氧化铝回转窑制粉过程智能控制系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国虽然有丰富的铝土矿,但铝土矿的铝硅比普遍比较低,广泛采用烧结工艺来生产氧化铝。在烧结法氧化铝生产过程中,氧化铝回转窑制粉系统的作用是使用回转窑熟料烧结过程中产生的余热来制备细度和水分合格的煤粉,然后将煤粉供给回转窑熟料烧结使用。在制粉过程中,保证煤粉的细度和水分合格,可以提高煤粉燃烧热效率、降低烧结煤耗;提高制粉出力可以提高制粉效率、降低制粉电耗,因此,在保证系统安全、稳定运行的条件下,将煤粉细度和水分控制在工艺设定范围内,并且使磨机具有尽可能大的出力,对于提高氧化铝的产品质量和生产效率具有重要意义。
     煤粉细度工艺指标难以在线检测,它与磨机负荷之间具有强非线性,受热风温度、原煤性质、钢球负载等因素影响,难以建立精确数学模型;磨机负荷和磨机出口温度与给煤机转速之间具有强非线性,且受热风温度的影响;同时用于制粉系统的热风温度低且变化频繁,因此难以采用已有的控制方法实现磨机负荷的自动控制和煤粉细度的控制。目前氧化铝回转窑制粉过程处于人工控制状态,当原煤性质和热风温度频繁变化时,操作员难以及时准确地判断运行工况,并对制粉过程进行调整,常常造成煤粉包裹钢球和衬板以及煤粉堵塞磨机的故障发生,导致停磨;煤粉细度指标不合格,且波动较大;制粉能耗高等问题。
     本文依托《复杂工业过程能耗指标的智能优化控制技术及应用》的国家863计划课题,以实现在保证系统安全、稳定运行的条件下,将煤粉细度、水分稳定控制在工艺要求的范围内,同时尽可能提高磨机出力为控制目标,开展了氧化铝回转窑制粉过程智能控制系统的研究,取得了如下研究成果:提出了由磨机负荷智能设定层和过程控制层两层结构组成的氧化铝回转窑制粉过程智能控制方法;设计和开发了实现上述控制方法的由硬件平台、软件平台和智能控制软件组成的回转窑制粉过程智能控制系统;并在某铝厂制粉车间进行安装、调试、运行,取得了显著的应用效果。本文的主要研究工作如下:
     1.首先分析了煤粉细度与磨机负荷之间的动态特性以及磨机出口温度和磨机负荷与给煤机转速之间的动态特性;并针对该过程的控制难点和问题,提出了由磨机负荷智能设定层和过程控制层组成的氧化铝回转窑制粉过程智能控制方法。负荷设定层根据煤粉细度控制目标,给出磨机负荷设定值;过程控制层通过磨机负荷控制,调节给煤机转速使磨机负荷跟踪设定层给出的负荷设定值,从而实现煤粉细度工艺指标的控制。
     (1)提出了由磨机负荷智能预设定模型,基于最小二乘-支持向量机的煤粉细度软测量模型和基于模糊推理的反馈补偿模型组成磨机负荷智能设定方法。负荷预设定模型由预设定主模型和钢球磨损补偿模型组成,根据当前原煤水分、原煤细度、热风温度、以及取样煤粉的细度测定分析值和取样时刻的负荷设定值、原煤水分、原煤细度和热风温度,得到磨机负荷的预设定值;煤粉细度软测量模型根据给煤机转速、热风温度、热风温度、磨机进出口负压和布袋收尘器进出口负压,估计煤粉细度;反馈补偿模型根据煤粉细度软测量估计和煤粉细度目标的偏差,采用模糊推理技术调整负荷设定值。
     (2)提出了由切换机制、磨机负荷和磨机出口温度协调控制器、磨机负荷PI控制器和过负荷控制器组成的磨机负荷智能切换控制方法。切换机制采用基于规则推理的方法识别当前系统工况。当磨机处于低温工况时,切换到负荷与温度协调控制器,将磨机负荷和磨机出口温度控制在工艺规定的范围内;否则识别磨机负荷工况,在过负荷时采用基于规则推理的过负荷控制器,避免出现煤粉堵塞磨机的故障,在正常负荷采用负荷PI控制器,将磨机负荷控制在由设定层给出的负荷设定值上。
     2.研制了实现上述智能控制方法的制粉过程智能控制系统,由硬件平台、软件平台和智能控制软件组成。其中硬件平台由PLC控制系统、监控计算机、检测装置、执行机构以及相关网络组成;软件平台采用过程控制组态软件;智能控制软件包括磨机负荷智能设定软件、负荷控制切换软件、过程控制软件和监控软件。
     3.将上述研制的制粉过程智能控制系统应用到某铝厂制粉车间。长期应用结果表明,采用负荷切换控制方法,在煤粉低温工况时,能够将磨机负荷和出口温度控制在工艺规定的范围内,在正常工况下可以将磨机负荷控制在设定层给出的负荷设定值上,在运行期间内避免了由于煤粉低温、过负荷造成故障停磨。同时采用磨机负荷智能设定方法,在边界条件频繁变化的条件下,可以将煤粉细度控制在工艺设定的范围内,且尽可能提高磨机出力。制粉系统能耗统计结果表明与人工控制相比,制粉单耗降低了4.56%。
Although bauxite ore is very rich in China, the alumina-silica ratio of the ore is generally low. Therefore, the alumina sintering process technology has widely been used to produce alumina. The pulverizing system of alumina sintering rotary kiln is utilized to pulverize raw coal into coal powder and make the particle size and moisture content within their required ranges, with the remaining heat produced by cooling clinker. In pulverizing process, qualifications of the particle size of coal powder and moisture content can increase the heat efficiency of combustion and decrease the assumption of coal powder. Moreover, increase of the mill output is very important in terms of improvement in pulverizing efficiency and reduction of electrical energy assumption. Thus, it is of importance and significance for improving the alumina quality and the production efficience to control the particle size and moisture content of the coal powder within their required ranges and in the meanwhile to maximize the mill output.
