超音速喷嘴涡流管气体分离性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超音速旋流分离技术利用超音速流动条件下气体的低温凝结效应结合旋流分离技术实现多组分气体中凝点较高组分的冷凝分离,整个过程集制冷、冷凝和分离过程于一体,具有结构简单,占地面积小,无转动件,等熵效率高等优点,在天然气脱水净化等混合气体分离领域具有广阔的应用前景。但是该项技术还存在轴向速度高,离心分离不充分的缺点。为了克服上述缺点,诞生了将超音速旋流分离技术与涡流效应相结合的两相涡流管分离技术。
     针对两相涡流管分离特性,本文提出了超音速喷嘴涡流管技术,对超音速喷嘴和其他部件进行了结构设计。通过对超音速喷嘴涡流管内部气体的流动行为的数值分析,预测出该装置可以实现混合气体的分离。建立了实验平台,以空气—乙醇蒸汽的混合气体为介质,对超音速喷嘴涡流管的混合气体分离性能进行了实验研究,并且得到了操作和结构参数对分离性能的影响趋势。
     为提高超音速喷嘴涡流管的混合气体分离性能,采用了外加凝结核心辅助蒸汽凝结的方法增大凝结液滴尺寸。通过对非均质成核理论的研究,对外加凝结核心的选取要求进行了分析,得到了外加核心为与混合气体中重组分互溶、不发生化学反应且挥发度相对很小的微小液滴。采用离散相模型对液滴在超音速喷嘴涡流管中的运动状态进行了分析,并且预测了该装置的结构和操作参数对装置分离性能的影响趋势。
     以空气—乙醇蒸汽的混合气体为介质、微小水滴为外加凝结核心,对采用增大凝结液滴方法后超音速喷嘴涡流管的混合气体分离性能进行了研究。实验结果表明,采用增大凝结液滴方法后,装置的分离性能得到一定程度的提高,重组分脱除率和露点降最大值为32.70%和20.87K,可分别提高17.83%和3.55K。此外,对采用增大凝结液滴后操作和结构参数对装置分离性能的影响进行了研究,得到的影响趋势与数值预测结果一致。
The supersonic gas separation technology is a novel gas mixture separation technology appeared in recent years.In the supersonic gas separation process,heavy components of gas mixture condense under the low-temperature condition created by supersonic gas flow itself and then separated from gas phase by the centrifugal force caused by the self-rotation of two -phase flow.This technology conducts expansion,cyclone gas/liquid separation and re-compression in a compact,tubular device with no rotating part,with the advantage including simple structure,small occupied space,low energy consumption and investment cost,and high isentropic efficiency etc.Thus,it has wide application foreground in the gas mixture separation area such as dehydration and purification of Natural Gas.However,the supersonic state of gas flow in the separation section shortens the contact and separation time of gas and condensed droplets,leading to the infaust effect on the separation performance.To overcome this shortcoming,the separation technology based on the two-phase vortex tube is proposed,combining the supersonic gas separation technology and vortex flow effects together.
     On the basis of two-phase vortex separating technology,a new vortex structure with supersonic nozzles is proposed.A numerical model has been established to simulate the flow behavior of gas flow in this new type of vortex tube.The numerical results indicate that the mixed gas can be separated by the new device.An experimental platform is set up to investigate the separation performance of the new device and the influential trend of operational and structural parameters on the separation performance are found out.
     In order to improve the performance of vortex tube with supersonic nozzle for mixed gas separation,the condensed droplet size is enlarged by adding nucleation centers.Based on the heterogeneous nucleation theory,the adoption requirements of additional nucleation centers are analyzed.Finally,the added nucleation centers are determined,i.e.micro-droplets with lower volatility which are soluble and not reacted with heavy component.Using Discrete Phase Model,the movement states of injected droplets in the vortex tube are analyzed and the influences of operational and structural parameters on the separation performance are also predicted.
