the water–gas shift and preferential CO oxidation reactions, Applied Catalysis A: General, 2005, 291 (1-2): 126~135
    [52] Ruszel M, Grzybowska B, ?aniecki M, Wojtowski M, Au/Ti-SBA-15 catalysts in CO and preferential (PROX) CO oxidation, Catalysis Communications, aricle in press
    [53] Choudhary T V, Sivadinarayana C, Chusuei C C, Datye A K, Fackler J P, Goodman J and Goodman D W, CO Oxidation on Supported Nano-Au Catalysts Synthesized from a [Au6(PPh3)6](BF4)2 Complex, Journal of Catalysis, 2002, 207 (2): 247~255
    [54] Panzera G, Modafferi V, Candamano S, Donato A, Frusteri F, Antonucci P L, CO selective oxidation on ceria-supported Au catalysts for fuel cell application, Journal of Power Sources, 2004, 135 (1-2): 177~183
    [55] Azar M, Caps V, Morfin F, Rousset J L, Piednoir A, Bertolini J C, Piccolo L, Insights into activation, deactivation and hydrogen-induced promotion of a Au/TiO2 reference catalyst in CO oxidation, Journal of Catalysis, 2006, 239 (2): 307~312
    [56] Avgouropoulos G, Ioannides T, Papadopoulou C, Batista J, Hocevar S and Matralis H K, A comparative study of Pt/γ-Al2O3, Au/α-Fe2O3 and CuO–CeO2 catalysts for the selective oxidation of carbon monoxide in excess hydrogen, Catalysis Today, 2002, 75 (1-4): 157~167
    [57] Bethke G K and Kung H H, Selective CO oxidation in a hydrogen-rich stream over Au/γ-Al 2O 3 catalysts, Applied Catalysis A: General, 2000, 194-195:43~53
    [58] Venezia A M, Liotta L F, Pantaleo G, Parola V L, Deganello G, Beck A, Koppány Z, Frey K, Horváth D and Guczi L, Activity of SiO supported gold-palladium catalysts in CO oxidation, 2Applied Catalysis A: General, 2003, 251 (2): 359~368
    [59] Yang C, Kalwei M, Schüth F and Chao K, Gold nanoparticles in SBA-15showing catalytic activity in CO oxidation, Applied Catalysis A: General, 2003, 254 (2): 289~296
    [60] Schubert M M, Kahlich M J, Gasteiger H A, Behm R J, Correlation between CO surface coverage and selectivity/kinetics for the preferential CO oxidation over Pt/γ-Al2O3 and Au/α-Fe2O3: an in-situ DRIFTS study, Journal of Power Sources, 1999, 84 (2): 175~182
    [61] Cameron D, Holliday R, Thompson D, Gold’s future role in fuel cell systems, Journal of Power Sources, 2003, 118 (1-2): 298~303
    [62] Kung H H, Kung M C and Costello C K, Supported Au catalysts for low temperature CO oxidation, Journal of Catalysis, 2003, 216 (1-2): 425~432
    [63] Costello C K, Yang J H, Law H Y, Wang Y, Lin J N, Marks L D, Kung M C and Kung H. H., On the potential role of hydroxyl groups in CO oxidation over Au/Al 2 O3 , Applied Catalysis A: General, 2003, 243 (1): 15~24
    [64] Liu W, Maria F S, Total oxidation of carbon monoxide and methane over transition metal-fluorite oxide composite catalysts, Journal of Catalysis, 1995, 153: 304~316
    [65] Liu W, Maria F S, Total oxidation of carbon monoxide and methane over transition metal-fluorite oxide composite catalysts, Journal of Catalysis, 1995, 153: 317~332
    [66] 刘源, 孙海龙, 刘全生, 金恒芳,氧化铈气凝胶担载氧化铜催化剂上的一氧化碳氧化反应,催化学报,2001,22 (5): 454~456
    [67] Papavasiliou J, Avgouropoulos G, Ioannides T, Production of hydrogen via combined steam reforming of methanol over CuO-CeO2 catalysts, Catalysis Communications, 2004, 5: 231~235
    [68] Liu Y Y, Hayakawa T, Tsunoda T, Suzuki K, Hamakawa S, Murata K, Shiozaki R, Ishii T, and Kumagai M, Steam reforming of methanol over Cu/CeO2 catalysts studied in comparison with Cu/ZnO and Cu/Zn(Al)O catalysts, Topics in Catalysis, 2003, 22( 3-4) : 205~213
