可约并联机构设计理论与方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
耦合广泛存在于各个系统中,是产生矛盾冲突的根本原因。对于并联机构来说,机构中各个运动、各项性能的强耦合性使得机构综合、尺寸设计、性能提高以及控制的设计变得非常复杂。本课题针对并联机构的强耦合性问题,提出了研究运动解耦的并联机构的设计方法。主要研究内容为:
    (1)回顾并联机构的研究现状和应用,对现有并联机构构型设计和设计方法进行了总结,分析在机构综合和设计方面取得的成果和存在的缺陷。论述了本文研究的运动解耦并联机构的意义和具体内容。
    (2)讨论了可约系统的原理,提出了一般可约系统的概念,针对本文中研究的并联机构,定义了可约并联机构,分别将运动和受力可约进行了分类。
    (3)定义并证明三自由度可约移动并联机构的判定充分必要条件,研究三自由度可约移动并联机构的型综合问题,建立了新的坐标参数,综合新的三自由度可约移动并联机构。研究机构可约性和机构布局的关系。
    (4)根据三自由度可约移动并联机构的驱动方式,将它们分为两类,分别对他们的各个运动性能指标进行了分析,讨论了它们的优点和不足。
    (5)按照驱动方式将机构分类,分别分析了两类机构的静力性能。建立了每个机构的受力和刚度模型。
    (6)在考虑工作空间基础上对机构进行了优化设计,利用机构在结构、运动、干涉等方面的相互关系,建立起机构的各个构件的参数同驱动参数的关系。
    (7)以机构的整体刚度为基础进行尺寸设计,分析机构提高刚度性能的方法。
Coupling, which exists in almost every system, is the essential reason of conflict.For the parallel mechanisms, the coupling of various motions, every performance indicesmakes the type synthesis, dimensional design, performance increasing and control systemdesign very complicated. This thesis aiming at the coupling problems of parallelmechanisms, the type design methods of parallel mechanisms whose motions aredecoupled will be proposed. The main content includes:
    (1) The research and applications of parallel mechanisms are reviewed. The existedtype synthesis and design methods of parallel mechanisms are summarize and theproblems in them are also presented. The significances and main work of the research onreducible parallel mechanisms are proposed.
    (2) The definition of general reducible system is presented. The conception of thereducible parallel mechanisms is presented. The reducible character of the motion andstatic functions of parallel mechanism are classified.
    (3) The determinate condition for 3-DOF reducible translational parallelmechanisms are defined and proved. A new coordinate is given and the type synthesismethod of 3-DOF reducible translational parallel mechanisms is presented. Some parallelmechanisms are synthesized by the method. The relationship between the reducibility ofthe mechanism and the configuration of the limbs is discussed.
    (4) The reducible mechanisms are grouped into two classes according to theirdriving methods. The motion performances are discussed. The excellences anddisadvantages of the mechanisms are discussed.
    (5) The static indexes of the two groups of reducible mechanisms are discussedrespectively. The stiffness model of each mechanism is set up.
    (6) An optimum design is carried through based on the workspace. The parametricrelationship between the dimensions of components and the driving parameters are set upby investigating the structural, motional and interference of the parameters. Theparametric optimum design reduces the numbers of the design parameters.
    (7) The optimum design is carried through based on the stiffness. The methods toincrease the stiffness are also proposed.
