乳腺癌骨髓微转移检测及肿瘤特异性CTLs细胞的免疫治疗
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:乳腺癌是女性最常见的恶性肿瘤,发病率逐年增高。影响预后的关键因素是远处转移,也是治疗失败的根本原因。虽然采取了以手术为主的综合治疗措施,但远期生存率没有明显提高。多项研究表明,乳腺癌骨髓微转移是临床远处转移灶的先兆,可作为独立因素判断预后,在指导治疗、评价疗效及术后复发、转移的监测上有重要意义。提高乳腺癌患者的生存率、延长生存期,应对骨髓微转移采取治疗。本实验通过对乳腺癌患者骨髓微转移的检测及应用肿瘤特异性CTLs细胞对微转移阳性患者进行治疗,探讨微转移发生规律以及免疫细胞过继治疗对微转移的治疗作用,为乳腺癌的预后判断及制定综合治疗方案提供帮助。
     方法:选取我院2007年3月至12月期间收治的可手术乳腺癌病例82例,并经病理学证实。研究对象均为女性,年龄27~80岁,中位年龄44.8岁。术前均未行放、化疗及内分泌治疗。按照国际抗癌联盟(UICC,乳腺癌,2002)肿瘤TNM临床分期标准:Ⅰ期8例、Ⅱ期51例、Ⅲ期23例。另设阴性对照10例。术前1-3天抽取骨髓,应用流式细胞术,联合检测骨髓有核细胞中CK18、CK19的阳性细胞表达率。将23例术前骨髓微转移阳性患者分为二组,治疗组17例,术后应用特异性CTL细胞免疫过继治疗免疫治疗结束后再接受其余综合治疗。对照组6例,术后不接受特异性CTL细胞免疫过继治疗。其余治疗方式及应用时间与第一组相同。免疫治疗组术中取腋下淋巴结及外周血,术后体外诱导培养特异性CTL细胞,于术后10-14天回输,观察特异性CTL细胞对乳腺癌骨髓微转移的疗效。
     结果
     1. 82例乳腺癌患者骨髓标本中,23例经FCM检测到CK18~+、CK19~+/CD45~-细胞,骨髓微转移的阳性检出率为28.05%。
     2.乳腺癌患者的骨髓微转移阳性率随着原发肿瘤的增大而增高,肿瘤直径≤2cm组、2~5cm组及>5cm组的骨髓微转移阳性率分别为7.69%(1/13)、14.58(7/48)%、71.43%(15/21),三组间有统计学差异, P=0.0007。
     3.乳腺癌骨髓微转移阳性率随着临床病理分期增高而增加。临床Ⅰ期组骨髓微转移阳性率12.50%(1/8),Ⅱ期组17.65%(9/51),Ⅲ期56.52%(13/23),三组间有统计学差异,P=0.004。
     4.乳腺癌骨髓微转移阳性率随着组织学分级增加而增高。组织学分化Ⅲ级组骨髓微转移阳性率为68.42%(13/19),明显高于Ⅱ级组17.65%(9/51)及Ⅰ级组8.33%(1/12),三组间比较,有统计学差异,P=0.003。
     5.乳腺癌患者的骨髓微转移阳性率与患者的年龄、月经状况无关,P>0.05。
     6.乳腺癌患者的骨髓微转移阳性率随肿瘤组织ER、PR蛋白表达的增强而降低,ER、PR阳性组骨髓微转移阳性率分别为13.33%(4/30)、10.34%(3/29),明显低于ER、PR阴性组36.54%(19/54)、37.74%(20/53),P<0.05。乳腺癌患者的骨髓微转移与肿瘤组织C-erbB-2的表达无关(P>0.05)。
     7.将23例骨髓微转移阳性患者分为二组,治疗组17例均顺利应用特异性肿瘤CTLs细胞过继免疫治疗,其中只有2例患者出现轻度发热、乏力或嗜睡,其他患者未有不适症状。对照组6例未接受治疗。治疗组、对照组于术后20天左右再次抽取骨髓,做微转移检测,并与术前对照,判断疗效。治疗组17例患者中有14例,在治疗后的微转移检测中呈阴性,过继免疫治疗后转阴率为82.4%。对照组6例中,只有1例术后微转移检测为阴性,术后转阴率只有16.7%。差别有统计学意义(P =0.00028)。
     结论
     1.应用流式细胞术联合CK18、CK19检测乳腺癌骨髓微转移的阳性率为28.05%。
     2.本组研究显示,乳腺癌骨髓微转移的阳性率随着临床分期的增加而增高,临床分期与原发肿瘤体积、腋下淋巴结转移等因素直接相关,提示随着肿瘤的侵袭转移能力的增高,肿瘤细胞发生远处播散的机会增加。当处于临床Ⅲ期时,远处转移的机率明显增高。
     3.乳腺癌骨髓微转移阳性率随组织学分级增加而升高,说明分化程度低的肿瘤细胞具有更强的增殖、侵袭、转移能力,对这部分病人应加强化疗等综合性治疗,密切关注全身转移情况。
     4.乳腺癌骨髓微转移阳性率随ER、PR蛋白表达增强而降低,说明分化愈差的肿瘤细胞,ER、PR丢失愈多,可能具有更强的增殖、侵袭、转移能力。
     5.本研究未发现乳腺癌骨髓微转移与患者的年龄、月经状况、病理类型及肿瘤组织中C-erbB-2的表达有关。
     6.实验数据还中发现,有近12.50%的临床Ⅰ期患者,骨髓微转移阳性。提示乳腺癌属全身系统性疾病,疾病早期即可发生播散和微转移。必须对骨髓微转移采取相应治疗。
     7.本实验数据显示,23例骨髓微转移阳性患者中,治疗组转阴率为82.4%。对照组转阴率为16.7%。差异具有统计学意义(P=0.00028)。特异性CTL细胞免疫过继治疗对乳腺癌骨髓微转移的清除有效。副反应小,易于接受。
Objective: Breast cancer is the most common malignant tumor among women, the incidence is becoming higher in recent years. There is no significant improvement of long-term survival rate though comprehensive measures including surgery are taken. The major reason is associated with metastasis to remote organs. It is showed that, by clinical statistics, bone marrow micrometastasis of breast cancer is the signal of distant metastasis. The detection of micrometastasis may be one of targets to predict the prognosis