    [69] Jiang X Y, Lou L P, Chen Y X, Zheng X M, Effects of CuO/CeO2 and CuO/γ-Al2O3 catalysts on NO + CO reaction, Journal of Molecular Catalysis A: Chemical, 2003,197: 193~205
    [70] Amin N A S, Tan E F, Manan Z A, Selective reduction of NOx with C3H6 over Cu and Cr promoted CeO2 catalysts, Applied Catalysis B: Environmental, 2003, 43: 57~69
    [71] Avgouropoulos G, Ioannides T, Matralis H, Influence of the preparation method on the performance of CuO–CeO2 catalysts for the selective oxidation of CO, Applied Catalysis B: Environmental, 2005, 56 (1-2): 87~93
    [72] Liu Y, Fu Q, Stephanopoulos M F, Preferential oxidation of CO in H2 overCuO-CeO2 catalysts, Catalysis Today, 2004, 93–95: 241~246
    [73] Avgouropoulos G, Ioannides T, Matralis Haralambos K, Batista J and Hocevar S, CuO–CeO2 mixed oxide catalysts for the selective oxidation of carbon monoxide in excess hydrogen, Catalysis Letters, 2001, 73(1):33~40
    [74] Marban G, Fuertes An B, Highly active and selective CuOx/CeO2 catalyst prepared by a single-step citrate method for preferential oxidation of carbon monoxide, Applied Catalysis B: Environmental, 2005, 57 (1): 43~53
    [75] Avgouropoulos G, Ioannides T, Selective CO oxidation over CuO-CeO2 catalysts prepared via the urea–nitrate combustion method, Applied Catalysis A: General, 2003, 244 (1): 155~167
    [76] Martinez-Arias A, Hungria A B, Fernandez-Garcia M, Conesa J C, Munuera G, Preferential oxidation of CO in a H2-rich stream over CuO/CeO2 and CuO/(Ce,M)Ox (M = Zr, Tb) catalysts, Journal of Power Sources, 2005, 151: 32~42
    [77] Sedmak G, Hocevar S and Levec J, Kinetics of selective CO oxidation in excess of H2 over the nanostructured Cu0.1Ce0.9O2?y catalyst, Journal of Catalysis, 2003, 213 (2): 135~150
    [78] Manzoli M, Monte R D, Boccuzzi F, Coluccia S, Kaspar J, CO oxidation over CuOx-CeO2-ZrO2 catalysts: Transient behaviour and role of copper clusters in contact with ceria, Applied Catalysis B: Environmental, 2005, 61 (3-4): 192~205
    [79] Liu Z G, Zhou R X, Zheng X M, Comparative study of different methods of preparing CuO-CeO2 catalysts for preferential oxidation of CO in excess hydrogen, Journal of Molecular Catalysis A: Chemical, 2007, 267 (1-2): 137~142
    [80] Martínez-Arias A, Fernández-García M, Gálvez O, Coronado J M, Anderson J A, Conesa J C, Soria J and Munuera G, Comparative Study on Redox Properties and Catalytic Behavior for CO Oxidation of CuO/CeO2 and CuO/ZrCeO4 Catalysts Journal of Catalysis, 2000, 195 (1): 207~216
    [81] Liu Z G, Zhou R X, Zheng X M, The preferential oxidation of CO in excess hydrogen: A study of the influence of KOH/K2CO3 on CuO–CeO2?x catalysts, Journal of Molecular Catalysis A: Chemical, 2006, 255 (1-2): 103~108
    [82] Sedmak G, Hocevar S, and Levec J, Transient kinetic model of CO oxidation over a nanostructured Cu0.1Ce0.9O2?y catalyst, Journal of Catalysis, 2004, 222 (1): 87~99
    [83] Tabakova T, Idakiev V, Papavasiliou J, Avgouropoulos G, Ioannides T, Effect of additives on the WGS activity of combustion synthesized CuO/CeO2 catalysts, Catalysis Communications, 2007, 8: 101~106
    [84] Sirichaipraserta K, Luengnaruemitchaib A, Pongstabodee S, Selective oxidation of CO to CO2 over Cu–Ce–Fe–O composite-oxide catalyst in hydrogen feedstream, International Journal of Hydrogen Energy, article in press
    [85] Tomasic V, Jovic F, State-of-the-art in the monolithic catalysts/reactors, Applied Catalysis A: General, 2006, 311: 112~121
