用户名: 密码: 验证码:
飞行模拟器数字飞行控制系统建模与辅助训练的实现研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
飞行模拟器能够在地面逼真再现飞机的空中飞行,是航空领域新机研制和飞行训练不可或缺的重要设备。我国在飞行模拟器的研制和技术储备上均远远落后于国外发达国家,在当前我国民航运输业高速发展和大飞机研制项目的背景下,开展模拟器关键技术研究更具重要意义。数字飞行控制系统作为民航飞机关键的子系统,在全自动航迹控制及协助航迹控制方面发挥重要作用,对其进行高质量的模拟是研制高等级模拟器的必然要求。不仅如此,数字飞行控制系统的协助航迹控制功能可被加以扩展,进而在飞行模拟器中实现辅助教员进行各种训练科目示范飞行的辅助训练功能,提高飞行模拟器的训练效能,解决目前在模拟器训练中暴露出的问题。
     为实现上述目标,首先对数字飞行控制系统的建模进行了研究。通过对系统的功能、组成及工作原理的分析,将整个系统划分为系统接口、逻辑处理、倾斜控制律和俯仰控制律四个功能模块。针对系统运行逻辑的高度复杂性,通过合理设置逻辑变量,提出一种快速列写系统逻辑表达式的方法,提高了系统开发效率。针对数字飞行控制系统的工作特点,基于飞行控制系统的典型结构,以姿态指令计算为中间环节建立了一个能够满足多飞行方式需求的控制结构,在此结构下,结合每一飞行方式的实际要求给出了相应的衔接准则和控制律算法,满足了飞行模拟器的训练要求。
     为在模拟器训练时能够快速准确的进行重定位及回转等操作,提高训练效率和效果,并在辅助训练中为控制器提供正确的初始条件,对飞机定常飞行状态的求解问题进行了研究。飞机定常状态作为最理想的仿真初始状态在模拟器训练中被广泛使用,但现有的定常状态求解方法准确度不高,求解过程中容易陷入局部最优以致求解失败,极大的影响了训练质量。因此提出一种新的混合遗传算法用于飞机定常状态的求解,该算法将现有遗传算法中的拉马克学习机制和鲍德温学习机制有效结合,使个体学习即局部搜索的次数在两种学习机制间合理的动态分配,提高了局部搜索资源的利用率。经实际测试,该算法有利于避免陷入局部最优、减少迭代次数并提高了最终结果的精度。
     数字飞行控制系统虽然具备了在正常情况下的飞行控制能力,但其在特殊情形下对飞行的控制是无法满足辅助训练要求的。为了能够协助甚至替代教练员进行飞行训练,对辅助训练的飞行决策方法展开了研究。通过对飞行决策的分析,将决策知识转化为一组根据飞行信息进行飞行方式转换的规则,采用基于规则推理的方法实现飞行模拟器辅助训练的自主决策行为。为保证规则推理的有效性,需要对飞行模式进行准确识别。对此,构建了一种双隐层小波过程神经网络用于飞行模式识别,小波激励函数改善了网络的收敛性,非时变神经元隐层的引入提高了网络的非线性映射能力和知识存储能力。基于规则推理和飞行模式识别的飞行决策方法赋予了数字飞行控制系统一定的自主飞行能力,满足了辅助训练的要求。
     通过对整个飞行模拟器系统的组成原理、硬件构成和计算机体系结构的分析,对模拟器系统的软件结构进行了研究。从软件模块划分、类层次规划与运行机制设计三方面出发设计了一个新的飞行模拟器软件结构,该结构能够极大的提高飞行模拟器软件系统的灵活性、可扩展性、可维护性及可重用性。在该软件结构下,对所建立的数字飞行控制系统模型、飞行模式识别算法和一个完整的示范飞行过程分别进行了仿真,结果表明了数字飞行控制系统模型的正确性和合理性、飞行模式识别的准确性和模拟器辅助训练的有效性,同时也验证了基于面向对象的模拟器软件结构的适用性和优越性。
Flight simulator which is the indispensable simulation equipment for the development of new aircraft and flight training in aviation industry can safely and realistically reproduce the behaviour of aircraft flying in the air. At present, the research and technology of flight simulator in our country are far behind the oversea level. Thus, it is significant to research key technology in flight simulator under the background of rapid development of civil aviation and the large civil aircraft develop program. As a key subsystem of civil aeroplane, the digital flight control system plays a significant role in auto-control of flight trajectory and assisting control of flight path. Thus, the high fidelity simulation for the digital flight control system is an essentially requirement in the development of high level simulator. Furthermore, the digital flight control system’s function of assisting the control flight trajectory can be extended to assist instructor to demonstrate the diversified flight training, improve the training efficiency, and solve the problems discovered in training using flight simulators.