of breast cancer. It not only help us supervise metastasis dynamically, observe the treatment effect, but also has been an independent factor of predicting the prognosis of breast cancer. Therefore, improving the prognosis of breast cancer needs the treatment of bone marrow micrometastasis. In this research, we have detected bone marrow micrometastasis of breast cancer patients, then used tumor specific CTLs as the treatment method of bone marrow micrometastasis, and discussed the regulations of bone marrow micrometastasis. By this study, we want to find a suitable way to predict the prognosis and increase the long-term survival rate of breast cancer patients.
     Methods: 82 breast cancer cases in our hospital were taken between March and December in 2007. All of them were female, aged from 27 to 82, with a mean of 44.8, and have been proved by patheology. 10 were used as normal person negative control. According to the UICC breast cancer TNM, Detected the cell positive rate of CK18 and CK19 in bone marrow by FCM. Bone marrow puncture was done in 1-3Ddays before operation. In the 82 cases, 23 were detected to be CK18 and CK19 positive expression ones. 23 were divided into two groups: 17 had been treated with CTLs immunotherapy after operation, other therapies would be done in sequence. Therapies of the other 6 were same except the use of CTLs. Each patient with immunotherapy had been collected lymph nodes and peripheral blood. CTLs were cultivated from these two tissues, and injected into the same patient 10-14 days after operation. Then observed the effect of CTLs.
     Results
     1.From bone marrow specimen of 82 breast cancer patients, CK18.+、CK19~+/CD45~- cells were detected in 23 cases by FCM, breast cancer bone marrow micrometastasis positive detection rate was 28.05%.
     2. Bone marrow micrometastasis positive rate in breast cancer patients was increased by protopathic tumor size. The micrometastasis positive rate was 7.69%(1/13)、14.58(7/48)%、71.43%(15/21) respective for the≤2cm、2~5cm and>5cm (in diameter). There are statistical significance among three groups, P=0.0007.
     3. Breast cancer bone marrow micrometastasis positive rate was increased by the clinical TNM staging increased. Bone marrow micrometastasis positive rate was 12.50% (1/8), 17.65% (9/51), and 56.52% (13/23) respectively for StageⅠ,ⅡandⅢ. There are statistical significance among three groups, P=0.004.
     4 Breast cancer bone marrow micrometastasis positive rate was increased with histological grade increasing. Positive rate of the Grade III group was 68.42% (13/19), higher than the Grade II group 17.65% (9/51) and Grade I group 8.33% (1/12), There are statistical significance among three groups, P =0.003.