    [86] Martin J C, Avila P, Suarez S, Yates M, Martin-Rojo A B, Barthelemy C, Martin J A, Influence of support acid pretreatment on the behaviour of CoOx/γ-alumina monolithic catalysts in the CH4-SCR reaction, Applied Catalysis B: Environmental, 2006, 67 (3-4): 270~278
    [87] Pestryakov A N, Yurchenko E N, Feofilov A E, Foam-metal catalysts for purification of waste gases and neutralization of automotive emissions, Catalysis Today, 1996, 29: 67~70
    [88] Jiang Z D, Chung K S, Kim G R, Chung J S, Mass transfer characteristics of wire-mesh honeycomb reactors, Chemical Engineering Science, 2003, 58: 1103~1111
    [89] Kapteijn F, Nijhuis T A, Heiszwolf J J, Moulijn J A, New non-traditional multiphase catalytic reactors based on monolithic structures, Catalysis Today, 2001, 66: 133~144
    [90] Giroux T, Hwang S, Liu Y, Ruettinger W, Shore L, Monolithic structures as alternatives to particulate catalysts for the reforming of hydrocarbons for hydrogen generation, Applied Catalysis B: Environmental, 2005, 56(1-2): 95~110
    [91] Schneider R, Kiessling D, Wendt G, Burckhardt W, Winterstein G, Perovskite-type oxide monolithic catalysts for combustion of chlorinated hydrocarbons, Catalysis Today, 1999, 47: 429~435
    [92] Ganley J C, Riechmann K L, Seebauer E G, Masel R I, Porous anodic alumina optimized as a catalyst support for microreactors, Journal of Catalysis, 2004, 227 (1): 26~32
    [93] Kabin K S, Muncrief R L, Harold M P, NOX storage and reduction on a Pt/BaO/alumina monolithic storage catalyst, Catalysis Today, 2004, 96 : 79~89
    [94] Kucharczyk B, Tylus W, Kepinski L, Pd-based monolithic catalysts on metal supports for catalytic combustion of methane, Applied Catalysis B: Environmental, 2004, 49(1): 27~37
    [95] Shan Z, Kooten W E J V, Oudshoorn O L, Jansen J C, Bekkum H V, Bleek C M V D, Calis H P A, Optimization of the preparation of binderless ZSM-5 coatings on stainless steel monoliths by in situ hydrothermal synthesis, Microporous and Mesoporous Materials, 2000, 34: 81~91
    [96] Tronconi E, Groppi G, Boger T, Heibel A, Monolithic catalysts with ‘high conductivity’ honeycomb supports for gas/solid exothermic reactions: characterization of the heat-transfer properties, Chemical Engineering Science, 2004, 59 (22-23): 4941~4949
    [97] Wu X D, Weng D, Zhao S, Chen W, Influence of an aluminized intermediate layer on the adhesion of a γ-Al2O3 washcoat on FeCrAl, Surface & Coatings Technology, 2005, 190 (2-3): 434~439
    [98] Valentini M, Groppi G, Cristiani C, Levi M, Tronconi E, Forzatti P, The deposition of γ-Al2O3 layers on ceramic and metallic supports for the preparation of structured catalysts, Catalysis Today, 2001, 69 (1-4): 307~314
    [99] Yin F X, Ji S F, Chen B H, Zhao L P, Liu H, Li C Y, Preparation and characterization of LaFe1-xMgxO3/Al2O3/FeCrAl: Catalytic properties in methane combustion, Applied Catalysis B: Environmental, 2006, 66 (3-4): 265~273
    [100] Choi J S, Partridge W P, Epling W S, Currier N W, Yonushonis T M, Intra-channel evolution of carbon monoxide and its implication on the regeneration of a monolithic Pt/K/Al2O3 NOx storage-reduction catalyst, Catalysis Today, 2006, 114 (1): 102~111
    [101] Cimino S, Landi G, Lisi L, Russo G, Rh–La (Mn,Co)O3 monolithic catalysts for the combustion of methane under fuel-rich conditions, Catalysis Today, 2006, 117 (4): 454~461
    [102] W?och E, ?ukaszczyk A, Zurek Z, Sulikowski B, Synthesis of ferrierite coatings on the FeCrAl substrate, Catalysis Today, 2006, 114 (2-3): 231~236