     In order to achieve the above aim, the digital flight control system was modeled firstly. Based on the analysis of the function, constitution and operational principle, the whole system was divided into four parts, which are system interface, logic management, roll control and pitch control. Due to the extreme complexity of system, a method that can fast list the expression of system logic by logically setting variables was given. And this method enhances efficiency in the system development. On the basis of the characteristics of digital flight control system and its typical configuration, a control configuration to satisfy the requirement of various flight mode was built using attitude command calculation. Under this configuration, the training requirements of flight simulator is satisfied by providing corresponding link rules and control algorithm according to each flight mode.
     In order to reposition and slew operations rapidly and exactly in training, enhance training efficiency and effect, provide exact initialized condition for controller in auxiliary training, this paper studied on the solving problem of steady flight state. The steady flight state, as a most perfect initialized simulation condition, is widely used. However, there are several problems in the solving algorithm for the steady flight state presently, that is, it easy to get local optimization and its precision is not enough, which may affect flight training seriously. Thus, a new mixed genetic algorithm was given for resolving steady flight state. Lamarckian learning and Baldwinina learning are combined together organically in the algorithm. The algorithm could distribute the number of the local search in the population reasonably, make the advantage of the learning into full play and make the disadvantage into inhibitory. Actual test shows that, using the proposed algorithm the local optimum is avoided, the number of iteration is reduced and accuracy of solution is improved.
     Although the digital flight control system possesses the ability of flight control under normal conditions, it is insufficient to meet the auxiliary training requirements for some particular cases. In order to assist or even take the place of instructors in flight training, the flight decision making method in auxiliary training is investigated. Decision knowledge is converted into a set of flight mode transformational rules according to flight information through the analysis of flight decision. Then, decision-making in autonomous of auxiliary training in flight simulator is achieved by the method of rule based reasoning. In order to ensure validity of rule reasoning, flight mode should be identified exactly. Thus, the two hidden-layer wavelet process neural networks is built to identify flight mode. The convergence of network is improved by wavelet excited functions and the ability of the non-linear mapping and knowledge storage is enhanced by introducing the time-invariant hidden neurons. The digital flight control system possesses a certain degree of autonomous flight ability by the flight decision making method based on the rule based reasoning and flight mode identification makes. Thus, the requirement of auxiliary training is satisfied.
     The software framework of flight simulator was investigated by analyzing the principles of composition, hardware constitution and computer system configuration. Based on module division, class-hierarchy plan and operating mechanism design, a new flight simulator software structure is developed. The structure can greatly increase the software system of flight simulator flexibility, expansibility and maintainability and reusability. In the software architecture,digital flight control system model, pattern recognition algorithm and a full demonstration flight process is simulated. Results show that the digital flight control system model is correct and rational, the flight pattern recognition is accurate and the auxiliary training is valid. Moreover, the applicability and superiority of the object-oriented simulator software architecture is also verified.