     5. There was not relationship between breast cancer bone marrow micrometastasis positive rate and their ages and menstruation, P>0.05.
     6. Bone marrow micrometastasis positive rate in breast cancer patients was decreased with ER and PR expressions in tumor tissues intensified. Bone marrow micrometastasis positive rate in ER and PR positive groups was 13.33%(4/30)、10.34%(3/29) respectively, lower than ER and PR negative group 36.54%(19/54)、37.74%(20/53), P<0.05. There was not relationship between bone marrow micrometastasis positive rate and C-erbB-2 expression in the tumor tissues(P>0.05)
     7. 23 breast cancer bone marrow micrometastasis positive patients had been divided into 2 groups: there were 17 patients in foscarnet group, and all had immunotherapy of tumor specific CTLs successfully. Only 2 patients had slight fever, anoresia or sleepiness, other patients had no discomfort feelings. Other 6 patients without CTLs treatment as control group. Each of the 23 cases had bone marrow micrometastasis detection 20 days later of operation. Then compared the micrometastasis positive detection rate with the one before operation, and predicted the effect. Among 17 patients of foscarnet group, there were 14 cases who could not be detected bone marrow micrometastasis, the immunotherapy clearance rate (negative rate) was 82.4%. Among 6 patients of control group, there were only 1 case who could not be detected bone marrow micrometastasis, the clearance rate (negative rate) was 16.7%. There are statistical significance between two groups (P =0.00028).
     Conclusion
     1. Breast cancer micrometastasis cell positive rate of CK18 and CK19 in bone marrow detecteted by FCM .is 28.05%.
     2 In this research, breast cancer bone marrow micrometastasis positive rate is increased by the clinical TNM staging increased. The clinical TNM staging in breast cancer relates to the size of the primary tumor and the axillary lymph nodes metastasis. The more invading ability the tumor has, the more chance to metastasis will be. Breast cancer patients of grade III group have more chances for bone marrow micrometastasis.
     3. Breast cancer bone marrow micrometastasis positive rate increases as histological grading going up, which indicates that low-differentiated cancer cells have stronger ability to reproduce, invade and transfer. It is necessary to use complex therapies to these patients and observe the distant metastasis.
     4. Breast cancer bone marrow micrometastasis positive rate relates to ER and PR protein expressions in tumor tissues. Breast cancer bone marrow micrometastasis positive rate decreases with ER and PR protain expressions intensified,which indicates that the lower tumor cells differentiate, the lower ER and PR express, and they are more capable to infiltrate and metastasis.
     5. No relationship is found between breast cancer bone marrow micrometastasis positive detection rate of the 82 cases and their ages, menstruation, pathological typing or the C-erbB-2 expression in the tumor tissues.
     6. The data has also shown that there is 12.50% (1/8) bone marrow micrometastasis in clinicalⅠ, which indicates that breast cancer is ageneral disease. Its metastasis and spread may occur in early phase of the disease. It is obvious that treatment to bone marrow metastasis must be done.
     7. Among the 23 breast cancer bone marrow micrometastasis positive patients, the immunotherapy clearance rate (negative rate) is 82.4%, the clearance rate (negative rate) of control group is 16.7%. There are statistical significance between two groups, P=0.00028. Tumor specific CTLs immunotherapy has the ability to clean the bone marrow micrometastasis of breast cancer. The side-effect is slight, and patients are easy to accept the therapy.