     The gas mixture separation performance of vortex tube with supersonic nozzle using droplet enlargement method is experimentally researched.The medium is air-ethanol steam mixture and the external condensation nucleuses are micro water drops.Experimental results shows that the separation performance of the equipment is improved by a certain degree using the droplet enlargement method.The maximums of the heavy component removal rate and the dew point depression are 33.73%and 17.8K,increased by 17.85%and 3.55K respectively. Furthermore,the effects of the operational and structural parameters on the separation performance is studied,and the influence trend consistent well with the numerical prediction.
引文
[1]PrastB,Van Dam R A,Willems J FH,et al.Formation of nano-sized water droplets in a supersonic expansion flow[J].J.AerosolSci.Vol.27,1996:147-148.
    [2]Barbara E Wyslouzil,Christopher H Heath,Janice L Cheung,et al.Binary condensation in a supersonic nozzle[J].Journal of Chemical Physics,Vol.113,No.17,2000:7317-7329.
    [3]涂辉,蒋洪,刘晓强.超音速分离在天然气脱水中的应用[J].管道技术与设备,2008,3:1-3.
    [4]王协琴,罗小米,孙玉梅.超音速分离器—天然气脱水脱烃的新型高效设备[J].2007,1(5):63-67.
    [5]曹学文,陈丽,林宗虎等.用于超声速旋流分离器中的超声速喷管研究[J].天然气工业,2007,27(9):112-116.
    [6]刘恒伟,刘中良,冯永训.新型湿空气除湿装置工作性能的实验研究[J].热科学与技术,2005,3(2):143-146
    [7]Liu H W,Liu Z L,Zhang J et al.A new type of dehydration unit of natural gas and its design considerations[J].Porgress in Natural Science,2005,15(12):1148-1152.
    [8]杨志毅.油气超音速旋流分离技术研究[D].南充:西南石油学院,2005.
    [9]刘继平,严俊杰,邢秦安,陈国慧.超音速汽液两相流激波的理论研究[J].工程热物理学报.2005,6(26):105-108.
    [10]阳剑平,郭迎利,严俊杰.超音速汽液两相流升压装置混合腔阻力研究[J].热力发电2004(10):27-29.
    [11]蒋文明,刘中良,刘恒伟,张建,张新军,冯永训.超音速分离管内部流动的二维数值模拟与分析[J].工程热物理学报.2008,12(29):2119-2121.
    [12]Young J.B.The Spontaneous Condensation of Steam in Supersonic Nozzles[J].Physico Chemical Hydrodynamics,3(2),July 1982(2):57-82.
    [13]Lothe J,Pound G M.Reconsiderations of nucleation theory[J].Journal of Chemical Physics,1962,36(8):2080-2085.
    [14]Ruth V,Hirth J P,Pound G M.Reiss H.On the theory of homogeneous nucleation and spinodal decomposition in condensation from the vapor phase[J].Journal of Chemical Physics,1988,88(11):7079-7087.
    [15]Courtney W G.Remarks on homogeneous nucleation[J].Journal of Chemical Physics,1961,35(6):2249-2250.
    [16]Blander M,Katz J L.The thermodynamics of cluster formation in nucleation theory[J].Journal of Statistical Physics,1972,4(1):55-59.
    [17]Dillmann A,Meier G E A.Homogeneous nucleation of supersaturated vapors[J].Chemical Physics Letter,1989,160(1):71-74.
    [18]Dillmann A,Meier G E A.A refined droplet approach to the problem of homogeneous nucleation from the vapor phase[J].Journal of Chemical Physics,1991,94(5):3872-3874.
    [19]Ford I J,Laaksonen A,Kulmala M.Modification of the Dillmann-Meier theory of homogeneous nucleation[J].Journal of Chemical Physics,1993,99(1):764-765.
    [20]Delale C F,Meier G E A.A semiphenomenological droplet model of homogeneous nucleation from the vapor phase[J].Journal of Chemical Physics,1993,98(12):9850-9858.