     In pulverizing process, the index of particle size of coal powder can not be directly measured online, and has the complicated relations with the mill load, the temperature of hot air, the moisture content of raw coal, the particle size of raw coal and ball loads in mill; relationship among mill loads, the temperature of mill outlet and the speed of coal feeder is of a strong nonlinear nature, which is also affected by the temperature of remaining heat. Moreover, the remaining heat of pulverizing process is low and varies frequently, thus the exsiting control methods are difficult to control the index of particle size and mill load.In industrial process, manual operation on pulverizing process is mainly used. However, on-site operators cannot accurately recognize the operatioanl conditions, and can not dertermin the coal feeding in time. Such a manual control can lead to possible operational faults such as the "mill blockage" and the "powder-enwrapped balls". Moreover, for the manual control, the particle size of the coal powder fluctuates violently as the boundary conditions vary, such that the particle size of coal powder is unqualified and the electric energy assumption is large.
     The work conducted in this thesis was supported by the National 863 High Technology Program project of "the intelligent optimal control technology and its application of energy assumption index for complex industry process". The objective of this thesis is to control the particle size and moisture content within their required ranges and in the meantime to maximize the mill output. This thesis focuses on the research on the intelligent control system for the pulverizing process of alumina sintering rotary kiln. The achievements are as follows: based on the dynamic character analysis of this system, an intelligent operational control method which consists of an intelligent setting layer of mill load and a process control layer is proposed; an intelligent control system which includes hardware platform, software platform and intelligent control software has been successfully applied in a plant in China. The main research of this paper concludes the following contributions:
     1. The dynamic characteristics between the particle size of coal powder and mill load, and the dynamic characteristics between the mill load, temperature of mill outlet and the coal feeding are first analyzed separately. Then, an intelligent control method of pulverizing process of alumina sintering rotary kiln has been proposed, which includes a mill load intelligent setting layer and a process control layer. The intelligent setting control method for mill load produces a setpoint of mill load, according to the target of the particle size of coal powder. The process control layer using the mill load switching control method makes the mill load to track its setpoint by adjusting the speed of coal feeder, thus this index can be controlled.
     (1) An intelligent setting control method for mill load has been presented to make the particle size of coal powder within its required range and to maximize the mill output. This control method includes an intelligent setting model for mill load, a soft measurement model based on the least square-support vector machines (LS-SVMs), and a compensation model based on fuzzy rules. The intelligent setting model consists of a pre-setting model and a compensation model for the variation of iron ball load. This model realizes the setting of the mill load by combining the multi-model technique, the rule based reasoning and the compensation method. The soft measurement model estimates the particle size of the coal powder according to the auxiliary variable using the LS-SVMs method. The feedforward compensation model modifies the setpoint of mill load using the error between the output of soft measurement model and the target of the particle size.
     (2) An intelligent switching control method of mill load has been proposed to control the mill load and the temperature of mill outlet within their target ranges, and to make the mill operational noise represent the mill load at the optimal setpoint. It consists of a switching mechanism, a coordinate controller for the mill load and the temperature of mill outlet, a PI controller for the mill load, and a rule based overload controller. First, a rule based reasoning method is used to recognize the system conditions. The three following controllers are designed to cope with the three different conditions in a switching manner, respectively. Detailedly, the coordinate controller for mill load and the temperature of mill outlet is implemented under low the temperature condition. The rule based reasoning overload controller is used under the overload condition, and the PI controller is used under the normal condition.