引文
1王行仁,贾荣珍,彭晓源,等.飞行实时仿真系统及技术.北京航空航天大学出版社. 1998: 7~9
    2张玲,陈宁,姬云,等.飞行模拟器飞行仿真系统集成方法研究.飞行力学. 2010, 28(3): 39~42
    3刘广达,黄其涛,韩俊伟.研究用飞行模拟器点对点采集系统.沈阳工业大学学报. 2010, 32(2): 200~205
    4中国一航:未来20年中国民航需3365架客机.腾讯网新闻. http://news.qq.com/a/20070920/001981.htm
    5魏中许.民航飞行人力资本投资失衡问题分析.交通企业管理. 2009, (1): 58~59
    6王辉.飞行模拟器操作负荷系统关键技术及原理样机研制.天津大学博士学位论文. 2006: 11~12
    7齐潘国.飞行模拟器液压操纵负荷系统力感模拟方法研究.哈尔滨工业大学博士学位论文. 2009: 1~3
    8吴文海.飞行综合控制系统.航空工业出版社. 2007: 1~9
    9 Zhang Lei, Jiang Hong-zhou, Li Hong-ren. Object oriented landing gear model in a PC-based flight simulator. Simulation Modelling Practice and Theory. 2008, 16(9): 1514~1532
    10凌晓熙.人为因素对航空安全影响的研究.中国科技信息. 2007, (9): 87~89
    11刘清贵.强化飞行训练:飞行安全的重要保障.中国民用航空. 2006, (2): 27~28
    12熊海国.飞行模拟器发动机系统建模与面向对象的仿真研究.哈尔滨工业大学博士学位论文. 2010: 3~5
    13赵旭东,贾荣珍. ARJ21飞机工程模拟器关键技术研究.系统仿真学报. 2009, 21(21): 6856~6858
    14 C. J. Szczepanski. Research simulator and method of optimizing the human-machine interface at military aircraft. AIAA Modeling and Simulation Technologies Conference and Exhibit. 2007: AIAA-2007-6560
    15 K. Rimmek. Flight Simulation, An Advanced Application of Virtual Reality. IFIP Transactions A: Computer Science and Technology. 1994: 171~176
    16陈东帆,周林灿,刘佛生.航空CBT中协同训练系统的设计与实现.计算机工程与设计. 2007, 28(15): 3727~3730
    17王江云,龚光红,彭晓源.一种研究型民机飞行模拟器设计与实现.系统仿真学报. 2009, 21(7): 1870~1873
    18 S. Koekebakker. Model Based Control of a Flight Simulator Motion System. PhD Thesis. Delft University of Technology. 2001: 13~17
    19王知中.浅谈飞行模拟器的发展及作用.航空科学技术. 1994, (2): 18~20
    20 J. M. Rolfe, K. J. Staples. Flight Simulation. Cambridge University Press. 2004: 1~35
    21 Peter Lawn. The Enhancement of a Flight Simulator System with Teaching and Research Applications. Concordia University. 1998: 52~58
    22 L. D. Allen. Evolution of Flight Simulation. American Institute of Aeronautics and Astronautics.1993: 1~11
    23 A. J. Gillespie, S. J. Handlley. Development of a Real-time Simulation of a Vstol Aircraft. Aeronautical Journal. 1996, (100): 397~405
    24 K. L. Johnson, K. A. Awni. A Generic Flight Controls Model for Reversible Systems Coupled with a Control Loader. AIAA Modeling and Simulation Technologies Conference and Exhibit. 2001: 1~9
    25 M. Martinez, A. Rahkola, M. Woodard. Development of A 10 Channel Reconfigurable High Performance Control Loading System. AIAA Modeling and Simulation Technologies Conference, Montreal. 2001: 1~9
    26 K. Rimmek. Flight Simulation, An Advanced Application of Virtual Reality. IFIP Transactions A: Computer Science and Technology. 1994: 171~176
    27 D. White. Flight Simulator Design and Performance Data Requirements Document. AIAA A03-22018
    28 B. T. Sullivan, P. A. Soukup. The NASA 747-400 Flight Simulator-A National Resource for Aviation Safety Research. AIAA Flight Simulation Technologies Conference, San Diego. 1996: 374~384
    29 M. W. Blake. The NASA Advanced Concepts Flight Simulator– A Unique Transport Aircraft Research Environment. AIAA Flight Simulation Technologies Conference, San Diego. 1996: 385~392
    30 G. V. Schothorst. Modeling of Long-stroke Hydraulic Servo-systems for Flight Simulator Motion Control and System Design. PhD thesis. Delft University ofTechnology. 1997: 51~65
    31郭德庆,应海林.飞行模拟器及其运动系统的发展现状及前景.黑龙江科技信息. 2003, (3): 100