    [21]Hale B N.Application of a scaled homogenous nucleation-rate formalism to experimental data at T<    [22]Oxtoby D W.Homogeneous nucleation:theory and experiment[J].Journal of Physics:Condensed Matter,1992,4:7627-7650.
    [23]蔡颐年,王乃宁.湿蒸汽两相流[M].西安:西安交通大学出版社,1985.
    [24]Moore M J,Sieverding C H.Two-phase steam flow in turbines and separators[M].Washington:Hemisphere Publishing Corporation,1976.
    [25]Young J B.Spontaneous Condensation of Steam in Supersonic Nozzles[J].Physico Chemical Hydrodynamics,1982,3(2):57-82.
    [26]张冬阳.非平衡态湿蒸汽流动快速准确数值模拟方法研究[D].北京:中国科学院研究生院博士学位论文,2002.
    [27]徐廷相,黄跃.过饱和水蒸汽自发凝结现象实验装置的研制及实际流动Wilson点位置的确定[J]西安交通大学学报.1984,18(04):53-64.
    [28]李炎锋.新型加热法测量流动湿蒸汽湿度的试验技术[J].热能动力工程,2001,16(92):153-157.
    [29]史琳.用光散射效应分析激波管内膨胀率对水蒸气成核与凝结的影响[J].空气动力学学报,1994,12(4):475-481.
    [30]FletcherNH.Size effect in heterogeneous nucleation[J].The Journal of Chemical Physics,1958,29(3):572-576.
    [31]HageV.Drop formation on insolubleparticles[J].Journal of Colloid and Interface Science,1984,101:10-18.
    [32]Gorbunov B,Hamilton R.Water nucleation on aerosol particles containing surfaceactive agents[J].Journal of Aerosol Science,1996,27(Suppl.1):S385-$386.
    [33]Lee Y,Chou W,Chen L.The adsorption and nucleation of water vapor on an insoluble spherical solid particle[J].Surface Science,1998,414:363-373.
    [34]Lazaridis M,Hov O,Eleftheriadis K.Heterogeneous nucleation on rough surfaces:implications to atmospheric aerosols[J].Atmospheric Research,2000,55:103-113.
    [35]Padilla K,Talanquer V.Heterogeneous nucleation on aerosol particles[J].Journal of Chemical Physics,2001,114(3):1319-1325.
    [36]Lee D W,Hopke P K,Don H.Rasmussen.Comparison of experimental and theoretical heterogeneous nucleation on ultrafine carbon particles[J].Journal of Physical Chemistry,2003,107:13813-13822.
    [37]Smorodin V Y,Hopke P K,Condensation activation and nucleation on heterogeneous aerosol nanoparticles[J].Journal of Physical Chemistry B,2004,108:9137-9157.
    [38]Zapadinsky E,Lauri A,Kulmala M.The molecular approach to heterogeneous nucleation[J].The Journal of Chemical Physics,2005,122:114709/8.
    [39]陈红梅.一维喷管中湿蒸汽非均质凝结流动的研究[J].工程热物理学报,2004,25(3):395-398.
    [40]凡凤仙.水汽在细微颗粒表面异质核化数值分析[J].东南大学学报,2007,5(37):833-838.
    [41]Ranque G J.Method and apparatus for obtaining from a fluid under pressure two currents of fluid at different temperatures[P].United StatesPatent1952281,March 27,1934.
    [42]Hilsch.The use of the expansion of gases in a centrifugal field as cooling process [J].The review of scientific instruments,1947,8(2):108-113.
    [43]Fulton C D.Ranque's tube[J].ASRE Refrigeration Engineering,1950,58(5):473-479.
    [44]Van Deemter J S.On the theory of the Ranque-Hilsch cool effect[J].Applied scientific Research(Series A),1952,3(3):174-196.
