公共场所行人交通性能化分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
公共场所如体育场馆、地铁站、展览馆、影剧院等地点,都是行人高度密集的场所,场所内行人交通设施的设计直接关系到行人安全、行走等方面的问题。如今,城市人口不断增长,交通压力不断增加,通过对行人流自组织的行为机理进行深入研究,分析行人流宏观特征和微观特征,建立科学的行人交通流分析评价体系,对于行人设施规划的指导,行人流的管理与控制,行人流的有效诱导,避免(缓解)行人流的拥挤,实现设施利用的最优化等,具有重要意义。
     本论文通过行人交通仿真技术手段以单向行人流、相向行人流、交织行人流及瓶颈行人流为仿真研究对象,分析公共场所不同设施条件下具体量化性能指标,探索基于仿真的行人流自组织现象及特征的生成机理,建立行人流宏观群体特征和微观行为特征之间的联系,具体内容如下:
     首先,分析了公共场所中行人的基本行为,行人的宏、微观交通特性,并且探讨了渠化、振荡流和流动条纹自组织现象的特征。
     其次,总结了行人交通流领域中典型的行人微观仿真模型和行人仿真软件的基本特点。通过微观仿真模型比较可知,社会力模型在行人自组织现象及人群疏散应用等方面比其它仿真模型有着较大的优势。
     再次,首次提出了行人交通性能化分析的概念,并提出了通行能力、速度、服务水平、延误及疏散时间五个性能分析指标。
     最后,分别以单向行人流、相向行人流、交织行人流和瓶颈行人流为仿真对象进行仿真。通过单向行人流仿真,得到了不同通道宽度下的通行能力、速度-密度曲线,结果表明通道的最大通行能力为170pmin/m;通过相向行人流仿真,得到了不同行人流比率下的通行能力、延误,探讨了不同行人流比率对通行能力和的影响,结果表明,与单向行人流相比,行人流比率r=0.5时,通行能力下降最大为100p/min/m,主流和次主流方向的延误值最大分别为458s和448s;通过交织行人流仿真,阐释了流动条纹产生的机理,得到了不同夹角下的通行能力,与单向行人流相比,90°交织区的通行能力下降最大为90p/min/m;通过瓶颈行人流仿真,探讨了不同瓶颈宽度对疏散时间和延误的影响,并对通道瓶颈下游区域的行人行走状态做了初步分析。
Pedestrian traffic may be quite congested in public places such as sport stadium, subway station, gallery, etc.. The design of pedestrian walking infrastructure is directly related to the pedestrian safety and other issues. Nowadays, with the growth of urban population and the traffic pressure, studying the mechanism of self-organization of pedestrian flow, analysis the macroscopic characteristics and microscopic characteristics of pedestrian flow and establishing scientific evaluation system of pedestrian flow are important for guiding the planning of pedestrian facilities, management and control of pedestrian flow and achieving the optimal use of pedestrian facilities.
     This paper studies the uni-directional pedestrian flow, the bi-directional pedestrian flow, the interweave pedestrian flow and the bottleneck pedestrian flow through simulation techniques, analysis the concrete quantification performance index under different facility condition, explores the mechanism of macroscopic phenomenon and the characteristic of pedestrian flow based on the simulation, establishes the relation between the pedestrian microscopic behavior characteristic and the macroscopic community characteristic, the actual content is as follows:
     Firstly, the paper analyzed the affect factor of pedestrian behavior, the macroscopic characteristics and microscopic characteristics of pedestrians in public places and discussed the features of lane formation, bottleneck oscillation and stripe formation.
     Secondly, the paper summarized the basic features of classical microscopic simulation model and pedestrian simulation software. Through the comparison of microscopic model, it was discovered that the social model have a superiority on simulating the self-organization phenomenon and in the application of dispersing.
     Moreover, the paper firstly proposed the concept of pedestrian traffic performance analysis and five performance indexes including capacity, speed, level of service, delay and evacuation time.