引文
1 Kallioniemi A. Molecular signatures of breast cancer predicting the future. N Engl J Med, 2002, 347(25):2067~2068
    2 Veronesi U, Luini A, Galimberti V, et al. Extent of metastatic axillary involvement in 1446 cases of breast cancer [J] Eur J Surg Oncol, 1990, 16 (2):127 ~133
    3 Molino A, Pelosoc G, Turazza M, et al. Bone marrow micrometastases in 109 breast cancer patients: correlations with clinical and pathological features and prognosis [J]. Breast Cancer Research and Treatment, 1997, 42(1):23-30
    4 Raj GV,Moreno JG,Gomella LG,et al. Utilization of polymerase chain reaction technology in the detection of solid tumors. Cancer, 1998, 82:1419~1442
    5 Wolfgang J, Stephan G, Christina K, et al. Prognostic significance of an increased number of micrometastatic tumor cells in the bone marrow of patients with first recurrence of breast carcinoma [J]. Cancer, 2000, 88 (10) :2252~2259
    6 Diel I J, Cote R J . Bone marrow and lymph node assessment forminimal residual disease in patients with breast cancer [J]. Cancer Treat Rev, 2000, 26 (1) :53 ~ 65
    7 Cote RJ, Rosen PP, Lesser ML, et al. Prediction of early relapse in patients with operable breast cancer by detection of occult bone marrow micrometastases. J Clin Oncol, 1991, 9:1749
    8 刘运江, 吴风云, 吴祥德. 乳腺癌骨髓微转移检测及其临床意义. 临床外科杂志, 2004, 12(9): 46~49
    9 Mansi JL, Easton D, Berger U, et al. Bone marrow micrometastases in primary breast cancer: prognostic significance after 6 years′ follow up. Eur J Cancer, 1991, 27:1552~1555
    10 刘运江, 刘现义. hMAM 检测乳腺癌骨髓微转移及其意义. 中国肿瘤临床, 2006, 33(10): 549~552
    11 Stephan B, Florian D1. Evaluation of bone marrow in breast cancer patients: prediction of clinical outcome and respons to therapy. The Breast 2003, 12: 397-404
    12 Chambers AF, MacDonald IC, Schmidt EE, et al. Clinical targets for antimetastasis therapy. Adv Cancer Res, 2000, 79: 91~121
    13 Sohoenfeld A, Kruger K H, Gomn J, et al. The detection of micrometastases in the peripheral blood and bone marrow of patients with breast cancer using immunohistochemistry andreverse transcriptase polymerase chain reaction for keratin
    19[J]. Eur J Cancer, 1997, 33 (6): 854~861
    14 Gardner B, Feldman J. Are positive axillary nodes in breast cancer markers for incurable dieases?〔J〕Ann Sug, 1993, 218 (3): 270
    15 Funke I, Schraut W. Meta analyses of studies on bone marrow micrometastases: An independent prognostic impact remains to be substantiated [J]. J Clin Oncol, 1998, 16(2) :557 ~566
    16 Solakoglu O, Maierhofer C, Lahr G, et al. Heterogeneous proliferativepotential of occult metastatic cells in bone marrow of patients with solidepithelial tumors〔J〕. PNAS, 2002, 99(4): 2246-2251
    17 Sharp JA, Sung V, Slavin J, et al. Tumor cells are the source of osteopontin and bone sialoprotein expression in human breast cancer. Lab Invest,1999,79(7):869~877
    18 Braun S, Kentenich C, Janni W, et al. Lack of Effect of Adjuvant Chemotherapy on the Elimination of Single Dormant Tumor Cells in Bone Marrow of High Risk Breast Cancer Patients [J]. J Clin Oncol, 2000, 18 (1) : 80 - 88
    19 W Janni,D Rjosk,et al.The fate of micrometastatic tumor cells (MTC) in the bone marrow of breast cancer patients.ESMO2000,73P
    20 Klaus Pantel, Magnus VON, Knebel D. Detection and clinical relevance of micrometastiatic cancer [J]. Cells Current Opinion in Onco1ogy, 2000, 12 :95 - 101
    21 Klein C A, Blankenstein TJ, Schmidt Kittler O, et al. Genetic heterogeneity of single disseminated tumour cells in minimal residual cancer [J]. Lancet, 2002, 360 (9334) :683 - 689
    22 Slade MJ, Smith BM, Sinnett HD, et al. Quantitative polymerase chain reaction for the detection of micrometastases in patients with breast cancer J Clin Oncol, 1999: 17:870-879
    23 龚非力. 医学免疫学[M]. 北京:科学出版社, 2000