    [103] Vergunst T, Kapteijn F, Moulijn Jacob A, Monolithic catalysts—non-uniform active phase distribution by impregnation, Applied Catalysis A: General, 2001, 213 (2): 179~187
    [104] Perez-Cadenas A F, Zieverink M M P, Kapteijn F, Moulijn J A, High performance monolithic catalysts for hydrogenation reactions, Catalysis Today, 2005, 105 (3-4): 623~628
    [105] ?ojewska J, Ko?odziej A, Zak J, Stoch J, Pd/Pt promoted Co3O4 catalysts for VOCs combustion Preparation of active catalyst on metallic carrier, Catalysis Today, 2005, 105 (3-4): 655~661
    [106] Stary T, ?olcova O, Schneider P, Marek M, Effective diffusivities and pore-transport characteristics of washcoated ceramic monolith for automotive catalytic converter, Chemical Engineering Science, 2006, 61 (18): 5934~5943
    [107] Chung K S, Jiang Z D, Gill B S, Chung J S, Oxidative decomposition of o-dichlorobenzene over V2O5/TiO2 catalyst washcoated onto wire-mesh honeycombs, Applied Catalysis A: General, 2002, 237: 81~89
    [108] Zhao S, Zhang J Z, Weng D and Wu X D, A method to form well-adhered γ-Al2O3 layers on FeCrAl metallic supports, Surface and Coatings Technology, 2003, 167(1): 97~105
    [109] Qi A D, Wang S D, Fu G Z, Ni C J, Wu D Y, La–Ce–Ni–O monolithic perovskite catalysts potential for gasoline autothermal reforming system, AppliedCatalysis A: General, 2005, 281 (1-2): 233~246
    [110] Yin F X, Ji S F, Chen B H, Zhou Z L, Liu H, Li C Y, Catalytic combustion of methane over Ce1-xLaxO2-x/2/Al2O3/FeCrAl catalysts, Applied Catalysis A: General, 2006, 310: 164~173
    [111] Boissel V, Tahir S, Koh Carolyn A, Catalytic decomposition of N2O over monolithic supported noble metal-transition metal oxides, Applied Catalysis B: Environmental, 2006, 64 (3-4): 234~242
    [112] Isupova L A, Alikina G M, Snegurenko O I, Sadykov V A, Tsybulya S V, Monolith honeycomb mixed oxide catalysts for methane oxidation, Applied Catalysis B: Environmental, 1999, 21 (3): 171~181
    [113] Suetsuna T, Suenaga S, Fukasawa T, Monolithic Cu–Ni-based catalyst for reforming hydrocarbon fuel sources, Applied Catalysis A: General, 2004, 276 (1-2): 275~279
    [114] Perez-Cadenas A F, Kapteijn F, Moulijn J A, Maldonado-Hodar F J, Carrasco-Mar?n Francisco, Moreno-Castilla Carlos, Pd and Pt catalysts supported on carbon-coated monoliths for low-temperature combustion of xylenes, Carbon, 2006, 44 (12): 2463~2468
    [115] Garcia-Bordeje E, Pinilla J L, Lazaro M J, Moliner R, NH3-SCR of NO at low temperatures over sulphated vanadia on carboncoated monoliths: Effect of H2O and SO2 traces in the gas feed, Applied Catalysis B: Environmental, 2006, 66 (3-4): 281~287
    [116] Zamaro J M, Ulla M A, Miro E E, Improvement in the catalytic performance of In-mordenite through preferential growth on metallic monoliths, Applied Catalysis A: General, 2006, 308: 161~171
    [117] Kang C S, You Y J, Kim K J, Kim T H, Ahn S J, Chung K H, Park N C, Kimura S, Ahn H G, Selective catalytic reduction of NOx with propene over double wash-coat monolith catalysts, Catalysis Today, 2006, 111 (3-4): 229~235
    [118] Fairen-Jimenez D, Carrasco-Marin F, Moreno-Castilla C, Porosity and surface area of monolithic carbon aerogels prepared using alkaline carbonates and organic acids as polymerization catalysts, Carbon, 2006, 44 (11): 2301~2307
    [119] Reszka K, Rakoczy J, Zurek Z, Czyzniewski A, Gilewicz A, Homa M, Catalytic properties of Al2O3 deposited by ion sputtering using DC and RF sources, Vacuum, 2005, 78 (2-4): 149~155