引文
1 W. Pollard and Evanston. Position-controlling Apparatus. Application, Serial No. 203,634, April 22, 1938
    2 D. Stewart. A Platform with Six Degrees of Freedom. IME, Proc.80.1965,Part I(15): 371-386
    3 J. P. Merlet. Les Robots Parallèles. Hermès, Paris
    4 R. Clavel. Conception d'un Robot Parallèle Rapide à 4 Degrès de Liberté. PhD thesis No.925, Ecole polytechique félérale de Lausanne(EPFL), 1991
    5 Peter Vischer. Improving the Accuracy of Parallel Robots. Thèsen 1570, Lausanne (EPFL), 1996
    6 K. H. Hunt. Structural Kinematic of In-parallel-actuated Robot-arms. ASME Journal of Mechanisms, Transmissions and Automation in Design, 1983, 105: 705-712
    7 D. C. H. Yang and T. W. Lee. Feasibility Study of a Platform Type of Robot Manipulators form a Kinematic Viewpoint. ASME Journal of Mechanisms, Transmissions, and Automation in Design, 1984, 106(2): 191-198
    8 M. G. Mohamed and J. Duffy. A Direct Determination of the Instantaneous Kinematics of Fully Parallel Robot Manipulators. ASME Journal of Mechanisms, Transmissions, and Automation in Design, 1985, 107(2): 226-229
    9 E. F. Fitcher. A Stewart Platform-based Manipulator: General Theory and Practical Construction. International Journal of Robotics Research, 1986, 5(2): 157-182
    10 J. P. Merlet. Force-feedback Control of Parallel Manipulators. Proceedings of the IEEE Int. Conf. On Robotics and Automation, 1988, 3: 1484-1489
    11 Z. Huang. Modeling Formulation of 6-DOF Multiloop Parallel Manipulators Part I-Kinematic Influence Matrix. Proc. Of 4th IFToMM Conf. On Mechanisms and CAD, Romania, 1985
    12 Z. Huang and H. B. Wang. Dynamic Force Analysis of 6-dof Parallel Multiloop Robot Manipulators. ASME Paper 86-DET-168, 1986.
    13 C. M. Gosselin and J. Angeles. The Optimum Kinematic Design of a Planar Three -degree-of-freedom Parallel Manipulator. ASME Journal of Mechanisms, Transmissions, and Automation in Design, 1988, 110(1): 35-41
    14 K. M. Lee and D. K. Shah. Part I: Kinematic Analysis of A 3-DOF In-parallel Actuated Manipulator. IEEE Journal of Robotics and Automation, 1988, 4: 354-360
    15 H. Inoue. Parallel manipulator. Proceedings of the 3rd International Symposium on Robotics Research, 1985: 321-327.
    16 J. P. Merlet. Direct Kimematic and Assembly Motion Parallel Manipulators. International Journal of Robotics Research, 1992, 11(2): 150-162
    17 C. C. Nguyen, et al. Experimental Study of Motion Control and Trajectory Planning for a Stewart Platform Robot Manipulator. IEEE International Conference on Robotics and Automation, 1991, 2: 1873-1878
    18 E. Pernette and R. Calver. Prallel Robots and Microrobotics, Montpellier. ISRAM 1996
    19 C. M. Gosselin and J. F. Hamel. The Agile Eye: a High performance 3-DOF Camera-orienting Device. Proceedings of the IEEE International Conference on Robotics and Automation, 1994, 3: 781-786
    20 Ellis G W. Piezoelectric micromanipulators. Science Instruments and Techniques, 1962, 138:84-91
    21 R. Stoughton. Kimematic Optimization of a Chopsticks-type Micromanipulator. ASME Japan/USA Symposium on Flexible Automation, 1992,1:151-157
    22 J. C. Hudgens and D. Tesar. A Fully-parallel Six Degree-of-freedom Micro-manipulator: Kinematic Analysis and Dynamic Model. Proc. 20th Biennal ASME Mechanisms Conference Trends and Development in Mechanisms Machines and Robotics, 1988, 15(3): 29-37
    23 K. M. Lee, S. Arjunnam. A Three Degree of Freedom Micro-motion-in-parallel Actuated-manipulator. Proceedings of the IEEE International Conference on Robotics and Automation, 1989:1698-1703