    24 Frances S, Kenny, Rina H, et al. Overexpression of cyclin D1 messen -ger RNA predicts for poor prognosis in estrogen receptor positive breast cance〔rJ〕. Clinical Cancer Research, 1999, 5: 2069
    25 Schmidt Wolf IG, Negrin RS, Kiem HP, et al. Use of a SCID mouse human lymphoma model to evaluate cytokine induced killer cells with potent antitumor cell activity [J]. J Exp Med, 1991, 174(1): 139-149
    26 Micheletti F, Bazzaro M, Canella A, et al. The lifespan of major histo compatibility complex class-Ι/ peptide complexes determinesthe efficiency of cytotoxic Tlymphocyte responses [J]. Immunology, 1999, 96 (3): 411 - 415
    27 Idmann TA, Dubois S, Tagaya Y, et al. Contrasting roles of IL-2 and IL-15 in the life and death of lymphocytes implications for immuno -therapy [J]. Immunity, 2001,14: 105 - 110
    28 Mohamadzadeh M, Ronald L. Dendritic cells: In the forefront ofimmunopathogensis and vaccine development-A review. J Immune Based Ther Vaccine, 2004, 2(1): 1-14
    29 Heiser A, Coleman D, Dannull J. et al. Autologous dendritic cells transfected with prostate-specific antigen RNA stimulate CTL reponses against metastatic prostate tumors. J Clin Invest, 2002, 109(3): 409-417 10 Jefford M, Maraskovsky E, Cebon J, et al. The use of dendritic cells in cancer therapy. Lancet, 2001, 2(6): 343-353
    30 Micheletti F, Bazzaro M, Canella A, et al. The lifespan of majohistocompatibility complex class-Ι/ peptide complexes determinesthe efficiency of cytotoxic Tlymphocyte responses [J]. Immunology, 1999, 96 (3): 411 - 415
    31 Illing RO, Kennedy JE, Wu F. The safety and feasibility of extracorpo real high intensity focused ultrasound (HIFU) for the treatment of liver and kidney tumors in a Western population [J]. Br J Cancer, 2005, 17: 890
    32 Toes RE, van der Voort EIH, Schoenberger SP, et al. Enhancement of tumor out growth through CTL tolerization after peptide vaccination is avoided by peptide presentation on dendriticcells [J]. J Immunol, 1998, 160(9): 4449- 4456
    33 Leaschow D, Waluoas TL, Blucslod SA. CD28/ B7 system of T cell costimulstion. Ann Rev Immunol, 1996, 14: 233-258
    34 Flood PM, Horvat B, Loukides JA. et al. Production of interleukin-2 and interleukin-4 by immune CD4ˉCD8+andtheir role in the generate on of antigen-specific cytotoxic T cells. Eur J Immunol. 1991, 21 (8): 186
    35 Murphy GP, Tjoa BA, Simmons SJ, et al. Phase I prostate cancer vaccine trial: report of a study involving 37 patients with disease recurrence following primary treatment. Prostate. 1999, 39: 54-59
    36 刘运江,张建立,单保恩. 乳腺癌患者腋窝淋巴结来源的DC体外诱导肿瘤特异性CTL的实验研究. 细胞与分子免疫学杂志, 2007, 23(1): 60 - 63
    37 Yee C, Thompson JA, Byrd D, et al. Adoptive T cell therapy using an -tigen specific CD8+ T cells clones for the treatment of patients with metastatic melanoma: in vivo persistence, migration and antitumor effect of transferred T cells . Proc Natl Acad Sci USA, 2002, 99: 16168 - 16173
    38 Murphy G, Tioa B, Ragde H, et al. Phase Ⅰclinical trial: T cell therapy for prostate cancer using autologous dendritic cells pulsed with HL-A2A0201 specific peptides from prostate specific membrane antigen. Prostate, 1996, 29: 371-380
    1 Veronesi U, Luini A, Galimberti V, et al. Extent of metastatic axillary involvement in 1446 cases of breast cancer[J] Eur J Surg Oncol, 1990, 16(2): 127~133
    2 Raj GV,Moreno JG,Gomella LG,et al. Utilization of polymerase chain reaction technology in the detection of solid tumors. Cancer, 1998, 82:1419~1442
    3 Kamby C, Guldhammer B, Vejborg I , et al. The presence of tumor cel -ls in bone marrow at the time of first recurrence of breast cancer [J] C -ancer, 1987, 60 (6) :1306~1312
    4 Solomayer EF, Diel IJ, Wallwiener D, et al . Prognostic relevance of urokinase plasminogen activator detection in micrometastatic cells in the bone marrow of patients with primary breast cancer. Br J Cancer, 1997, 76 : 812~818