     2. The intelligent control system has been designed and developed for the pulverizing system of alumina sintering rotary kiln. It includes hardware platform, software platform, and intelligent control softwares. The hardware platform includes the measurement instruments, the transmitters, the actuators, the supervision computer and touch screen, etc. The software platform is based on the configuration software of process control. The softwares including the intelligent setting control software for mill load, the process control software, the switching control softeware for mill load, and monitoring software are designed and developed to implement the above mentioned control methods.
     3. The intelligent control system has been applied in a pulverizing process of alumina sintering rotary kiln. This application in practice industry shows that the switching control method copes with the automatic control of mill load, and makes the mill load and the temperature of mill outlet within their required ranges, and thus avoids the faults such as "mill blockage" and "powder enwrapped ball" caused by low temperature of coal powder or overload conditions. And the intelligent setting control for mill load makes the particle size within its required range, and the electric energy assumption reduced by 4.56% compared with the manual operation.
     The successful application has shown that the proposed intelligent operational control method and the designed control system have important and extensive applications for other pulverizing processes. Also, it can be as a reference for the operational control of complex industrial process which can hardly be described using any accurate mathematical models.
引文
1.岳恒,周晓杰,王昕,柴天佑,白焰.钢球磨中储式制粉系统智能解耦控制仿真系统[J].系统仿真学报,2002,14(10):1340-1343
    2.翟廉飞,柴天佑,高忠江,岳恒.制粉系统智能解耦控制的分布式仿真实验平台[J].系统仿真学报,2006,18(7):1824-1828.
    3.姚刚,周洪,李崇晟,陶文伟.我国火力发电厂钢球磨煤机控制系统的研究[J].湖北电力,1999,23(4):15-18
    4.刘长良,梁伟平,董泽.钢球磨煤机制粉系统的递阶模糊控制[J].动力工程,2002,22(5):1969-1973
    5.白焰.钢球磨制粉系统的耦合分析和解耦设计[J].吉林电力技术,1986,(6):1-7
    6.陶文华.钢球磨煤机中间储仓式制粉系统仿真软件包的研究与开发(D).东北大学,2004
    7.苏杰,孙德立.球磨机控制系统的一种频域方法设计[J].华北电力大学学报,1998,25(3):81-86
    8.于晋春,王敬,焦海峰.电站锅炉制粉系统的仿真建模[J].电力学报,2001,16(1):43-45
    9.陈献春.基于DCS一体化的球磨机制粉系统仿真建模[J].热力发电,2005,(1):40-42
    10.冯健,杨久蓉,周克毅,章臣樾.中间储仓式制粉系统流体网络数学模型及数值方法[J].中国电机工程学报,2000,20(1):55-59
    11.白焰.神经解耦控制在钢球磨煤机中间储仓式制粉系统中的应用研究[D].东北大学,1999
    12.陶文华,柴天佑,岳恒.钢球磨煤机的动态参数模型与仿真研究[J].系统仿真学报,2004,16(4):778-780
    13.王东风,于希宁,宋之平.制粉系统球磨机的动态数学模型及分布式神经网络逆系统控制[J].中国电机工程学报,2002,22(1):97-101
    14. Zhai L F, Chai T Y. Nonlinear Decoupling PID Control Using Neural Networks and Multiple Models[J]. Journal of Control Theory and Applications,2006,4(1):62-69
    15.铁鸣,柴天佑,岳恒,张振山,郑秀萍.冷连轧动态过程混合智能建模方法[J].自动化学报,2007,33(1):104-107
    16.陈绍炳,张铁军,徐治皋,冷伟.基于机理分析的球磨机系统动态模糊建模方法[J].中国动力工程学报,2005,25(2):244-248