    32 http://mil.jschina.com.cn/Get/WQZB/02051146381.htm
    33程雨,吴良.矢志为飞行—中国国际航空公司模拟器运行20周年回顾.民航经济与技术. 1994, 154: 13~15
    34歼六飞行模拟器飞行系统软件说明书.北航飞行模拟器总体组. 1983
    35蔚彪,刘红军.飞行模拟训练经济性研究.长春理工大学学报(高教版). 2009, 4(4): 187~188
    36王仲生.训练型飞行模拟器系统设计及仿真研究.西北工业大学工学硕士论文. 2007: 6~8
    37祝贺运七-100模拟器正式交付使用.测控技术. 1993, 12(3): 2~3
    38 http://www.basc.com.cn/product/images/pic/MA60.htm
    39申功璋,高金源,张津.飞行综合控制与飞行管理.北京航空航天大学出版社, 2008: 6~11
    40鲁道夫布罗克豪斯.飞行控制.金长江.国防工业出版社, 1999: 2~5
    41 J. Huber, N. Sariqul-Klijn. In-flight reconfigurable autopilot for unmanned aircraft: Hardware development and flight test results. 2006 Atmospheric Flight Mechanics Conference, 2006, 2: 1138~1158
    42 D. Mclean. Aircraft Flight Control System. The Aeronautical Journal. 2009: 159~165
    43 M. R. Waszak. Robust multivariable flutter suppression for Benchmark Active Control Technology wind-tunnel model. Journal of Guidance, Control, and Dynamics. 2001, 24(1): 147~153
    44 A. D. Brown. Flight-By-Wire Flight Control. Overhaul and Maintenance. 1997: 2~3
    45 R. E. Bartels, D. M. Schuster. Comparison of two Navier-Stokes methods with Benchmark Active Control Technology experiments. Journal of Guidance, Control, and Dynamics. 2000, 23(6): 1094~1099
    46 C. Y. Tseng, D. D. Feldman, L. J. Griffiths. Steering vector estimation in uncalibrated arrays. IEEE Transactions on Signal Processing. 1995, 43(6): 1397~1412
    47 P. B. Dufour, S. R. Mcgillvary. Explicit dynamics simulation of ejectionsequence and analysis of seat support structure for F-15 aircraft. 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Waikiki, 2007: 6041~6052
    48 A. A. Saif, N. M. Harris. Tracking and Maneuver Regulation Control for Nonlinear Nonminimum Phase Systems.Application to Flight Control. IEEE Trans on Control Systems Technology. 2002, 10(6): 780~792
    49 B. Kadmiry, D. Driankov. A Fuzzy Gain-scheduled forthe Attitude Control of an Unmanned Helicopter. IEEE Trans on Fuzzy Systems. 2004,12(4): 502~515
    50 E. Grassi, S. T. Kostas, S. Dash, et al. Integrated System Identification and PID Controller Tuning by Frequency Loop-shaping. IEEE Trans on Control Systems Technology. 2001, 9(2): 285~294
    51 M. L. Civita, G. Papageorgiou, W. C. Messner, et al. Design and Flight Testing of a Gain-scheduled H∞Loop Shaping Controller for Wide-envelope Flight of a Robotic Helicopter. Proc of the American Control Conf, Denver, 2003: 4195~4200
    52 B. Kadmiry, P. Bergsten, D. Driankov. Autonomous Control Using Fuzzy Gain Scheduling. Proc of the2001 IEEE Int Conf on Robotics and Automation, Seoul, 2001: 2980~2985
    53 A. S. Krupadanam, A. M. Annaswamy, R. S. Mangoubi. A Multivariable Adaptive Controller for Autonomous Helicopters. Proc of the American Control Conf, Anchorage, 2002: 2052~2057
    54于占东,王庆超.飞行器姿态的一种鲁棒自适应模糊解耦控制.宇航学报. 2003, 24(4): 368~373
    55 C. D. Yang, W. H. Liu, C. C. Kung. Nonlinear H∞De-coupling Control for Hovering Helicopter. Proc of the American Control Conf, Anchorage, 2002: 4353~4358
    56 G. Buskey, G. Wyeth, J. Roberts. Autonomous Helicopter Hover Using an Artificial Neural Network. Proc of the2001 IEEE Int Conf on Robotics and Automation, Seoul, 2001: 1635~1641
    57 B. R. Bellur, M. G. Lewis, F. L. Templin. Tactical Information Operations for Autonomous Teams of Unmanned Aerial Vehicles. Proc of the2002 IEEE Aerospace Conf, Montana, 2002: 2741~2756