    24 安辉. 压电陶瓷驱动六自由度并联微动机器人的研究. [哈尔滨工业大学工学博士学位论文].1995:8-12
    25 杜铁军. 机器人误差补偿器研究. [燕山大学工学硕士学位论文]. 1994:1-42
    26 王守杰. 微操作机器人及显微视觉的研究. [北京航空航天大学工学博士学位论文]. 1998:2-15
    27 徐卫平, 张玉茹. 六自由度微动机构的运动分析. 机器人, 1995, 17(5): 298-302
    28 D. R. Kerr. Analysis, Properties and Design of a Stewart-platform Transducer. J. Mech. Transm. Auto. Design, 1989,111:25-28
    29 C. C. Nguyen, et al. Analysis and Experimentation of a Stewart platform-based Force/Torque Sensor. International Journal of Robotics and Automation, 1995, 7(3): 133-140
    30 C. Ferraresi, et al. Static and Dynamic Behavior of a High Stiffness Stewart Platform-based Force/Torque Sensor. Journal of Robotics Systems, 1995,12(12): 883-893
    31 陈滨. 机器人手腕测力装置. 机械工程学报, 1988,24(2):35-37
    32 熊有伦. 机器人力传感器的各向同性. 自动化学报, 1996,22(1):6-9
    33 H. R. Wang, F. Gao and Z. Huang. Design of 6-axis Force/Torque Sensor Based on Stewart Platform Related to Isotropy. Chinese Journal of Mechanical Engineering, 1998,11(3): 217-222
    34 高峰, 金振林, 刘辛军, 等. 并联解耦结构六维力与力矩传感器. 中国发明专利, ZL99119320.2, 授权公告日: 2002.10.9
    35 Akihiko Nagakubo and ShigeoHirose. Walking and Running of the Quadruped Wall-climbing Robot. Proceedings of IEEE International Conference on Robotics and Automation, 1994: 1005-1012
    36 J. P. Merlet. Les Robots Parallèles, Habilitaion à Diriger Les Recherches. Version Pré. Limimaire, Juin 1993
    37 R. Clavel. DELTA4, A Fast Robot with Parallel Geometry. Proceedings of the International Symposium on Industrial Robot, 1988: 91-100
    38 F. Pierrot, P. Dauchez et al. HEXA: A Fast Six-DOF Fully-parallel Robot. Proceedings of the 5th International Conference on Advanced Robotics, 1991, 2: 1158-1163
    39 F. Pierrot and O. Company. H4: A New Family of 4-DOF Parallel Robots. Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 1999: 508-513
    40 F. Pierrot, F. Marquet et al. H4 Parallel Robot: Modeling. Design and Preliminary Experiments. Proceedings of the IEEE International Conference on Robotics and Automation, 2001: 3256-3261
    41 O. Company, F. Marquet et al. A New High-speed 4-DOF Parallel Robot Synthesis and Modeling Issues. IEEE Transactions on Robotics and Automation, 2003, 19(3): 411-420
    42 F. Majou, P. Wenger and D. Chablat. Design of a 3 Axis Parallel Machine Tool for High Speed Machining: the Orthoglide. IDMME. 2002: 1-10
    43 D. Chablat and P. Wenger. Architecture Optimization of a 3-DOF Translational Parallel Mechanism for Maching Applications, the Orthoglide. IEEE Transactions on Robotics and Automation, 2003, 19(3): 403-410
    44 L. W. Tsai. The Enumeration of a Class of Three-dof Parallel Manipulators. The Tenth World Conference on the Theory of Machines and Mechanisms, 1999: 1123-1126
    45 J. M. Hervé. Analyse Structure des mécanismes par groupe des déplacements. Mechanism and Machine Theory, 1978, 13: 437-450
    46 J. M. Hervé and F. Sparacino. Structual Synthesis of Parallel Robots Generating Spatial Translation. 5th IEEE International Conference on Advanced Robotics, 1991: 808-813
    47 J. M. Hervé. The Lie Group of Rigid Body Displacements, a Fundamental Tool for Mechanism Design. Mechanism and Machine Theory, 1999, 34: 719-730
    48 M. Karouia and J. M. Hervé. A Three-dof Tripod for Generating Spherical Rotation. Advances in Robot Kimematics, 2000: 395-402