    5 Mansi JL, Easton D , Berger U , et al . Bone marrow micrometastases in primary breast cancer: prognostic significance after 6 years′ follow up.Eur J Cancer, 1991, 27 :1552~1555
    6 Diel I J, Cote R J . Bone marrow and lymph node assessment for minimal residual disease in patients with breast cancer [J ].Cancer Treat Rev ,2000 ,26 (1) :53 ~ 65
    7 刘运江, 吴风云, 吴祥德. 乳腺癌骨髓微转移检测及其临床意义. 临床外科杂志, 2004, 12(9): 46~49
    8 Sharp JA, Sung V, Slavin J, et al. Tumor cells are the source of osteopontin and bone sialoprotein expression in human breast cancer. Lab Invest,1999,79(7):869~877
    9 Dong F, Sharma J, Xiao Y, et al. Intramolecular dimerization is required for the Chlamydia-secreted protease CPAF to degrade host transcriptional factors. Infect Immun, 2004,72(7):3869~3875
    10 Braun S, Cevatli BS, Assemi C et al. Comparative analysis of micro- metastasis to the bone marrow and lymph nodes of node-negative bre -ast cancer patients receiving no adjuvant therapy. J Clin Oncol, 2001, 19(5):1468~1475
    11 Cote RJ , Rosen PP , Lesser ML ,et al. Prediction of early relapse in pa -tients with operable breast cancer by detection of occult bone marrow micrometastasis. J Clin Oncol, 1991; (9):1749
    12 Chambers AF, Mac Donald IC, Schmidt EE, et al. Clinical targets for ant -imetastasistherapy. Adv Cancer Res, 2000 , 79 :91~121
    13 Gardner B, Feldman J.Are positive axillary nodes in breast cancer mar -kers forincurable dieases? 〔 J 〕 Ann Sug ,1993,218(3):270
    14 Funke I, Schraut W. Meta analyses of studies on bone marrow micro -metastases: An independent prognostic impact remains to be substanti –ated [J]. J Clin Oncol,1998,16(2):557~566
    15 Wilkinson EJ,Hause LL, Hofman RG,et al.Occult axillary lymph node metastasesis invasiveb reastc arcinoma:characteristicsoft heprimary tu -mor and significance of the metastases.Pathol Annu, 1982,17(Pt2):67~ 91
    16 Osborne M P,Wong A D,Asina S,et al.Sensitivity of immunocytochem. –ical detection of breast cancer cells in human bone narrow [J]. Cancer Res, 1991, 51(10): 2706~2709
    17 Kienle P,Weitz J,Klaes R,et al.Detection of isolated disseminated tum -or cells in bone marrow and blood samples of patients with hepatocell -ular carcinoma[J ].Arch Surg , 2000 ,135(2):213~218
    18 Gu CD, Osaki T, Oyama T, et al. Detection of micrometastatic tumor cell in pNO lymph nodes of patients with completely resected nonsmall cells lung cancer :impact on recurrence and Survival [J].Ann Surg,2002 ,235 :133 ~139
    19 Lin JC, Chen KY, Wang WY, et al. Evaluation of cytokeratin mRNA as a tumor marker in the peripheral blood of nasopharyngeal carcinoma patients receiving concurrent chemoradiotherapy[J]. Int J Cancer, 2002, 97:548 ~553
    20 MaguireD, O'SullivanG C McNamaraB, et al. Bone marrow micromet -astases in patients with brain metastases from epithelial cell tumors. Q JM, 2 000, 93(9):611~615
    21 Rostagno P, Moll JL, Bisconte JC, et al. Detection of rare circulating breast cancer cells by filtration cytometry and identification by DNA Content: densitivity in an experimental model. Anti-cancer Res, 1997, 17:2481~2485
    22 Leers MP, Schoffelen RH, Hoop JG,et al.Multiparameter flowcytometry as a tool for the detection of micrometastatic tumor cells in the sentinel lymph node procedure of patients with breast cancer [J]. J Clin Pat -hol, 2002, 55(5):359~366
    23 Weihrauch MR, Skibowski E, Koslowsky TC, et al.Immunomagnetic en richment and detection of micrometastases incolorectal cancer: correla -tion with established clinical parameters [J]. J Clin Oncol, 2002 , 20 (21) :4338~4343
    24 Ghossen RA,Rosa J.Polymerase chain reaction in the detection of micr -ometastases and circulating tumor cells[J].Cancer,1996,78(1):10~16