    58姜波,徐家旺.非线性代数方程组的数值解法比较.沈阳航空工业学院学报. 2003, 20(3): 72~74
    59 R. E. McFarland, Moffett Field. Trimming an Aircraft Model for Flight Simulation. NASA Technical Memorandum 89466. Oct, 1987
    60 Agostino De Marco, Eugene L Duke, Jon S Berndt. A General Solution to the Aircraft Trim Problem. AIAA 2007-6703, Modeling and Simulation Technologies Conference and Exhibit, August, 2007
    61沈宏良,刘昶.飞机平衡状态的优化计算方法.飞行力学. 2001, 19(4): 15~19
    62王海涛,高金源.基于混合遗传算法求解飞机平衡状态.航空学报. 2005, 26(4):470~476
    63胡云安,左斌,李静.基于退火递归神经网络的极值搜索优化算法求解一类蝶式飞行器平衡状态.兵工学报. 2008, (3): 341~347
    64 M. D. Skubilin, O. B. Spiridonov, A. V. Pismenov. A system of flight data acquisition, processing, and recording. Russian Aeronautics. 2008, 51(2): 218~222
    65 A. Thain, D. Clere, S. Fred, S. Gerbal. Calculated and measured in-flight antenna patterns on an ATR 72 aircraft. 2nd European Conference on Antennas and Propagation, Edinburgh, 2007: 185~188
    66 H. J. Slane, J. R. Butler, J. J. Emmerling. Evaluation of a general aviation flight data recorder. Collection of Technical Papers - 2007 AIAA Modeling and Simulation Technologies Conference, Hilton Head, 2007: 41~53
    67 Yang Guangguan, Zhu Changming, Wang Xianghong. An alternative method for EGCS traffic pattern recognition. Elevator World. 2006, 54(8): 82~88
    68 C. C. Lee, C. L. Chen. Color pattern recognition using image encoding joint transform correlator. Microwave and Optical Technology Letters. 2007, 49(7): 1665~1669
    69李玉峰,倪世宏,张宗麟.一种基于模糊Kohonen网络的飞行数据智能处理方法.系统工程与电子技术. 2002, 24(9): 53~56
    70李玉峰,陈天如,倪世宏.模糊神经网络实现飞行数据的智能处理.航空计算技术. 2002, 21(1): 11~14
    71杨俊,谢寿生.基于模糊支持向量机的飞机飞行动作识别.航空学报. 2005, 26(6): 738~744
    72谢川,倪世宏,张宗麟.基于状态匹配与支持向量机的飞行动作识别方法.弹箭与制导学报. 2004, 24(2): 240~243
    73尹文军,倪世宏.一种基于遗传算法的飞行动作识别方法.电脑开发与应用. 2006, 19(4): 50~51
    74王彦鸿,王刚.基于遗传算法的飞行动作识别规则获取方法.航空工业学院学报. 2006, 16(2):17~20
    75 N. S. Yurt, I. Ozkol, C. Hajiyev. Error analysis and motion determination of a flight simulator. Aircraft Engineering and Aerospace Technology. 2004, 76(2): 185~192
    76张镭.飞行模拟器飞行仿真系统建模与软件实现.哈尔滨工业大学博士学位论文. 2009: 13~15
    77 Agostino De Marco, Eugene L Duke, Jon S Berndt. A General Solution to the Aircraft Trim Problem. AIAA 2007-6703, Modeling and Simulation Technologies Conference and Exhibit. August, 2007
    78 Zhang Lei, Huang Qitao, Jiang Hongzhou, et al. Object-oriented aerodynamic model in PC-based flight simulator. Journal of System Simulation. 2008, 20(11): 2877~2880
    79 Huang Wenqing, Zhang Yunhua, Wang Yaming, et al. 3D non-rigid motion estimation using the improved simulated annealing algorithm. 2005 International Conference on Machine Learning and Cybernetics, Guangzhou, 2005: 5330~5335
    80 D. Whitley, V. S. Gordon, K. Mathias.Lamarckian evolution, the Baldwin effect and function optimization. Parallel Problem Solving from Nature–PPSN III,. Springer-Verlag, 1994: 6~15
    81 G. Pierre, B. Alexandre. Darwinian, Lamarckian, and Baldwinian evolutionary approaches for feature weighting in K-means-based algorithms. IEEE Transactions on Evolutionary Computation, 2008, 12(5): 617~629
    82 G. E. Hinton, S. J. Nowlan. How Learning Can Guide Evolution. Complex Systems, 1987, 1(3): 495~502