    [120] Srinivas S, Dhingra A, Im H, Gulari E, A scalable silicon microreactor for preferential CO oxidation: performance comparison with a tubular packed-bed microreactor, Applied Catalysis A: General, 2004, 274 (1-2): 285~293
    [121] Dominguez M I, Sanchez M, Centeno M A, Montes M, Odriozola J A, CO oxidation over gold-supported catalysts-coated ceramic foams prepared fromstainless steel wastes, Applied Catalysis A: General, 2006, 302 (1): 96~103
    [122] Garcia-Bordeje E, Lazaro M J, Moliner R, Alvarez P M, Gomez-Serrano V, Fierro J L G, Vanadium supported on carbon coated honeycomb monoliths for the selective catalytic reduction of NO at low temperatures:Influence of the oxidation pre-treatment, Carbon, 2006, 44 (3): 407~417
    [123] Ruiz-Martinez E, Sanchez-Hervas J M, Otero-Ruiz J, Effect of operating conditions on the reduction of nitrous oxide by propane over a Fe-zeolite monolith, Applied Catalysis B: Environmental, 2005, 61 (3-4): 306~315
    [124] Kapteijn F, Deugd R M D, Moulijn J A, Fischer–Tropsch synthesis using monolithic catalysts, Catalysis Today, 2005, 105 (3-4): 350~356
    [125] Groppi G, Tronconi E, Honeycomb supports with high thermal conductivity for gas/solid chemical processes, Catalysis Today, 2005, 105 (3-4): 297~304
    [126] Chin P, Sun X L, Roberts G W, Spivey J J, Preferential oxidation of carbon monoxide with iron-promoted platinum catalysts supported on metal foams, Applied Catalysis A: General, 2006, 302 (1): 22~31
    [127] Atalik B, Uner D, Structure sensitivity of selective CO oxidation over Pt/γ -Al2O3, Journal of Catalysis, 2006, 241 (2): 268~275
    [128] Jiang X Y, Lu G L, Zhou R X, Mao J X, Chen Y, Zheng X M, Studies of pore structure, temperature-programmed reduction performance, and micro-structure of CuO/CeO2 catalysts, Applied Surface Science, 2001, 173: 208~220
    [129] Rao G R, Sahu H R, Mishra B G, Surface and catalytic properties of Cu-Ce-O composite oxides prepared by combustion method, Colloids and Surfaces A: Physicochem. Eng. Aspects, 2003, 220: 261~269
    [130] Lamonier C, Ponchel A, DHuysser A, Jalowiecki-Duhamel L, Studies of the cerium-metal-oxygen-hydrogen system (metal.Cu, Ni), Catalysis Today, 1999, 50: 247~259
    [131] Wang J B, Tsai D H, and Huang T J, Synergistic Catalysis of Carbon Monoxide Oxidation over Copper Oxide Supported on Samaria-Doped Ceria, Journal of Catalysis, 2002, 208:370~380
    [132] Avgouropoulos G, Papavasiliou J, Tabakova T, Idakiev V, Ioannides T, A comparative study of ceria-supported gold and copper oxide catalysts for preferential CO oxidation reaction, Chemical Engineering Journal, 2006, 124 (1-3): 41~45
    [133] Tscho1pe A, Trudeau M L and Ying J Y, Redox Properties of Nanocrystalline Cu-Doped Cerium Oxide Studied by Isothermal Gravimetric Analysis and X-ray Photoelectron Spectroscopy, J. Phys. Chem. B, 1999, 103: 8858~8863
    [134] Francisco M S P and Mastelaro V R, Activity and Characterization by XPS, HR-TEM, Raman Spectroscopy, and BET Surface Area of CuO/CeO2-TiO2Catalysts, J. Phys. Chem. B, 2001, 105:10515~10522
    [135] Nelson A E, Schulz K H., Surface chemistry and microstructural analysis of CexZr1-xO2-y model catalyst surfaces, Applied Surface Science, 2003, 210: 206~221
    [136] Zimmer P, Tschope A and Birringer R, Temperature-Programmed Reaction Spectroscopy of Ceria- and Cu/Ceria-Supported Oxide Catalyst, Journal of Catalysis, 2002, 205(2): 339~345
    [137] Huang T J and Tsai D H, CO oxidation behavior of copper and copper oxides, Catalysis Letters, 2003, 87(3–4): 173~178