    17. Zhang Y G,Wu Q H.Coal Mill Modeling by Machine Learning Based on Onsite Measurements [J]. IEEE Transactions on energy conversion,2002,17(4):549-555
    18.李遵基,蔡军.中间仓储式制粉系统球磨机模糊控制理论与实践[J].中国电力,1996,29:33-37
    19.王东风李遵基李炎.中间储仓式制粉全程控制系统设计与应用[J].华东电力,1999,(5):41-43
    20.乔锃,张彦斌,李纯,曹晖,司刚全.火电厂球磨机寻优节能控制系统的研究与开发[J].热力发电,2005,(12):80-82
    21.曹静唐贵基.钢球磨煤机负荷测量的研究[J],矿山机械,2007,35(10):29-31
    22.沙哑红,常太华,常建平.磨机负荷的检测方法综述[J].现代电力,2006,23(14):66-69
    23. Ma P, Du H L, Lv F. Coal Mass Estimation Of The Coal Mill Based On Two-Step Multi-Sensor Fusion[C]. Proceedings of the Fourth International Conference on Machine Learning and Cybernetics, August 2005,Guangzhou,18-21
    24.王铁军,朱峰.钢球磨煤机制粉系统运行特性分析和控制研究[J].合肥工业大学学报(自然科学版),2002,25(4):605-609
    25.吴友政,谢建君,王斌.专家模糊控制在球磨机上的应用[J].工业控制计算机,2001,14(8):31-33
    26.喻林,刘彦呈,张海燕.递阶模糊控制在球磨机制粉系统中的应用[J].矿山机械,2007,35(1):21-23
    27.刘齐寿,黄锦涛,贺刚,连国均,孙实文.球磨机中储式制粉系统自寻最优控制[J].西安交通大学学报,2000,34(7):30-34
    28.陈旭,楼波.基于音频信号控制策略的磨煤机存煤量控制的应用[J].电站辅机,2007,3:46-48
    29.陈刚.压差及电耳在钢球磨中的应用[J].电站辅机,2006,1:46-48
    30.王东风,宋之平.基于神经元网络的制粉系统磨机负荷软测量[J].中国电机工程学报,2001,21(12):97-104
    31. Gerhard P H,Ruan Malan.A Modal Analysis Technique for the Online Particle Size Measurement of Pneumatically Conveyed Pulverized Coal[C].IEEE Instrumentation and Measurement Technology Conference,1997,Ottawa, Canada:19-21
    32.刘吉臻,崔泽朋,田亮,赵征.基于D-S证据理论的煤粉细度的融合诊断[J].热能动力工程,2006,21(4):423-426
    33.游景玉.中储式钢球磨煤机制粉系统在线决策控制的实现[J].中国电力,2003,36(11):64-68
    34.郑占国,安荣芝,刘永刚.中储式制粉系统优化分析[J].河北电力技术,2002,21(2):16-18
    35. Chai T Y,Yue H. Multivariable Intelligent De-coupling Control System and Its Application[J].Acta Au-tomatica Sinica,2005,31 (1):123-131
    36.邓依群,杨志勇.球磨机计算机控制系统[J].中国电力,1999,31(3):47-51
    37.王颖洁,吕震中.轴承振动信号在球磨机负荷控制系统中的应用研究[J].电力设备,2004,5(9):41-43
    38. Wang Z N,Fan Q N. Application of Fuzzy Rule-Based Hierarchical Intelligent Control in Mill System of Thermal Power Plant[C]. Proceedings of the 3d World Congress on Intelligent Control and Automation,2000, Hefei, China
    39. Wang D F,Han P, Peng D G. Optimal for Ball Mill Pulverizing System and Its Applications[J]. Proceeding of the First International Conference on Machine Learning and Cybernetics, 2002,Beijing,china
    40.王东风.制粉系统球磨机的神经网络预测控制[J].华北电力大学学报,2001,28(3):34-37
    41.毕玉森,陈国辉.煤粉细度的合理选择[J].中国电力,2004,37(1):40-42
    42. Ravindranathan M, Leitch R. Model Switching in Intelligent Control Systems [J]. Artificial Intelligence in Engineering,1999,13(2):175-187
    43. Rodrigueza J A, Romagnoli J A, Goodwin G C. Supervisory Multiple Regime Control [J]. Journal of Process Control,2003,13 (2):177-191
    44. Hespanha J P, Liberzon D, Morse A S. Overcoming the Limitations of Adaptive Control by Means of Logic-Based Switching[J].Systems and Control Letters,2003,49 (1):49-65
    45. Liberzon D, Morse A S. Basic Problem in Stability and Design of Switched Systems [J]. IEEE Control System Maganize,1999,19(5):59-70