    83 KWC Ku, M. W. Mak. Exploring the Effects of Lamarckian and Baldwinian Learning in Evolving Recurrent Neural Networks. Proceedings of the IEEE International Conference on Evolutionary Computation, 1997: 617~621
    84 KWC Ku. Enhance the Baldwin Effect by Strengthening the Correlation between Genetic Operators and Learning Methods. Proceedings of the IEEECongress on Evolutionary Computatio, 2006: 3302~3308
    85阎岭,蒋静坪.进化学习策略收敛性和逃逸能力的研究.自动化学报. 2005, 31(6): 73~88
    86 J. M. Baldwin. A New Factor in Evolution. American Naturalist. 1896, 30(3): 441~451
    87张家奇,陈启军.学习对进化的影响及仿真验证.系统仿真学报. 2007, 19(24): 5849~5851
    88 Xiao Hongfeng, Tan Guangzheng. A novel simplex hybrid genetic algorithm. Proceedings of the 9th International Conference for Young Computer Scientists, Zhang Jia Jie, 2008: 1801~1806
    89 Zhang Lining, Gong Maoguo, Jiao Licheng, et al. Improved clonal selection algorithm based on baldwinian learning. 2008 IEEE Congress on Evolutionary Computation, Hong Kong, 2008: 519~526
    90 R. Jeurissen, J. Van Den Berg. Optimized index tracking using a hybrid genetic algorithm. 2008 IEEE Congress on Evolutionary Computation, Hong Kong, 2008: 2327~2334
    91 J. Pan, H. Chao. A hybrid genetic algorithm for no-wait job shop scheduling problems. Expert Systems with Applications. 2009, 36(3): 5800~5806
    92 T. Derdchuen, W. Ongsakul. Optimal measurement placement for security constrained state estimation using hybrid genetic algorithm and simulated annealing. European Transactions on Electrical Power. 2009, 19(2): 173~185
    93 G. Jeon, R. H. Leep, Y. J. Shim. A vehicle routing problem solved by using a hybrid genetic algorithm. Computers and Industrial Engineering. 2007, 53(4): 680-692
    94 A. Knoll, J. Beck. Autonomous decision-making applied onto UAV formation flight, Collection of Technical Papers - AIAA Guidance, Navigation, and Control Conference, Keystone, 2006: 1298~1307
    95 P. Michal, S. David. Agent-based approach to free-flight planning, control, and simulation. IEEE Intelligent Systems. 2009, 24(1): 14~17
    96 Wang Xizhao, Yang Feng, Li Y. A disscussion on the overlapping in fuzzy production rule reasoning. Proceedings of the 2006 International Conference on Machine Learning and Cybernetics, Dalian, 2006: 4557~4562
    97吴扬波,贾全,王文广,等.基于规则推理的海战仿真实体决策方法.火力
    与指挥控制. 2009, 34(8): 30~33
    98吕全喜,占正勇.基于黑板模型的智能驾驶员辅助决策方法.兵工自动化. 2010, 29(2): 93~96
    99李锋刚.基于优化案例推理的智能决策技术研究.合肥工业大学博士学位论文. 2007: 11~25
    100 Zhang Li I, Tao Huizhong W, C E Holt, et al. A Critical Window for Cooperation and Competition Among Developing Retinotectal Synapses. Nature, 1998, 395(2): 37~44
    101欧阳楷,刘卫芳.基于生物的神经网络的理论框架—神经元模型.生物医学工程. 1997, 16(2): 93~101
    102许少华.过程神经元网络理论及其应用研究.北京航空航天大学博士学位论文. 2004:11~15
    103何新贵,许少华.过程神经元网络.科学出版社. 2007: 29~30
    104何新贵,梁久祯,许少华.过程神经元网络的训练及其应用.中国工程科学. 2001, 3(4): 31~35
    105何新贵,梁久祯.过程神经元网络的若干理论问题.中国工程科学. 2000, 2(12): 0~44
    106许少华,何新贵.基于函数正交基展开的过程神经网络学习算法.计算机学报. 2004, 7(5): 645~650
    107李盼池.过程神经网络模型及学习算法研究.大庆石油学院硕士学位论文. 2004: 23~26
    108李盼池,许少华.基于三次样条函数拟合的过程神经元网络训练.计算机工程与设计. 2005, 26(4): 1081~1083
    109 Ding Gang, Zhong Shisheng. Convergence Analysis of the Learning Algorithm for Parallel Feedforward Process Neural Network. Journal of Computational Information Systems. 2005, 1(3): 477~483
