微小研抛机器人运动与加工系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大型模具制造的自动化技术是航空航天、汽车等制造行业提高生产效率、降低生产成本、加速产业升级的重要保障。模具表面的精整加工是模具制造过程中的重要环节。模具表面精整加工的自动化研究也就成为大型模具制造自动化研究的必要组成部分。本课题组独辟蹊径,提出了一种用微小设备加工大型自由曲面的新思路:把机器人技术与模具表面研抛技术融为一体,利用微小机器人在大型自由曲面上灵活地移动,依据曲面的几何信息和工艺信息自主决策,进行研抛作业。
     依照这个思路,课题组开发了高机动程度、高可操纵度的轮式微小研抛机器人系统。该机器人可以在大型自由曲面工件上自主定位、自主移动并智能地完成研抛加工工作。
     本文主要针对微小研抛机器人的研抛加工系统和运动系统,运用理论推导、计算机仿真、运动学和研抛系统试验等方法展开研究。开发了一套完整的柔性研抛系统。该系统集主动柔性与被动柔性于一体,很好地适应了工件曲面形状的变化。针对研抛加工工件表面痕迹形成机制进行了仿真试验,研究确定了机器人相邻研抛轨迹的最佳行距。研抛加工试验结果表明,利用微小研抛机器人对大型自由曲面进行研抛可达到较理想的加工效果。设计了正交试验,研究机器人研抛工艺参数,优化了研抛参数配比。在对微小研抛机器人的运动学研究部分,本文解析了微小研抛机器人的运动学特性,建立了机器人运动学模型。确定了机器人移动作业方案,推导了运动过程中的相关参数,提出了机器人角速度因子k并分析了k与机器人循迹过程精度和稳定性的关系。找出了机器人结构的局限性及解决办法。依照以上运动学研究成果,拟定了机器人运动学控制程序。通过试验,微小研抛机器人的运动学规律、运动方案以及运动程序得到了验证。本文对微小研抛机器人运动学方面的研究成果可以指导机器人在非平整地形上,实现对任意轨迹的跟踪。
     课题的研究工作得到了国家高技术研究发展计划(863计划)资助项目:大型曲面自主研抛作业微小机器人技术(编号:2006AA04Z214)的资助。
The automation for the manufacturing of large-scaled freeform surface has been critical in the field of Aeronautics and Astronautics industry as well as automobile industry, in order to enhance the producing efficiency, cut down the costs, and promote the industry. Finishing processing plays a significant role in the mould’s producing. Such, the research on the automation of finishing processing is necessary.
     Our group has proposed a totally new idea for the automation of finishing processing: using small equipment to work on large-scaled work pieces. Researches based on this method combine knowledge of robot and polishing together. The small robot polishes on large-scaled surface, moving agilely according to the geometric information of the work piece. In the light of this idea, a small polishing robot has been developed, which has the ability of self-location.
     This paper, based on the results of former researches, pays more attention on the kinematic and polishing system of the small polishing robot. A method for the robot’s moving with a high efficiency when the target point was set as the navigation mark is proposed and testified by experiments. Also, this paper presents a flexible polishing system. This system combines the positive and passive flexibility with both pneumatic control and a flexible polishing tool. Experiments are designed for the tests of moving ability and polishing ability as well as the most fitted parameters of the robot when polishing .
     In the research of kinematics system, the configuration of wheels has been fixed firstly: two standard wheels as positive wheels and two casters as passive ones, considering the characters of each kind of wheels, such as Figure 1. Fig. 1 Configuration of wheels on chassis
     The motion equations of the robot are deduced through each wheel of the robot and the configuration of the wheels:
     is provided by the location system; v1 , v2indicate the speed of the two standard wheels. Equation 1 shows the kinematic model of the robot, telling the relations between the robot’s movement and the characters of each wheel.
     However, the inverse kinematics based on Equation 1 could not meet the need of path-tracking, because the moving efficiency of the robot should be considered as an important factor since the robot’s low moving speed when polishing. For higher efficiency, as the path is already determined, we set the tracing mode of the robot as‘forward→change line→backward→change line→forward…’. So the kinematic model and the inverse kinematic are modified for each section of tracking.
     The paper provides with the angular velocity factor k to illustrate the relation between angular velocity of the robot and the angle which is between the robot’s gesture angle and target’s azimuth angle in the coordinate system:ω= kΔγ. The analysis of the relation shows that the path-tracking of the robot could be stable when when k belongs to (-1/t,0), shown in Figure 2. Fig. 2 Relation between k and angle-difference
     According to the tracking modes and the inverse kinematic of the robots, a C++ program is compiled for moving controlling in order to output the parameters of two standard wheels. This program integrates the results in the kinematic research, the method of path-tracking, and the transformation matrix, solving the limitations of the robot.