    25 Bustin SA, Gyselman VG,Williams NS, et al.Detection of cytokeratins 19/20 in peripheral blood of colorectal cancer patients[J]. Br J Cancer, 1999, 79:1813~1820
    26 Peck K, Sher YP, Shih JY, et al . Detection and quantitation of circulating cancer cells in the peripheral blood of lung cancer patients[J]. Cancer Res, 1998,58: 2761~2765
    27 Sohoenfeld A, Kruger KH, Gomn J, et al. The detection of micrometastases in the peripheral blood and bone marrow of patients with breast cancer using immunohistochemistry andreverse transcriptase polymerase chain reaction for keratin
    19 [J]. Eur J Cancer, 1997, 33(6):854~861
    28 Stathopoulou A, Mavroudis D, Perraki M, et al. Molecular detection of cancer cells in the peripheral blood of patients with breast cancer : comparison of CK-19, CEA and maspin as detection markers [J]. Anticancer Res, 2003, 23(2) :1883 ~1890
    29 刘运江, 刘现义. hMAM 检测乳腺癌骨髓微转移及其意义. 中国肿瘤临床, 2006, 33(10): 549~552
    30 Ni J, Kalff Suske M, Gentz R, et al. All human genes of theuteroglobin family are localized on chromosome 11q12. andform a dense cluster [J ]. Ann NY Acad Sci, 2000, 923: 25~42
    31 Suchy B, Austrup F, Driesel G, et al. Detect ion of mammaglobin expressing cells in blood of breast cancer patients [J]. Cancer Lett, 2000,158(2): 171~178
    32 SolomayerE F, Diel IJ, SalantiG, et al. Timein dependence of theprognostic impact of tumor cell detection in the bone marrow of primary breast cancer patients. Cin Cancer Res,2001,7(12):4102~4108
    33 Sharma J, Dong F, Pirbhai M, et al. Inhibition of proteolytic activity of a chlamydial proteasome/ protease-like activity factor by antibodies from humans infected with Chlamydia trachomatis. Infect Immun, 2005, 73(7): 4414~4419
    34 Fabisiewicz A, Kulik J, Kober P, et al. Detection of circulatingbreast cancer cells in peripheral blood by a twomarker RT-PCR assay[J ]. Acta Biochim Pol, 2004, 51(3) :747~755
    35 W Janni,D Rjosk,et al. The fate of micrometastatic tumor cells (MTC) in the bone marrow of breast cancer patients.ESMO2000,73P
    36 Klaus Pantel, Magnus VON, Knebel D. Detection and clinical relevance of micrometastiatic cancer [J]. Cells Current Opinion in Onco1ogy, 2000, 12: 95 ~101
    37 Braun S,Kentenich C, Janni W, et al. Lack of Effect of Adjuvant Chemotherapy on the Elimination of Single Dormant Tumor Cells in Bone Marrow of High Risk Breast Cancer Patients [J]. J Clin Oncol, 2000,18(1) :80~ 88
    38 Klein CA, Blankenstein TJ, Schmidt Kittler O, et al. Geneticheterogeneity of single disseminated tumour cells in minimal residual cancer [J ]. Lancet, 2002, 360 (9334) :683 ~689
    39 Slade MJ, Smith BM, Sinnett HD, et al. Quantitative polymerase chain reaction for the detection of micrometastases in patients with breast cancer J Clin Oncol 1999; 17:870~879
    40 Stephan B, Florian D1. Evaluation of bone marrow in breast cancer patients: prediction of clinical outcome and respons to therapy. The Breast 2003; 12: 397~404
    41 Chekmareva MA, Kaskhodaian MM, Hollowell CM, et al. Chromosome 17 mediated dormancy of AT61 prostate cancer micrometastases [J] . Cancer Research, 1998, 58:4963 ~ 4969
    42 Thurm H, Ebel S, Kentenich C, Hemsen A, et al. Rare expression of epithelial cell adhesion molecule on residual micrometastatic breast cancer cells after adjuvant chemotherapy [J]. Clin Cancer Res, 2003,9 (7): 2598~2604
    43 Powles TJ, Paterson AH, Neventaus S. Adjuvant clodronatereduces the incidence of bone metastases in patients with primaryoperable breast cancer [J]. Proc Am Soc Clin Oncol, 1998, 17:468
    44 Diel IJ, Solomayer EF, Costa SD, et al. Reduction in new metastases in breast cancer with adjuvant clodronate treatment[J]. N Engl J Med, 1998, 339 (6): 357~ 363