     Finally, taken the uni-directional pedestrian flow, the bi-directional pedestrian flow, the interweave pedestrian flow as the simulation object to simulate. Through the simulation of uni-directional pedestrian flow, we obtained the capacity according to the different passageway width and the velocity-density relationship. The simulation results indicated that the max capacity of passageway is 170p/min/m. Through the simulation of bi-directional pedestrian flow, we obtained the capacity and delay according to the different pedestrian ratio, discussed the influence of different ratio to capacity. Compared to the uni-directional pedestrian flow, when pedestrian ratio r=0.5, the capacity which is 100p/min/m decreased max, the delay of major flow and minor flow respectively is 458s and 448s. Through the simulation of interweave pedestrian flow, we explained the mechanism of stripe formation, and obtained the capacity according to the different interweave angles, Compared to the uni-directional pedestrian flow, the capacity of interweave zone at 90°which is 90p/min/m decreased max. Through the simulation of bottleneck pedestrian flow, we discussed the influence of different bottleneck width to evacuation time and delay, and analysis the pedestrian walking status in bottleneck.
引文
[1] Algadhi, S.A. and Mahmassani, H.. Modelling crowd behavior and movement: application to Makkah pilgrimage[A]. Yokohama. Transportation and Traffic Theory[C]. Japan, Elsevier, 1990: 426-438.
    [2] Algadhi, S.A. and Still, GK. Jamarat Bridge: Mathematical models, Computer Simulation and Hajjis Safety Analysis[R]. Saudi Arabia: Ministry of Municipal and Rural Affairs, 2004.
    [3]王殿海.交通流理论[M].北京:人民交通出版社, 2002, 60-80.
    [4]戴世强,冯苏苇,顾国庆.交通流动力学:它的内容、方法和意义[J].自然杂志, 1997, 19(4): 196-201.
    [5] Hankin B D, Wright R A. Passenger flow in subways[J]. Operational Research Quarterly 1958, 9: 81-88.
    [6] Fruin J J. Designing for Pedestrians: a level of service concept[M]. Washington, DC.: Highway Research Board, 1971:1-15.
    [7] Brilon W, GropmannM, Blanke H. Methods for the calculation of the capacity and Quality of traffic flow in streets[M]. Bonn: Ministry of Traffic, 1993: 88-106.
    [8] D. Helbing. A Mathematical Model for the Behavior of Pedestrians[J]. Behavioral Science, 1991, 36: 298-310.
    [9] Blue V. J. and Adler J.L. Emergent Fundamental Pedestrian Flows from Cellular Automata Micro-simulation [J]. Transportation Research Record, 1998, 1644: 29-36.
    [10] Hoogendoorn, SP, Bovy, PHL. Gas-kinetic modeling and simulation of Pedestrian flows [J]. Transportation Research Record, 2000, 1710: 28-36
    [11] H. Klupfel, T.Meyer-Konig, J. Wahle, and M. Schreckenberg. Microscopic simulation of evacuation processes on passenger ships[M]. London: Springer, 2000: 198-224.
    [12] Masakuni Muramatsu, Tunemasa Irie, Takashi Nagatani. Jamming transition in pedestrian counter flow [J]. Physica A, 1999, 267: 487-498.
    [13] William HK Lam, John F. Morrall, Herbert Ho. Pedestrian Flow Characteristics in Hong Kong [J]. Transportation Research Record, 1995, 1487: 56-62.
    [14]史建港.大型活动行人交通特性研究[D].北京工业大学. 2007.
    [15]岳昊.基于元胞自动机的行人流仿真模型研究[D].北京交通大学. 2008.
    [16]马剑.相向行人流自组织行为机理研究[D].中国科学技术大学. 2010.
    [17]景超.行人过街交通特性研究[D].吉林大学. 2007.
    [18]常丹.地铁行人微观行为参数量化研究[D].北京交通大学. 2010.
    [19] Transportation Research Board. Highway Capacity Manual 2000[M]. Washington D C: National Research Council, 2000: 637-670.
    [20] GB10000-88,中国成年人人体尺寸标准[S]. 1988.
    [21] G .Keith Still. Crowd Dynamics [D]. University of Warwick, 2000.
    [22]魏召.基于空当搜索的客运交通枢纽行人交通仿真建模研究[D].北京交通大学. 2008.
    [23]张国斌.综合客运枢纽站前广场行人交通行为及微观仿真研究[D].北京交通大学. 2009.
    [24] Kardi Teknomo. Microscopic Pedestrian Flow Characteristics: Development of an Image Processing Data Collection and Simulation Model [D]. Tohoku University. 2002.