     Experiments are designed for the verification of the kinematic model and the program. The position information of the robot when tracking the path was collected at the interval of 200ms. Different kinds of paths-tracking on a plane and a freeform surface prove that the model and the program are correct. Figure 3 shows the result of path-tracking of the robot on the freeform surface. Fig. 3 Path-tracking result
     In the research of polishing system, polishing equipment with flexibility installed with a flexible polishing tool was designed for this robot. This polishing system has a high adaptability on the surface. With the easy-change equipment, this tool shows a processing flexibility.
     In order for a better polishing traces on the work-piece’s surface as well as a higher polishing efficiency, the distance between two lines of the path should be adjusted of 40mm, as shown in Figure 4. (a) macro-trace (b) micro-trace Fig. 4 Polishing trace of the robot , e=40mm
     Results of polishing experiments verify the polishing ability of the robot. After polishing, Ra of the work piece has decreased from 1.5μm~1.6μm to 0.2μm~0.4μm.
     To test the polishing effect, 3-factors, 3-levels orthogonal test is designed including the polishing parameters of the robot, as shown in Table 1.
     Through the visual analysis and the analysis of variance, results are obtained: the sequence of the significance of all the polishing parameters is: rotation speed > feed rate > pressure; The best result could obtained when the rotation speed=4300rpm, feed rate=3.0mm/s, pressure=20N; rotation speed is very significant for the polishing result, and the feed rate is very significant. As shown in Table 2.
引文
[1]李海平.国内模具工业的现状及研发趋势[J].科技资讯,2006(25):245~246.
    [2]刘向阳,屈平.我国模具工业发展现状[J].相关产业,2004,4(2):58~60.
    [3]赵继.模具自由曲面的自动研磨加工理论与实验研究[D].博士学位论文,吉林:吉林工业大学,1997.
    [4]袁楚明,张雷,等.机器人辅助模具自动抛光研究及发展趋势[J].中国机械工程,2000,11(12):1428~1429.
    [5]蒋新松.机器人与工业自动化[M].河北:河北教育出版社. 2003.
    [6]张明路,丁承君,等.移动机器人的研究现状与趋势[J].河北工业大学学报,33(2),2004,4: 110-115.
    [7] N Nilsson. A mobile automation: An application of artificial intelligence techniques[J]. In Proc IJCAI, 1969.
    [8]陈博.机器人技术的发展趋势与最新发展[J].西安教育学院学报,2004,19(3):85-87.
    [9]冯志友,李永刚,张策,杨延力.并联机器人机构运动与动力分析研究现状及展望[J].中国机械工程,2006,17(9):979-984.
    [10]谭定忠,王叶兰,王启明,曹日起.弹跳式机器人的发展现状[J].机器人技术,机械工程师,2005(10):30-31.
    [11]谭天编译.世界工业机器人的发展[J].产品与技术,2001(6):59-63.
    [12]徐国华,谭民.移动机器人的发展现状及其趋势[J].机器人技术与应用,2001,(3):7-14.
    [13]张捍东,郑睿,岑豫皖.移动机器人路径规划技术的现状与展望[J].系统仿真学报.2005(2):439-444.
    [14]章小兵,宋爱国.地面移动机器人研究现状及发展趋势[J].机器人技术与应用,2004(2):19-23.
    [15]夏广岚,胡晓平,李彩花,赵国福.并联机器人发展现状与展望[J].中国科技信息,2005(22):27-28.
    [16] 863计划智能机器人主题专家组.中国机器人的发展现状和成就.国内外机电一体化技术,2001,4(2):9-11.
    [17] R.西格沃特,I.R.诺巴克什.自主移动机器人导论[M].西安:西安交通大学出版社,2006.
    [18] http://www.aethon.com/benefits/default.php
    [19] P. Bartlett, D. Wettergreen, and W.L. Whittaker.Design of the Scarab Rover for Mobility and Drilling in the Lunar Cold Traps[C]. International Symposium on Artificial Intelligence, Robotics and Automation in Space, February, 2008.
    [20] G. B. Sanders. Lunar/Mars In-Situ Propellant Production(ISPP) Technology: Development Roadmap[C]. In In-Situ Resource Utilization (ISRU) Technical Interchange Meeting. Lunar and Planetary Institute, February 1997.
    [21] http://www.bostondynamics.com/content/sec.php?section=BigDog.
    [22] http://www-old.ri.cmu.edu/projects/project_597.html.
    [23] J.W. Hurst, J. Chestnutt, and A. Rizzi.Design and Philosophy of the BiMASC, a Highly Dynamic Biped[C].IEEE Conference on Robotics and Automation, April, 2007.