    46. Liberzon D. Switching in Systems and Control [M], Birkhauser,2003,ISBN:8-176-42988.
    47. Santis E D, Benedetto M D,Pola G. Stabilizability of Linear Switching Systems [J]. Nonlinear Analysis:Hybrid Systems,2008,2(3):750-764
    48. Zhao Z, Xia X H, Wang J C, Gu J, Jin Y H. Nonlinear Dynamic Matrix Control Based on Multiple Operating Models [J]. Journal of Process Control,2003,13 (1):41-56
    49. Ye X D.Nonlinear Adaptive Control Using Multiple Identification Models [J]. Systems and Control Letters,2008,57 (7):578-584
    50. Yoon T W, Kim J S,Morse A S. Supervisory Control Using a New Control-Relevant Switching[J]. Automatica,2007,43(10):1791-1798
    51. Fu Y, Chai T Y. Nonlinear Multivariable Adaptive Control Using Multiple Models and Neural Networks[J].Automatica,2007,43 (6):1101-1110
    52. Chen L J, Narendra K S. Nonlinear Adaptive Control Using Neural Networks and Multiple Models. Automatica,2001,37(8):1245-1255
    53. Xie G G, Wang L. Stabilization of Switched Linear Systems with Time-Delay in Detection of Switching Signal [J]. Journal of Mathematical Analysis and Applications,2005,305(1):277-290
    54. Zhai G S, Hu B, Yasuda K,Michel A N.Stability Analysis of Switched Systems with Stable and Unstable Subsystems:An Average Dwell Time Approach[J].International Journal of System Science,2001,32(8),1055-1061
    55. Lu B, Wu F, SungWan K. Switching LPV Control of An F-16 Aircraft via Controller State Reset [J]. IEEE Transactions on Control System Technology,2006,14(2):267-277
    56. Venkataramanan V, Chen B M, Lee T H, Guo G. A New Approach to the Design of Mode Switching Control in Hard Disk Drive Servo Systems [J]. Control Engineering Practice,2002,10 (9):925-939
    57. Rinehart M, Dahleh M, Reed D.Kolmanovsky I, Suboptimal Control of Switched Systems With an Application to the DISC Engine[J]. IEEE Transactions on Control System Technology,2008, 16(2):189-201
    58. Sato M, Kanda A, Ishii K. A Switching Controller System for a Wheeled Mobile Robot [J]. Journal of Bionic Engineering,2007,4 (4):281-289
    59. Yuan X J,Li Z G, Song B H, Wen C Y. A Switching Mechanism for ATM ABR Traffic Control [J]. Computer Communications,2001,24 (7-8):622-630
    60. Radman G, Raje R S. Dynamic Model for Power Systems With Multiple FACTS Controllers [J]. Electric Power Systems Research,2008,78 (3):361-371
    61. Freidovich L B, Khalil H K. Logic-based Switching for Robust Control of Minimum-phase Nonlinear Systems [J]. Systems & Control Letters 54 (2005) 713-727
    62. Geraghty P J. Environmental Assessment and the Application of Expert Systems:an Overview [J]. Journal of Environmental Management,1993,39(1):27-38
    63. Srinivasan R, Engel B A, Paudyal G N. Expert System for Irrigation Management (ESIM) [J]. gricultural Systems,1991,36(3):297-314
    64. MacCallum K J. Commercial Expert Systems in Europe [J]. Artificial Intelligence in Engineering, 1990,5(4):226-237
    65. Rada R, Barlow J, Zanstra P, Robbe P V, Bijstra D,Potharst J.Expertext for Medical Care and Literature Retrieval [J].Artificial Intelligence in Medicine,1990,2(6):341-355
    66. Taylor J H, Frederick D K. An Expert System Architecture for Computer-Aided Control Engineering [J]. Proceedings of the IEEE,1984,72(12):1795-1805
    67. Hakman M, Groth T. KBSIM:A System for Interactive Knowledge-Based Simulation [J]. Computer Methods and Programs in Biomedicine,1991,34(2-3):91-113
    68. Russ T A. Use of Data Abstraction Methods to Simplify Monitoring [J]. Artificial Intelligence in Medicine,1995,7(6):497-514
    69. Streichfuss M, Burgwinkel P. An Expert-System-Based Machine Monitoring and Maintenance Management System[J] Control Engineering Practice,1995,3(7):1023-1027
    70. Arendt R. The Application of An Expert System for Simulation Investigations in the Aided Design of Ship PowerSystems Automation [J]. Expert Systems with Applications,2004,27 (3):493-499
    71. Chan C W. An Expert Decision Support System for Monitoring and Diagnosis of Petroleum Production and Separation Processes[J].Expert Systems with Applications,2005,29 (1):131-143
    72. Linkens D A, Minyou C. Expert Control Systems I. Concepts, Characteristics and Issues [J].Engng Applic of Artifcal Intelligent,1995,8(4):413-421
    73. Astrom K J. Towards Intelligent PID Control [J]. Automatica,1992,28(1):1-9
    74. Treesatayapuna C, Uatrongjit S. Adaptive Controller with Fuzzy Rules Emulated Structure and Its Applications[J].Engineering Applications of Artificial Intelligence,2005,18 (5):603-615
    75. Fink A, Fischer M, Nelles O, Isermann R.. Supervision of Nonlinear Adaptive Controllers Based on Fuzzy Models[J].Control Engineering Practice,2000,8 (10):1093-1105
    76. Boling J M, Seborg D E, Hespanha J P. Multi-model Adaptive Control of a Simulated PH Neutralization Process [J]. Control Engineering Practice,2007,15(6):663-672
    77. Fan G Q and Rees N W. An Intelligent Expert System (KBOSS) for Power Plant Coal Mill Supervision and Control[J].Comtrol Engeering Practice,1997,5(1):101-108
    78. Wu M, Nakano M, She J H. A Model-based Expert Control System for the Leaching Process in Zinc Hydrometallurgy[J]. Expert Systems with Applications,1999,16(2):135-143
    79. Yeh Z M. Adaptive Multivariable Fuzzy Logic Controller [J]. Fuzzy Sets and Systems,1997,86 (1): 43-60
    80. Fink A, Fischer M, Nelles O, Isermann R.Supervision of Nonlinear Adaptive Controllers Based on Fuzzy Models[J].Control Engineering Practice,2000,8 (10):1093-1105
    81. Dow R M, Pallaschke S, Merri M, Montagnon E, Schabe M, Belingheri M, Bucher M. Overviewof the Knowledge Management System in ESA/ESOC[J].ActaAstronautica,2008,63(1-4):1-10
    82. Bergh LG, Yianatos J B, Leiva C A. Fuzzy Supervisory Control Flotation Columns [J]. Minerals Engineering,1998,11(8):739-748
    83. Srinivasan R,Dimitriadis V D,Shah N,Venkatasubramanian V. Integrating Knowledge-Based and Mathematical Programming Approaches for Process Safety Verification [J]. Computers and chemical. Engneering,1997,21(S1):905-910
    84. Wen C H, Vassiliadis C A. Applying Hybrid Articial Intelligence Techniques in Wastewater Treatment [J]. Engineering Applications of Articial Intelligence,1998,11 (6):685-705.