    45 龚非力. 医学免疫学[M]. 北京:科学出版社,2000
    46 Pulaski BA ,Rosenberg S. et al. Reduction of established spontaneous mammary carcinoma metastases following immunot herapy with major histocompatibility complex class II and B7.1 cell based tumor vaccines〔J〕. Cancer Res, 1998, 58 (7): 1486
    47 Warburton C , Dragowska WH , Gelmon K, et al. Treatment of Her-2 overexpressing breast cancer xenograft models with trastuzumab (herceptin) and gefitinib ( ZD1839) : drug combination effects on tumor growth , Her-2 and epidermal growth factor receptor expression, and viable hypoxic cell fraction. Clin Cancer Res, 2004, 10 (7):2512
    48 Sherr CJ. Cancer cell cycles〔J〕. Science, 1996, 274 :1672
    49 Seth P, Katayose K, Li Z, et al. A recombinant adenovirusexpressing wild type p53 induces apoptosis in drug resistant human breast cancer cells: a gene therapy approach for drug resistant cancer〔J〕. Cancer Gene Ther ,1997, 4 (6) :383
    50 Kimberley JS, Alexander S,Robert LS, et al. Lack of relationshipbetween CDK activity and G1 cyclin expression in breast cancer cells〔J〕. Oncogene ,1998 ,16 :2865
    51 Frances S, Kenny, Rina H, et al. Overexpression of cyclin D1 messenger RNA predicts for poor prognosis in estrogen receptor positive breast cancer 〔 J 〕 . Clinical Cancer Research , 1999, 5 :2069
    52 Mehta BA ,Schmidt W,Weissman IL ,et al. Two pathways of exocytosis of cytoplasmic granule cotents and target cell killed by cytokine iuduced CD+3 CD+56 killer cells.Blood ,1995 ,86 :3493
    53 Schmidt Wolf IG, Negrin RS, Kiem HP, et al. Use of a SCID mousehuman lymphoma model to evaluate cytokine induced killer cells with potent antitumor cell activit [J].J Exp Med, 1991, 174(1):139~149
    54 Oventry BJ, Lee PL, Gibbs D, et al. Dendritic cell density andactivation status in human breast cancer-CDlc, CMRF-44, CMRF-56 and CD-83 expression[J]. Br J Cancer, 2002 ,86(4) :546~551
    55 Marten A, Ziske C, SchottkerB, et al. Interactions between dendritic cells and cytokine - induced killer cells lead to an activation of both populations [ J ]. J Immunother, 2001, 24 ( 6 ) : 502~510
    56 Ang Y,Kelly CG,Karttunen J T , et al . CD40 is a cellular receptor mediating mycobacterial heat shock protein 70 stimulation of chemokines [J ]. Immunity, 2001, 15:971 ~983
    57 Holger H, Angus W. Dendritic cells: emerging pharmacologicaltargets of immunosuppressive drugs. Nature, 2000, 24(4) : 2433
    58 Bell D, Chomarat P, Broyies D, et al. In breast carcinoma tissue, immature dendritic cells reside within the tumor, whereas maturedendritic cells are located in peritumoral areas. J Exp Med, 1999, 190 (10): 1417~1426
    59 Micheletti F, Bazzaro M, Canella A, et al . The lifespan of majorhistocompatibility complex classΙ peptide complexes determinesthe efficiency of cytotoxic Tlymphocyte responses [J]. Immunology, 1999, 96(3): 411~ 415
    60 Froelich CJ, Dixit VM, Yang X Lymphocyte granule mediated apoptosis: matters of viral mimicry and deadly proteases[J]. Immunol Today, 1998; 19: 30
    61 Guerder S, Matzinger P. A fail safe mechanism for maintaining self tolerance [J]. J Exp Med, 1992, 176(2) :553 ~564
    62 Shi L, Mai S, Israels S et al. Granzyme B autonomously crosses the cell membrane and perforin initiates apoptosis and granzyme B nuclear localization [J]. J Exp Med, 1997, 185: 855
    63 Sprinxl GM Kacani L, Schrott fischer A, RomaniN.Dendritic cell vaccines for cancer therapy [J]. Cancer treatment reviews, 2001, 27:247~ 255
    64 刘运江,张建立,单保恩. 乳腺癌患者腋窝淋巴结来源的DC体外诱导肿瘤特异性CTL的实验研究. 细胞与分子免疫学杂志, 2007, 23(1): 60 - 63
    65 Sielig PA, Porcelli SA, Duong BT, et al. Human double negative T cells in systemic lupus erythematosus provide help for IgG and arerestricted by CDlc [J]. J Immunol, 2000,165 (9): 5338~5344

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700