    110刘金月,许少华.基于小波包分析和过程神经元网络的水淹层识别方法.大庆石油学院学报. 2008, 32(1): 74~77
    111李洋,钟诗胜.基于双隐层过程神经网络的飞机发动机故障检测.推进技术. 2006, 27(6): 559~562
    112 Ding Gang, Zhong Shisheng. Aircraft Engine Lubricating Oil Monitoring by Process Neural Network. Neural Network World. 2006, 16(1): 15~24
    113栾圣罡,丁刚,钟诗胜.基于双并联过程神经网络的滑油金属含量预测.润滑与密封. 2006, 31(5): 32~37
    114丁刚,钟诗胜.基于时变阈值过程神经网络的太阳黑子数预测.物理学报. 2007, 56(2): 1224~1229
    115许少华,何新贵,尚福华.基于基函数展开的双隐层过程神经元网络及其应用.控制与决策, 2004, 19(1): 36~39
    116付旭云,丁刚,钟诗胜,等.基于双隐层径向基过程神经网络的润滑油金属含量预测.润滑与密封. 2009, 34(2): 17~20
    117曹茂俊,尚福华.基于双链量子遗传算法的过程神经元网络训练.计算机测量与控制. 2010, 18(2): 407~410
    118许少华,何新贵.一种基于过程神经元网络的非线性动态系统辨识模型及应用.信息与控制. 2010, 39(2): 158~163
    119 Dai Qing, Xu Shaohua, Lixin. Method on designing and training of process neural network based on quantum genetic algorithm. Proceedings of the 2nd International Conference on Modelling and Simulation, Manchester, 2009: 375~380
    120 Yu Jintao, Yu Guangbin, Jin Xiangyang. Improved dynamic wavelet process neural network and its application. Proceedings of the 2007 IEEE International Conference on Mechatronics and Automation, Harbin, 2007: 850~854
    121杨露,沈怀荣.一种前馈过程神经元网络初始化方法及改进学习算法.系统仿真学报. 2009, 21(13): 3962~3964
    122何新贵,许少华.一类反馈过程神经元网络模型及其学习算法.自动化学报. 2004, 30(6): 801~806
    123高协平.小波参数化与小波神经网络研究.湖南大学博士学位论文. 2003: 14~15
    124钟诗胜,李洋.基于小波过程神经网络的飞机发动机状态监视.航空学报. 2007, 28(1): 68~71
    125李秋红,许光华,孙健国.航空发动机小波神经网络PID控制.航空动力学报. 2009, 24(4): 875~879
    126张治国,孙德波,伞冶.小波神经网络建模研究.计算机测量与控制. 2003, 11(2): 147~149
    127 X. M. Zhang, Y. Q. Chen, N. Ansari. Mini-max Initialization for Function Approximation. Nerocomputing. 2004, 57: 389~409
    128赵学智,邹春华,陈统坚,等.小波神经网络的参数初始化研究.华南理工大学学报. 2003, 31(2): 77~79
    129 Zhang Lei, Jiang Hongzhou, Li Hongren. PC Based High Quality and Low Cost Flight Simulator. International Conference on Automation and Logistics, August, 2007: 1017~1022
    130 Li Min, Zhang Yisheng. HPC cluster monitoring system architecture design and implement. International Conference on Intelligent Computing Technology and Automation, Changsha, 2009: 325~327
    131 Zhao Xiaojun, Gao Xuguang, Cao Jiankun, et al. Design of high-speed information transmission equipment based on IEEE1394 bus. International Conference on Computational Intelligence and Software Engineering, Wuhan, 2009: 922~927
    132 Shi Ying, Zhao Yan, Deng Nianmao, et al. Modeling and simulation of star guidance system based on RT-LAB. Seventh International Symposium on Instrumentation and Control Technology: Sensors and Instruments, Computer Simulation, and Artificial Intelligence, Beijing, 2008: 57~60
    133 Zhang Yanyan, Huang Qitao, Han Junwei. Real-time Rendering of Large-scale Terrain Based on GPU. The 4th IEEE Conference on Industrial Electronics and Applications, Xi’an, 2009: 3795-3799
    134 T. Huang, S. Y. Zhang, J. W. Han. Hardware-in-the-loop Spacecraft Docking Simulation System and it’s Stability Analysis. Sixth International Conference on Fluid Power Transmission and Control, 2004: 101~106
    135 Federal Aviation Authority,“Airplane Simulator Qualification”, Advisory Circular (AC) 120-40C, July 1, 1995.
    136 International Civil Aviation Organization. Manual of Criteria for the Qualification of Flight Simulators. 2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700