    85. Fan G Q and Rees N W. An Intelligent Expert System (KBOSS) for Power Plant Coal Mill Supervision and Control[J].Comtrol Engeering Practice,1997,5(l):101-108
    86. Sanders D A, Hudson A D. A Specific Blackboard Expert System to Simulate and Automate the Design of High Recirculation Airlift Reactors[J] Mathematics and Computers in Simulation,2000, 53(1-2):41-65
    87. Oh K W, Quek C. BBIPS:A Blackboard-Based Integrated Process Supervision [J]. Engineering Applications of Artificial Intelligence,2001,14 (6):703-714
    88. Quek C, Wahab A. Real-Time Integrated Process Supervision [J]. Engineering Applications of Articial Intelligence,2000,13 (6):645-658
    89. Jager R,Verbruggen H B,Bruijin P M,Krijgsman A J. Real-Time fuzzy expert control[C],Internatioal Conference on Control,1991, Edinburgh,UK
    90. Cai Z X, Wang Y N, Cai J F. A Real-Time Expert Control System [J]. Artilfcial Inrelligmce in Engineerin,1996,10 (4):317-322
    91. Feigenbaum, E.A., The Acquistion Problem is the Most Critical "Bottleneck" Problem[C], Expert System in the 1980s in State of the Art Report on Machine Intelligence, Ed:A. Bond,1981, Pergamon, Infotech,Maidenhead
    92. Shiue W, Li S T, Chen K J.A Frame Knowledge System for Managing Financial Decision Knowledge [J]. Expert Systems with Applications,2007,35(3):1-12
    93. Lin S C, Tseng S S,Teng C W. Dynamic EMCUD for Knowledge Acquisition[J].Expert Systems with Applications,2008,34 (1):833-844
    94. Podgorelec V, Kokol P, Stiglic M M,Hericko M,Rozman L. Knowledge Discovery with Classification Rules in a Cardiovascular Dataset [J]. Computer Methods and Programs in Biomedicine,2005, 80(S1):39-49
    95. Valls A, Batet M, Lopez E M. Using Expert's Rules as Background Knowledge in the ClusDM Methodology [J]. European Journal of Operational Research,2009,95(3):864-875
    96. Koyama H, Manabe K I. Virtual Processing in Intelligent BHF Control Deep Drawing [J]. Journal of Materials Processing Technology,2003,143-144(20):261-265
    97.岳恒,周晓杰,王昕,柴天佑,白焰.钢球磨中储式制粉系统智能解耦控制仿真系统[J].系统仿真学报,2002,14(10):1340-1343
    98.王永健,张建宇,梁伟平,于希宁.中储式球磨煤机热力学建模及仿真[J].华北电力大学学报,2005,32(3):66-68
    99.王庸贵,任德均.磨音料位检测仪[J].四川联合大学学报(工程科学版),1999,3(4),135-138
    100.任德均.球磨机负荷控制系统的研究和应用[D].2002,四川大学.