    49 M. Karouia and J. M. Hervé. A family of Novel Orientational 3-DOF Parallel Robots. Robotics Manufacturing Systems 14th CISM-IFToMM Symposium, 2002: 359-368
    50 G. F. Liu, J. Meng, J. J. Xu and Z. X. Li. Kinematic Synthesis of Parallel Manipulator: a Lie Theoretic Approach. Proceedings of the IEEE/RSJ International Conference on Intelligent Robotics and Systems, 2003: 2096-2100
    51 Q. Jin, T. L. Yang et al. Structure Synthesis of a Class of Five-dof(three translation and two rotation) Parallel Robot Mechanisms Based on Single-opened-chain Units. ASME Design Engineering Technical Conferences, 2001, DETC/DAC-21153
    52 杨廷立, 金琼, 刘安心, 等. 基于单开链单元的三平移并联机器人机构型综合及分类. 江苏石油化工学院学报, 2000, 12(4): 35-38
    53 杨廷立, 金琼, 刘安心等. 基于单开链单元的欠秩并联机器人机构型综合的一般方法. 机械科学与技术, 2001, 20(3): 321-325
    54 金琼, 杨廷立, 刘安心, 等. 基于单开链单元的三移动一转动并联机器人机构型综合及机构分类. 中国机械工程, 2001, 12(9): 1038-1043
    55 Q. Jin and T. L. Yang. Synthesis and Analysis of a Group of 3-degree-of-freedom Decoupling Parallel Manipulators. ASME Design Engineering Technical Conferences, 2002, MECH-34240
    56 杨廷立, 金琼, 刘安心, 等. 基于单开链单元的三平移并联机器人机构型综合及分类. 机械工程学报, 2002, 38(8)31-36
    57 黄真, 孔令富, 方跃法. 并联机器人机构学理论及控制. 北京:机械工业出版社, 1997: 5-30
    58 黄真, 赵铁石, 李秦川. 空间少自由度并联机器人机构的基础综合理论. 第一界国际机械工程学术会议, 上海, 2000,No. 020215
    59 赵铁石. 空间少自由度并联机器人机构学分析与综合的理论研究. [燕山大学工学博士学位论文]. 2000:25-37
    60 Z. Huang and Q. C. Li. General Methodology for Type Synthesis of Lower-mobility Symmetrical Parallel Manipulators and Several Novel Manipulators. International Journal of Robotics Research, 2002, 21(2): 131-145
    61 Z. Huang and Q. C. Li. Type Synthesis of Symmetrical Lower-mobility Parallel Mechanisms Using Constraint-synthesis Method. International Journal of Robotics Research, 2003, 22(1): 59-79
    62 Q. C. Li and Z. Huang. A Family of Symmetrical Lower-mobility Parallel Mechanism with Spherical and Parallel Subchains. Journal of Robotics Systems, 2003, 20(6): 197-305
    63 Z. Huang and Q. C. Li. Type Synthesis Principle of Minor-mobility Parallel Manipulators. Science in China (Series E), 2002, 45(3): 241-248
    64 李秦川. 对称少自由度并联机器人型综合理论及新机型综合. [燕山大学工学博士学位论文]. 2004: 40-55
    65 B. Roth. Performance Evaluation of Manipulators from a Kinematic Viewpoit. NBS Special Publication No.459,Performance Evaluation of Programmable Robots and Manipulators, 1975: 39-61
    66 F. Gao. Artificial Intelligence and Robotics in Manufacturing. CRC Press LLC, USA, 2001
    67 F. Gao. Computer Aided and Integrated Manufacturing Systems Techniques and Applications. (Chapter) Physical Model Technique for Design of Robotic Manipulators in Manufacturing Systems. The Gordon and Breach Science Publishers, USA, 1999
    68 H. MacCallion and D. T. Pham. The Analysis of a Six degree of Freedom Workstation for Mechanised Assembly. Proceedings of the 5th World Congress on Theory of Machines and Mechanisms, 1979
    69 E. Pernette et al. Design of Parallel robots in Microrobotics. Robotica, 1997, 15: 417-420
    70 M. K. Lee. Design of a High Stiffness Machining Robot Arm Using Double Parallel Mechanisms. IEEE International Conference on Robotics and Automation, 1995: 234-240
    71 J. P. Merlet. MEMOCRAT: a Design Methodology for the Conception of Robots with Parallel Architecture. Robotica, 1997, 15: 367-373
    72 T. H. Davies and J. E. Baker. A Finite 3-dimensional Atlases of 4-bar Linkages. Mechanism and Machine Theory, 1979,14
    73 C. R. Barker and G. A. Weeks. A Physical Model of the Solution Space for Four Bar Mechanisms. The 8th Applied Mechanism Conference of USA, Nov. 1983