    [25]陈然,董力耘.中国大都市行人交通特征的实测和初步分析[J].上海大学学报, 2005, 11(l): 93-97.
    [26] Henderson L F, Lyons D. J. Sexual differences in human crowds motion [J]. Nature, 1972, 240: 353-355.
    [27] Dirk Helbing,Illes J. Farkas, and Tamas Viesek. Simulating dynamical features of escape panic [J]. Nature, 2000, 407: 487-490.
    [28] Helbing, D., P. Molnar.‘Self-organization phenomena in pedestrian crowds [J] in Self-Organization of Complex Structures: From Individual to Collective Dynamics, Schweitzer, Gordon and Breach, London, 1997, 569-577.
    [29] Helbing, D., T. Platkowski.. Self-organization in space and induced by fluctuations[J]. Internet. J. Chaos Theory, 2000, 525-39.
    [30] Helbing, D., T. Platkowski.. Drift- or fluctuation-induced ordering and self-organization in driven many-particle systems [J]. Euro physics Lett. 2002, 60: 227-233.
    [31] Helbing, D., T. Vicsek. Optimal self-organization. [J], Physics 1999,.1: 1-17.
    [32] Helbing D,Buzna L, Johansson A and Werner T. Self-organized pedestrian crowd dynamics: experiments, simulations, and design solutions[J]. Transportation Science, 2005, 39(1): 1-24.
    [33]李得伟.城市轨道交通枢纽乘客集散模型及微观仿真理论[D].北京交通大学. 2007.
    [34]孙剑,李克平.行人运动建模及仿真研究综述[J].计算机仿真, 2008, 25(12), 12-16.
    [35] S.Wolfram. A new kind of science[M]. Champaign lllinois: Wolfram Media, 2002: 89-110.
    [36]廖明军,王凯英,孟宪强.基于元胞自动机的单向行人道行人交通仿真[J].北华大学学报, 2008, 9(1): 85-88.
    [37] Gipps, P.G. and Marksjo, B.. A Micro-Simulation Model for Pedestrian Flows[J]. Mathematics and Computers in Simulation. 1985, 27: 95-105.
    [38] Okazaki, S.. A study of pedestrian movement in architectural space, part 1: Pedestrian movement by the application on of magnetic models [J]. Trans. of A.I.J, 1979, 283: 111-119.
    [39] D. Helbing, P. Molnar, Social force model of pedestrian dynamics [J]. Physical Review E 1995, 51(5): 4282–4286.
    [40]胡清梅,方卫宁.行人运动建模技术综述[J].计算机应用研究, 2009, 26(2): 443-446.
    [41]郭谨一,刘爽,陈绍宽.行人运动仿真研究综述[J].系统仿真学报, 2008, 20(9): 2237-2242.
    [42] Berrou J L, Beecham J and Quaglia P. A. Calibration and validation of the Legion simulation model using empirical data[A]. Waldau, N.. Pedestrian and Evacuation Dynamics [C]. Vienna, 2005: 115-119.
    [43] STEPS User Manual [Z]. 2007.
    [44] Simwalk Pedestrian Simulation Software User Guide [Z]. 2008.
    [45] Anylogic Pedestrian Library Tutorial [Z]. 2007.
    [46] Nuria Pelechano, Ali Malkawi. Evacuation simulation models: Challenges in modeling high rise building evacuation with cellular automata approaches[J]. Automation in Construction, 2008: 377-385.
    [47] Her Majesty’s Stationery Office. Guide to Safety at Sports Grounds[M]. London, 1991: 189-198.
    [48] JGJ 31-2003, J 265-2003,体育建筑设计规范[S]. 2003.
    [49] Kristin Hoskin, Fire Protection and Evacuation Procedures of Stadia Venues in New Zealand [D]. University of Canterbury, 2004.
    [50] Hoogendoorn, S.P., and P.H.L. Bovy. Dynamic User-Optimal Assignment in Continuous Time and Space [J]. Transportation Research B, 2002: 205-211.
    [51] Fruin, J.. Pedestrian Planning and Design[M]. New York: Elevator World Inc., 1987: 62-120.
    [52]苗晓娟.基于乘客集散动态仿真的城市轨道交通枢纽评价研究[D].北京交通大学. 2008.