    [45]曹勇,齐延峰,刘加永等.涡流管热力学方法的研究[J].低温工程,2003(3):12-15.
    [46]Lay J.E.An experimental and analytical study of vortex flow temperature separation by superposition of spiral and axial flows[J].Transaction of the ASME.Journal of heat transfer,1959,8:213-223.
    [47]Stephan K,at el.An investigation of energy separation in a vortex tube[J].International Journal of Heat and Mass Transfer,1983,36(3):341-348.
    [48]K Stephan,S Lin,M Durst,D Seher.A similarity relation for energy separation in a vortex tube[J].International Journal of Heat and Mass Transfer,1984:911-920.
    [49]R G Deissler and M Perlmutter.Analysis of the flow and energy separation in a turbulent vortex[J].International Journal of Heat and Transfer,1960:173-191.
    [50]George W Scheper.The vortex tube:internal flow date and a heat transfer theory[J].Refrigeration engineering,1951,October:985-989.
    [51]Gulyaev A L.The Ranque effect at low temperatures[J].International Chemical Engineering,1966,6(2):461 466.
    [52]Hinze Turbulence(second edition)[M].McGraw-Hill company,1975,473.
    [53]Hartnett J.P.Expertmental study of the velocity and temperature calibration in a high velocity vortex tube flow[J].Transaction of the ASME,1957,May:751-758.
    [54]Linderstrom-Lang C U.The three-dimensional distributions of tangential velocity and total-temperature in vortex tube(part 1)[J].Journal of Fluid of Mechanics,1971,45:161-187.
    [55]Kurosaka M K.Acoustic streaming in swirling flow and the Ranque-Hilsch effect[J].Journal of Fluid Mechanics,1982,124:139-172.
    [56]Eckert E.R.G.Energy separation in fluid stream[J].International Communications in heat and mass transfer,1986,13(2):127-143.
    [57]颜幼平,潘振宽,王艺兵.总温分离的首要条件[J].青岛大学学报,1995,10(2):73-75.
    [58]杨承.涡流管总温分离效应的实验研究及其理论探索[D].广州:华南理工大学硕士学位论文,1997.
    [59]唐玉立,王亚芳,孙大坤等.涡流管制冷的喷嘴效应[J].低温工程,1997,(6):21-28.
    [60]吕正林.关于能量逆转及Ranque-HIlsch效应的研究[D].北京:北京航空航天大学,2000.
    [61]何曙,吴玉庭,郭建等.进口压力对涡流管性能影响的实验研究[J].空气动力学学报,2006,24(4):487-490.
    [62]姜曙,叶芳,马重芳.三流道喷嘴涡流管能量分离特性的研究[J].工程热物理学报,2004,25(3):499-501.
    [63]何曙,吴玉庭,马重芳.喷嘴对涡流管能量分离效应的影响[J].化工学报,2005,56(11):2073-2076
    [64]Heishichiro Takahama.Studies on vortex tube[J].Japan Society of Mechanical Engineers,1965,8(31):202-222(Bull.JSMES.1965(31):433-440.
    [65]Parulekar B.B Performance of short vortex tubes[J].Journal of Institution of Engineers(India),1960(8):161-164.
    [66]Metenin V.An investigation into counter-flow vortex tubes[J].International Chemical Engineering,1964,4(3):464-466.
    [67]Heishichiro Takahama,Hajime Yokosawa.Energy separation in vortex tubes with a divergent chamber[J].Transacation of the ASME Journal oflteat ansfer,198t,103(2):196-203.
    [68]蔡洁,姜任秋,周少伟等.涡流管能量分离过程实验研究[J].工程热物理学报,2005,6:1-4.
    [69]计玉邦,吴玉庭,丁雨等.涡流管结构参数对其性能的影响[J].航空动力学报,2006,21(1)88-93.
    [70]A PMerkulov.Vortex effect and its application in technique[J].Mashinostroenie,Moscow,1969.