    [138] Valentini M, Groppi G, Cristiani C, Levi M, Tronconi E, Forzatti P, The deposition of γ-Al2O3 layers on ceramic and metallic supports for the preparation of structured catalysts, Catalysis Today, 2001, 69 (1-4): 307~314
    [139] Huntz A M, Marechal L, Lesage B, Molins R, Thermal expansion coefficient of alumina films developed by oxidation of a FeCrAl alloy determined by a deflection technique, Applied Surface Science, 2006, 252 (22): 7781~7787
    [140] 吴晓东,陈华鹏,徐鲁华,翁端,金属载体表面氧化及预载处理对氧化铝涂层结合性能的影响,中国稀土学报,2002, 20: 68~72
    [141] McCarty J G, Gusman M, Lowe D M, Hildenbrand D L and Lau K N, Stability of supported metal and supported metal oxide combustion catalysts,Catalysis Today, 1999, 47(1-4): 5~17
    [142] Ferrandon M, Berg M and Bj?rnbom E, Thermal stability of metal-supported catalysts for reduction of cold-start emissions in a wood-fired domestic boiler, Catalysis Today, 1999, 53( 4):647~659
    [143] Wu X D, Weng D, Chen Z and Xu L H, Effects of plasma-sprayed NiCrAl/ZrO2 intermediate on the combination ability of coatings, Surface and Coatings Technology, 2001, 140(3): 231~237
    [144] Zeng S H, Bai X, Wang X Y, Yu W G, Liu Y, Valence State of Active Copper in CuOx/CeO2 Catalysts for CO Oxidation, Journal of rare earths, 2006, 24: 177~181
    [145] Fabbrini L, Rossetti I, Forni L, Effect of honeycomb supporting on activity of LaBO3±δ perovskite-like catalysts for methane flameless combustion, Applied Catalysis B: Environmental, 2006, 63 (1-2): 131~136
    [146] Ouyang X, Besser R S, Effect of reactor heat transfer limitations on CO preferential oxidation, Journal of Power Sources, 2005, 141 (1): 39~46
    [147] Ko E Y, Park E D, Seo K W, Lee H C, Lee D, Kim S, A comparative study of catalysts for the preferential CO oxidation in excess hydrogen, Catalysis Today, 2006, 116 (3): 377~383
    [148] Choi Y, Stenger H G, Kinetics, simulation and insights for CO selective oxidation in fuel cell applications, Journal of Power Sources, 2004, 129 (2):246~254
    [149] Kuang W X, Fan Y N, Yao K W and Chen Y, Preparation and characterization of ultrafine rare earth molybdenum complex oxide particles, Journal of solid state chemistry, 1998, 140 (2): 354~360
    [150] Biamino S, Fino P, Fino D, Russo N, Badini C, Catalyzed traps for diesel soot abatement: In situ processing and deposition of perovskite catalyst, Applied Catalysis B: Environmental, 2005, 61 (3-4): 297~305
    [151] 刘炬,赵云昆,卢 军,黄荣光,孙加林,汽车尾气净化催化剂金属载体表面预处理的研究,贵金属,2005, 6(1): 12~16
    [152] Zeng S H, Liu Y, Wang Y Q, CuO-CeO2/Al2O3/FeCrAl monolithic catalysts prepared by sol-pyrolysis method for preferential oxidation of carbon monoxide, Catalysis letters, 2006, article in press
    [153] Martinez-Arias A, Hungria A B, Munuera G, Gamarra D, Preferential oxidation of CO in rich H2 over CuO/CeO2: Details of selectivity and deactivation under the reactant stream, Applied Catalysis B: Environmental, 2006, 65 (3-4): 207~216
    [154] 张彩霞,张江娟,谢中运,微乳液特性及在纳米材料制备中的应用,江西化工,2006,1: 10~17
    [155] Sun Y X, Guo G S, Tao D L, Wang Z H, Reverse microemulsion-directed synthesis of hydroxyapatite nanoparticles under hydrothermal conditions, Journal of Physics and Chemistry of Solids, 2007, 68: 373~377
    [156] Bana I, Drofenik M, Makovec D, The synthesis of iron–nickel alloy nanoparticles using a reverse micelle technique, Journal of Magnetism and Magnetic Materials, 2006, 307: 250~256

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700