    [24] J. Ziglar, D. Kohanbash, D. Wettergreen, and W.L. Whittaker. Plowing for Controlled Steep Crater Descents[C]. International Symposium on Artificial Intelligence, Robotics and Automation in Space (iSAIRAS), February, 2008.
    [25]李继运.微小研抛机器人加工系统开发研究[D].硕士学位论文,吉林:吉林大学机械科学与工程学院,2007.
    [26] Seok Jo Go, Min Cheol Lee, Byung Su Kim. User-friendly Automatic Polishing RobotSystem and Its Remove Operation Based on Network[C].ISIE2001, Pusan, Korea: 1435-1440.
    [27] Min Cheol Lee, Seok JO Go, Young Jung et al. Development of a user-friendly polishing robot system[C].Proceedings of 1999 IEEE/RSJ International Conference on Intelligent Robots And Systems:1914-1919.
    [28] Kuo.RJ. A Robotic Die Polishing System Through Fuzzy neural Networks[J].Computer industry,1997.32(3):273-280.
    [29] M.Kunieda, T. Nakagawa, H. Hiramatsu,T. Higuch.Magnetically Pressed Polishing Tool for a Die Finishing Robot[C]. Proc.of 24th Int. IMTDR Conf. 1983, (8):295-303.
    [30] Fusaomi Nagata, Yukihiro Kusumoto, Keigo Watanabe. Polishing Robot for PET Bottle Molds Using a Learning—Based Hybrid Position/Force Controller[C]. 5th Asian Control Conference. 2004:9l4-921.
    [31] Fusaomi Nagata, Keigo Watanabe, Yukihiro Kusumoto. New Finishing System for Metallic Molds Using a Hybrid Motion/Force Comrol[J]. International Conference on Robotics& Automation, 2003(9):14-19.
    [32] M.C.Lee, S.J.Go. A robust trajectory tracking control of a polishing robot system based on CAM data[J], Robotics and Computer Integrated Manufacturing,2001(17): 177-183.
    [33] Robert Muszynski. A solution to the singular inverse kinematic problem for a manipulation robot mounted on a track[J]. Control Engineering Practice , 2002 (10) :35–43.
    [34] T.FURKAWA, D.C.RYE, etc. Automated polishing of an unknown three-dimensional surface[J]. Robotics & Computer-integrated Manufacturing,1996, 12(3):261-270.
    [35] J.J.Márquez, J.M..Pérez, J.R′os, A.Vizán. Process modeling for robotic polishing[J]. Journal of Materials Processing Technology, 2005 (159): 69–82.
    [36] Walker D D, Beaucamp A, Dunn C, et al. First results on freeform polishing using the precessions process [M/OL]. [2006-9-15]. http://www.zeeko.co.uk/papers/.
    [37] www.fanuc.co.jp/en/product/robot/lineup/m710ic.html
    [38] Urakami Research & Development Co., Ltd.. Vrobo_brochure[EB/OL]. http://www.urakami.co.jp/.
    [39] D.D. Walker, A.T.H.Beaucamp, D. Brooks, V. Doubrovski, M. Cassie, C. Dunn, R. Freeman, A. King, M. Libert, G.McCavana, R. Morton, D. Riley, J. Simms, Proc. New Results from the Precessions Polishing Process Scaled to Larger Sizes[C]. SPIE Astronomical Telescopes and Instrumentation Meeting, Glasgow, 2004.
    [40] D.D.Walker, D. Brooks, A. King, R. Freeman, R. Morton, G. McCavana, S-W Kim. The‘Precessions’Tooling for Polishing and Figuring Flat, Spherical and Aspheric Surfaces[R]. Optics Express. Published by Optical Society of America on http://www.opticsexpress.org/, Vol. 11, issue 8, 2003: 958-964
    [41] D. Walker, R Freeman, G Hobbs, A King, G. McCavana, R. Morton, D. Riley, J.Simms, Proc. Zeeko 1 metre polishing system[C]. 7th Int. Conf. Lamdamap, Cranfield, UK June 2005.
    [42] B.Schiele and J.L.Crowley. A comparison of positionestimation techniques using occupancy grids[C]. In proceedings of IEEE conference on Robotics and Automation(ICRA),Vol.2,1994.
    [43] Kelly, A.. Pose Determination and Tracking in Image Mosaic Based Vehicle Position Estimation[C]. In proceeding of IEEE/RSJ International Conference on Intelligent Robots and Systems, Takamatsu, Japan, October 31-November 5, 2000.
    [44]李异,刘钧泉,李建三.金属表面抛光技术[M].北京:化学工业出版社,2006.
    [45]姜学文.超精研抛技术[M].北京:国防工业出版社,1988.
    [46]方景礼.金属材料抛光技术[M].北京:国防工业出版社,2005.