    101.沙志强.煤粉锅炉制粉系统运行分析及优化方法研究[J]中外能源,2006,11(6):88-92
    102. Li S T, Shue L Y, Shiue W. The Development of a Decision Model for Liquidity Analysis [J]. Expert Systems with Applications,2000,19(4):271-278
    103. Mizoguchi R, Kozaki K, Sano T, Kitamura Y. Construction and Deployment of a Plant Ontology[C]. Proceedings of the 12th International Conference on Knowledge Acquisition, Modeling and Management,2000,EKAW:113-128
    104. Chan C W. Development and Application of a Knowledge Modeling Technique [J]. Journal of Experimental and Theoretical Artificial Intelligence,1995,7(2):217-236
    105. Kawahara K, Sasaki H, Sugihara H. An application of rule based system to the coordination of directional overcurrent relays [C].The 6th International Conference on Developments in Power Systems Protection,1997,Nottingham, UK
    106. Wagner W P, Ottto J, Chung Q B. Knowledge Acquisition for Expert Systems in Accounting and Financial Problem Domains [J]. Knowledge-Based Systems,2002,15(8):439-447
    107. Paladini E P. An Expert System Approach to Quality Control [J]. Expert Systems with Applications,2000,18(2):133-151
    108. Garia C E, Morari M. Internal Model Control I. A Unifying Review and Some New Results [J], Industry Engeering Chemical Process Design and Development,1982,21:308-323
    109. Vilanova R. IMC Based Robust PID Design:Tuning Guidelines and Automatic Tuning [J]. Journal of Process Control,2008,18 (1):61-70
    110.李少远,蔡文剑.工业过程辨识与控制[M].北京:化学工业出版社,2005
    111.涂植英,朱麟章.过程控制系统[M].北京:机械工业出版社,1988
    112. Chien I L, Fruehauf P S. Consider IMC Tuning to Improve Controller Performance [J], Chemical Engeering Progress,1990,86(10):33-41
    113. Kaya I.Tuning PI controllers for Stable Processes with Specifications on Gain and Phase Margins[J]. ISA Transactions,2004,43(2):297-304
    114. Dubois D, Prade H. Representation and Combination of Uncertainty with Belief Functions and Possibility Measures [J]. Computational Intelligence,1988,4 (3):244-264
    115.Zadeh L A.Toward a Theory of Fuzzy Information Granulation and Its Centrality in Human Reasoning and Fuzzy Logic [J]. Fuzzy Sets and Systems,1997,90(2):111-127
    116. Zadeh L A.Toward a Generalized Theory of Uncertainty (GTU)—An Outline[J].Information Sciences,2005,172(1-2):1-40
    117. Keiko K, Kengo K, Hiroyuki N. Performance of a Genetic Algorithm for the Graph Partitioning Problem [J]. Mathematical and Computer Modelling,2003,38 (11):113-122
    118.王孟效.制浆造纸过程测控系统及工程[M].北京:化学工业出版社,2003
    119.柴天佑,丁进良,王宏,苏春翌.复杂工业过程运行的混和智能优化控制方法[J].自动化学报,2008,34(5):505-515
    120. Chai T Y, Tan M H, Chen X Y. Intelligent Optimization Control for Laminar Cooling[C]. Proceeding of the 15th IFAC World Congress,2002,Barcelona,Spain
    121. Chai T Y, Ding J L. Integrated Automation System for Hematite Ores Processing and Its Applications [J]. Measurement and control,2006,29 (5):140-146.
    122. Becerikli Y, Konar A F, Samad T. Intelligent Optimal Control with Dynamic Neural Networks [J]. Neural Networks,2003,16 (2):251-259.
    123. Rowe W B, Moruzzi J L, Mills B. A Generic Intelligent Control System for Grinding[J].Computer Integrated Manufacturing System,1997,10(3):231-241
    124.蔡杰进,马晓茜.电站燃煤机组煤粉细度优化分析[J].锅炉技术,2006,37(5):39-43
    125. Huang C C,Tseng T L. Rough Set Approach to Case-Based Reasoning Application[J]. Expert System with Applications,2004,26(3):369-385
    126. Orton J D, Narang U, Anderson G P, Ligler FS, Buran J,Shius C K,Liuj N K,Yeung D S. Formal Description and Verification of Hybrid Rule/Frame-Based Expert Systems", Expert systems with applications,1997,13(3):215-230
    127. Hancke G P, Malan R. On-line Particle Size Distribution Analysis of Pulverised Coal [J]. Industrial Electronics,1996, (02):1066-1070.