    [71]明洪涛.微型涡流管性能研究[D].大连:大连理工大学,2002.
    [72]何曙,郭建,吴玉庭等.整流器对涡流管能量分离性能影响的研究[J].制冷学报,2006,27(1):38-41.
    [73]曹勇.小流量涡流管特性的理论与实验研究[D].杭州:浙江大学,2003.
    [74]Fekete.Vortex tube separator may solve Weight/Space Limitations[J].World Oil,1986,7:40-44.
    [75]Collins,Lovelace.Experimental study of two-phase propane expanded through the Ranque-Hilsch tube[J].Journal of Heat Transfer,ASME,1979,101(5):300-305.
    [76]靳海明,计光华.汽液超音速喷嘴涡流管特性的实验研究[J].低温工程,1995,87(5):22-26.
    [77]靳海明,计光华,杨建斌。单相(气相)与超音速喷嘴涡流管性能的比较与分析[J]。低温工程,1995,84(2):14-17.
    [78]周少伟,姜任秋,张鹏,宋福元,王朋涛,陈跃进.涡流管实验研究进展[J].化工进展,2006,25:352-360.
    [79]Upendra Behera,P J Paul,S Kasthuriengan.CFD analysis and experimental investigations towards optimizing the parameter of Ranque-Hilsch vortex tube[J].Heat and mass transfer,2005.
    [80]Aljuwayhe]N F,Nellis G F,Klein A.Parametric and internal study of the vortex tube using a CFD model[J].International Journal of Refrigeration,2005,28:442-450.
    [81]W Frohlingsdorff,H Unger.Numerical investigations of the compressible flow and the energy separation in Ranque-Hilsch vortex tube[J].International Journal of Heat and Mass Transfer,1999:415-422.
    [82]H H Bruun.Experimental investigation of the energy separation in vortex tubes[J].Journal mechanical engineering science,1969,11(6):567-582.
    [83]Pongjet Promvonge.Numerical simulation of tuebulence compressible vortex-tube flow[C].Procedings of the 3rd ASME/JSME joint fluids Engineering Conference,San Francisco,Califoria,July 18-23,1999.
    [84]周彤.应用二阶雷诺应力封闭的湍流旋流计算[J].航空发动机,1995,(2):1-13.
    [85]王朋涛.涡流管内可压缩气体三维流场研究[D].哈尔滨:哈尔滨工程大学,2006.
    [86]高彦宁.涡流管性能研究与参数优化[D].大连:大连理工大学,2007.
    [87]Parulekar B B.Performance of short vortex tubes[J].Journal of Institution of Engineers,1960,(8):161-164.
    [88]tleishichiro T.Studies on vortex tube[J].Japan Society of Mechanical Engineers,1965,8(31):202-222.
    [89]何曙,吴玉庭,姜曙等.喷嘴对涡流管能量分离效应的影响[J].化工学报,2005,56(11):41-44.
    [90]Harstad K,Bellan J.Modeling of multicomponent homogeneous nucleation using continuous thermodynamics[J].Combustion and Flame,2004,139:252-262.
    [91]Ma Q.F.,Hu D.P.,Qiu Z.H.Analysis of influence parameter on spontaneous nucleation during supersonic condensing separation[J].PETROCHEMICAL TECHNOLOGY,2008,37(9):920 925.
    [92]Jurski K,G(?)hin E.Heterogeneous condensation process in an air water vapour expansion through a nozzle-experimental aspect[J].International Journal of Multiphase flow,2003,29:1137-1152.
    [93]Reitz R D.Mechanisms of atomization processes in High-Pressure vaporizing Sprays[J].Atomization and Spray Technology,1987,3:309-33?.
    [94]童景山,李敬.流体热物理性质的计算[M].北京:清华大学出版社,1982.
    [95]程能林.溶剂手册[M].北京:化学工业出版社,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700