    [47]文秀兰,林宋等.超精密加工技术与设备[M].北京:化学工业出版社,2006.
    [48]模具实用技术丛书编委会.模具精饰加工及表面强化技术[M].北京:机械工业出版社,1997.
    [49]丁金福.模具自由曲面抛光过程的分析与研究[J].模具工业,2006,32(9):66~69.
    [50] Raul Rojas. A Short History of Omni-directional Wheels[EB/OL].
    [51] Sven B?ttcher. Principles of robot locomotion[EB/OL].
    [52]石建萍.足球机器人运动控制系统研究与实现[D].硕士学位论文.山东:山东大学,2008.
    [53]贾书惠.广义欧拉角及其应用[J]力学与实践, 1991,(04).
    [54] Mason, M,. Mechanics of Robotics of Manipulation[M]. Cambridge, MA, MIT Press, 2000.
    [55]黄云,朱派龙.砂带磨削原理及其应用[M].重庆:重庆大学出版社,1993.
    [56]何少华,文竹青,娄涛.实验设计与数据处理[M].长沙:国防科技大学出版社,2002.
    [57]袁志发,周静芋.试验设计与分析[M].北京:高等教育出版社,2000.
    [58]候化国,王玉民.正交试验法[M].吉林:吉林人民出版社,1985.
    [59]杨德.试验设计与分析[M].北京:中国农业出版社,2002.
    [60]杨武松.自定位微小研抛机器人柔顺控制系统研究[D].硕士学位论文.吉林:吉林大学机械科学与工程学院,2008.
    [61] D.D. Walker, A.T.H. Beaucamp, D.Brooks, V. Doubrovski, M. Cassie, C. Dunn, R. Freeman, A. King, M. Libert, G. McCavana, R. Morton, D. Riley, J.Simms, Proc. New Results from the Precessions Polishing Process Scaled to Larger Sizes[C]. SPIE Astronomical Telescopes and Instrumentation Meeting, Glasgow, 2004
    [62] Hon-yuen Tam,Osmond Chi-hang Lui,Alberet C.K. Mok.Robotic polishing of free-form surfaces using scanning paths.Journal of Materials Processing Technology,1999(95):191~200.
    [63]吴克寿,黄心汉,王敏.基于OPenGL和AutoCAD机器人运动三维仿真系统的设计.洛阳工学院学报,2001,22(1):51-54.
    [64] Kuo.RJ.A Robotic Die Polishing System Through Fuzzy neural Networks.Computer in dustry,1997.32(3):273~280.
    [65] M. Kunieda, T. Nakagawa, H. Hiramatsu, T. Higuch. Magnetically Pressed Polishing Tool for a Die Finishing Robot. 24th Int IMTDR Conf. 1983, (8): 295-303.
    [66] M. C. Lee, S. J. Go. A robust trajectory tracking control of a polishing robot system based on CAM data[J], Robotics and Computer Integrated Manufacturing, 2001(17): 177~183.
    [67] Robert Muszynski. A solution to the singular inverse kinematic problem for a manipulation robot mounted on a track [J]. Control Engineering Practice, 2002 (10) :35~43.
    [68] Yong-Jin. SeoOxide-chemical mechanical polishing characteristics using silica slurry retreated by mixing of original and used slurry [J]. Microelectronic Engineering,2005 (77): 263~269.
    [69]李瑜波,张永俊,赵学堂.机器人模具抛光三维实体造型及其运动仿真[J].机床与自动化加工技术,2004(7):50~52.
    [70]方岗.六轮腿自主移动机器人结构设计和模糊控制技术研究[D].硕士学位论文,南京:南京理工大学,2006.
    [71]赵继,詹建明等.机器人超声弹性研磨自由曲面的过程识别与优化[J].机械工程学报,2000,36(25):71~82.
    [72]袁楚明,张雷,陈幼平,周祖德.模具曲面机器人智能抛光系统的研究[J].高技术通讯,2001,11(9):76~80.
    [73]金仁成,赵继,王立江.机器人超声波振动弹性研磨[J].机械工业自动化,1997(2):27~29.
    [74]王明昕.移动机器人运动学分析研究及本体结构设计[D].硕士学位论文,南京:南京航空航天大学,2004.
    [75]闫国荣,张海兵.一种新型轮式全方位移动机构[J].哈尔滨工业大学学报,2001,33(6):854-857.
    [76] R,G. Bingham, D.D. Walker, D-H. Kim, D. Brooks, R. Freeman, D. Riley , Proc. A Novel Automated Process for Aspheric Surfaces[C]. SPIE 45th Annual Meeting, 2000, Vol. 4093 'Current Developments in Lens Optical Design and Engineering': pp445-448

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700