    [53]苏星燕.城市轨道交通换乘站运营协调效率的评价研究[D].中南大学. 2010.
    [54]顾贤光,张一兵,鞠雅喆.性能化安全疏散设计模拟分析[J].四川建筑科学研究, 2010, 36(1): 212-215.
    [55] GB50016—2006,建筑设计防火规范[S]. 2006.
    [56] Togawa K. Study of Fire Escapes Basing on the Observations of Muhiple Currents[R]. Tokyo: Report No. 14, Building Research Institute, Ministry of Construction, Japan, 1995.
    [57] M. Isobe, T. Adachi, T. Nagatani. Experiment and simulation of pedestrian counter flow [J]. Physica A , 2004, 336: 638-650.
    [58] Ahmed Abdeighany, Kbaled Abdeighany and Saad A. Al-Gadhi. A micro-simulation assignment model for multidirectional pedestrian movement in congested facilities [A]. Transportation research record 84th Annual Meeting[C], Washington D.C., 2005: 126-135.
    [59] V.J. Blue, J.L. Adler, Emergent Pedestrian Streams and Cellular Automata Micro-simulation [J]. Transportation Research Board, 2001, 1367: 82-92.
    [60] Hyde, T., Wright, C.. Extreme value methods for estimating road traffic capacity[J]. Transportation Research B , 1986, 20: 125-138.
    [61] Botma H., Bovy P.H.L., Assessment of Roadway Capacity Estimation Methods[J]. Transportation Research Record, 1997, 1572: 59–67.
    [62] J. Dijkstra, H. Timmermans, Towards a multi-agent model for visualizing simulated user behavior to support the assessment of design performance[J]. Automation in Construction, 2002, 11(2): 135–145.
    [63] C. Burstedde, K. Klauek, A. Sehadsehneider, J.Zittartz. Simulation of Pedestrian dynamics using a two-dimensional cellular automaton [J]. Physica A, 2001, 295: 507-525.
    [64] Fang Wei feng, Yang Li zhong, Fan. Wei cheng. Simulation of bi-direction pedestrian movement using a cellular automata model [J]. Physica A, 2003, 321:633-640.
    [65] Li Jian, Yang Li zhong, Zhao Dao liang. Simulation of bi-direction pedestrian movement in corridor [J]. Physic A, 2005, 354: 619-628.
    [66] Blue, V.J., Adler, J.L.. Bi-directional emergent fundamental pedestrian flows from cellular automata micro-simulation [J]. Transportation and Traffic Theory, 1999: 235–254.
    [67] Cheung, C.Y., Lam, W.H.K.. A study of the bi-directional pedestrian flow characteristics in the Hong Kong mass transit railway stations [J]. Journal of the Eastern Asia Society for Transportation Studies 1997, 5: 1607–1619.
    [68] Lam, W.H.K., Cheung, C.Y.. Pedestrian speed/flow relationships for walking facilities in Hong Kong [J]. Journal of Transportation Engineering, 2000, 126 (4): 343–349.
    [69] V.J. Blue, J.L. Adler, Modeling Four-Directional Pedestrian Flows [J]. Transportation Research Record, 2000, 1546: 21–38.
    [70] Ren-Yong Guo, S.C. Wong, Hai-Jun Huang. A microscopic pedestrian-simulation model and its application to intersecting flows [J]. Physica A, 2010, 389: 515-526.
    [71] Ansgar Kirchner, Andreas Schadsehneider. Simulation of evacuation processes using a bionics-inspire cellular automaton model for Pedestrian dynamics [J]. Physica A, 2002, 312: 260-276.
    [72] R. Nagai, M. Fukamachi, T. Nagatani. Evacuation of crawlers and walkers from corridor through an exit[J]. Physica A, 2006, 367: 449–460.
    [73] S. Klumpp and R. Lipowsky. Asymmetric simple exclusion processes with delusive bottlenecks[J]. Phys. Rev. E, 2004, 70: 66-104.
    [74] S.P. Hoogendoorn and W. Daamen. Pedestrian Behavior at Bottlenecks [J].Transportation Science, 2005, 39(2):147–159.
    [75] Y. Tajima, K. Takimoto, and T. Nagatani. Scaling of pedestrian channel flow with a bottleneck [J]. Physic A, 2001, 294: 257–26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700