    128. Gerhard P H, Malan R. A Modal Analysis Technique for the On-Line Particle Size Measurement of Pneumatically Conveyed Pulverized Coal [J]. IEEE Transactions On Instrumentation and Measurement,1998,47(1):114-122
    129. Casali A, Gonzalez G, Vallebuona G. Grindablity Soft-Sensors Based on Lithological Composition and On-line Measurements [J]. Minerals Engineering,2001,14(7):689-700
    130. Gonzalez G D, Orchard M, Cerda J L, Casali A, Vallebuona G. Local Models for Soft-sensors in a Rougher Flotation Bank [J]. Minerals Engineering,2003,16(5):441-453
    131.邓乃扬,田英杰.数据挖掘中的新方法:支持向量机[M].北京:中国科学出版社,2004
    132. Suykens J A K, Vandewalle J. Least Squares Support Vector Machine Classifiers [J].Neural Processing Letters,1999,9(3):293-300
    133. Debnath R, Muramatsu M, Takahashi H.An Efficient Support Vector Machine Learning Method with Second-order Cone Programming for Large-scale Problem[J].Applied Intelligence,2005,23(3): 219-239
    134. Gestel T V. Suykens J A K, Baesens B,Viaene S,Vanthienes J,Dedene G, Moor B D,Vandewalle J. Benchmarking Least Squares Support Vector Machine Classifiers [J]. Machine Learning,2000,54(1): 5-32
    135.Klawonn F, Kruse R. Constructing a Fuzzy Controller From Data [J]. Fuzzy Sets and Systems,1997,85 (2):177-193
    136. Passino M K, Yurkovich S. Fuzzy Control [M]. Addison-Wesley,Rnglish,1998
    137. Cinque L, Foresti G, Lombardi L. A Clustering Fuzzy Approach for Image Segmentation [J]. Pattern Recognition,2004,37 (9):1797-1807
    138. Acharya R, Bhat P S, Iyengar S S, Rao A, Dua S. Classification of Heart Rate Data Using Artificial Neural Network and Fuzzy Equivalence Relation[J]. Pattern Recognition,2003,36(1):61-68
    139. Kamrani A, Wang R, Gonzalez R. A Genetic Algorithm Methodology for Data Mining and Intelligent Knowledge Acquisition [J].Computers & Industrial Engineering,2001,40(4):361-377.
    140. Pedrycz W. Fuzzy Clustering with a Knowledge-Based Guidance [J]. Pattern Recognition Letters,2004,25 (4):469-480
    141. Crespo F, Webe R. A Methodology for Dynamic Data Mining Based on Fuzzy Clustering [J]. Fuzzy Sets and Systems,2005,150 (2):267-284
    142. Zhang Y J, Wang W N, Zhang X N, Li Y. A Cluster Validity Index for Fuzzy Clustering[J].Information Sciences,2008,178(4):1205-1218
    143.Bezdek J C. Pattern Recognization with Fuzzy Objective Function Algrithms[M],1981, Plenum Press,New York
    144. Xie Y,Raghavan V V,Dhatric P,Zhao X Q.A New Fuzzy Clustering Algorithm for optimally finding granular prototypes[J].International Journal of Approximate Reasoning,2005,40(1-2):109-124
    145. Soufian M, Sandoz D J. Constrained Multivariable Control and Real Time Optimization of a Distillation process [J]. UKACC International Conference on Control,1996,1(1):382-387
    146. Airikka P. Advanced Control Methods for Industrial ProcessControl [J]. Computing & Control Engineering Journal,2004,15(3):18-23
    147. Arroyo-Figueroa G, Sucar L E, Villavicencio A. Fuzzy Intelligent System for the Operation of Fossil Power Plants [J]. Engineering Applications of Artificial Intelligence,2000,13 (4):431-439.
    148. Bergh L G, Yianatos J B, Leiva C A. Fuzzy Supervisory Control Flotation Columns [J]. Minerals Engineering,1998,11 (8):739-748
    149. Manesis S A, Sapidis D J, Kingu R E.Intelligent Control of Wastewater Treatment Plants[J].Artijicial Znrelligence in Engineering,1998,12 (3):275-281.
    150. Qin S J, Badgwell T A. An overview of industrial model predictive control technology [C]. Fifth Conference on Chemical Process Control,1997,93:232-256
    151. Avoy T M, Jouela S L J, Patton R,Perrier M,Weber H, Georgakis C. Milestone Report for Area 7 Industrial Applications[J].Control Engineering Practice,2004,12 (1):113-119
    152. Goodhart S G. Advanced Process Control Using DMCplusTM[C].UKACC international conference on control,1998, Swansea,U.K
    153. Oatley G, Maclntyre J,Ewart B,Mugambi E. Smart Software for Decision Makers KDD Experience [C].21st SGES International Conference on Knowledge Based Systems and Applied Artificial Intelligence,2001, Cambridge, UK
    154.吕太,张广才,高纪录.双进双出钢球磨煤机煤粉细度调整试验及分析[J].华北电力技术,2009,(3):18-21
    155.刘福国.煤粉炉燃烧效率工程预测模型[J].动力工程,2004,24(5):636-639
    156.岳恒.多变量非线性系统智能自适应解耦控制技术及应用研究(D),东北大学,2000
    157.宫改云,高新波,伍忠东.FCM聚类算法中模糊加权指数m的优选方法[J].模糊系统于数学,2005,19(1),143-148

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700