    74 J. H. Yang. The Space Model and Dimensional Types of the Four-bar Mechanisms. Mechanism and Machine Theory , 1987, 22 (1): 71-76
    75 J. H. Yang and F. Gao. About the Diagrams of Max. and Min. Kiematic Influence Coefficients of Four-bar Mechanisms. The 4th IFToMM International Symposium on Linkages and CAD Methods,1985, I-1(19):141-152
    76 杨基厚, 高峰. 四杆机构的空间模型和性能图谱. 北京: 机械工业出版社, 1989: 1-25
    77 F. Gao et al. Distribution of Some Properties in a Physical Model of the Solution Space of 2-DOF Parallel Planar Manipulators. Mechanism and Machine Theory. 1995, 30(6): 811-817
    78 F. Gao, X. J. Liu and W. A. Gruver. The Global Condition Index in the Solution Space of Two-DOF Planar Parallel Wrists. IEEE SMC'95, Canada, 1995
    79 F. Gao and X. Q. Zhang. A Physical Model of the Solution Space and the Atlases of the Reachable Workspaces for 2-DOF Parallel Plane Wrists. Mechanism and Machine Theory, 1996, 31(2): 173-184
    80 F. Gao, Y. S. Zhao and Z. H. Zhan. Physical Model of the Solution Space for 3-DOF Parallel Planar Manipulators. Mechanisms and Machine Theory, 1996, 31(2): 161-171
    81 F. Gao, F. Guy and W. A. Gruver. Criteria Based Analysis and Design of Three-degree-of-freedom Plane Robotic Wrists. Proceedings of the International Conference on Robotics and Automation, 1997: 468-473
    82 F. Gao, X. J. Liu and W. A. Gruver. Performance Evaluation of Two Degrees of Freedom Planar Parallel Robots. Mechanisms and Machine Theory, 1998, 33(2): 661-668
    83 C. M. Gosselin et al. Two Degree-of-freedom Spherical Orienting Device. United Stated Patent No.5966991, Oct.19, 1999
    84 M. Carricato and V. Parenti-Castelli. A Novel Fully Decoupled Two-Degrees-of-Freedom Parallel Wrist. The International Journal of Robotics Research, 2004, 23(6): 661-667
    85 M. Carricato and V. Parenti-Castelli. Singularity-free Fully Isotropic Translational Parallel Mechanisms. International Journal of Robotics Research 2002,21 (2) :161-174
    86 H. S. Kim and L. W. Tsai. Design Optimization of a Cartesian Parallel Manipulator. ASME Journal of Mechanical Design, 2003, 125:43-51
    87 X. Kong and C.M. Gosselin. Type Synthesis of Linear Translational Parallel Manipulators. J. Lenar?i?, F. Thomas. Advances in Robot Kinematics—Theory and Applications. Kluwer Academic Publishers, 2002:411-420
    88 X. Kong and C.M. Gosselin. Type Synthesis of 3-DOF Translational Parallel Manipulators Based on Screw Theory. ASME Journal of Mechanical Design, 2004, 126(1): 83-92
    89 Grigore Gogu. Structural Synthesis of Fully-isotropic Translational Parallel Robots Via Theory of Linear Transformations. European Journal of Mechanics A/Solids 2004,23:1021-1039
    90 金振林, 高峰. 新型 6-PSS 微操作机器人的加速度性能指标分析. 机械设计与制造, 2000, (3): 29-30
    91 金振林, 高峰. 新型 6-PSS 微操作机器人的静力分析基础研究. 机械传动, 2001, 25(2): 11-13
    92 金振林, 高峰, 刘辛军. 一种新颖的并联微动机器人结构的承载能力和速度指标分析, 机械设计. 2000, 17(9): 4-6
    93 金振林, 高峰. 新型 6-SPS 并联机床局部承载能力分析. 机械设计与研究, 2000, 16(4): 13-14
    94 F. Gao, J. J. Zhang, Y. L. Chen, et al. Development of a New Type of 6-DOF Parallel Micro-manipulator and its Control System. IEEE proceeding of RISSP, Changsha, 2003:715-720
    95 张建军, 高峰, 王晓慧, 等. 新型 3PUU&2PSS 并联微操作机器人的运动学及其速度性能指标分析. 机器人, 2003, 25(7): 582-585
    96 王宪平, 戴一帆, 李圣怡. 一般机构的解耦运动. 国防科技大学学报, 2002, 24(2):85-90
    97 张建军, 高峰, 金振林, 等. 结构解耦 6-PSS 并联微操作平台的研究与开发. 中国机械工程, 2004, 15(1): 1-4
    98 张建军, 高峰, 李为民. 新型 6 自由度并联微动机器人微运动学及其运动解耦性分析. 机械设计, 2003(12):22-20
    99 路甬祥. 工程设计的发展趋势和未来. 机械工程学报, 1997, (1): 1-8
    100 邓家禔. 产品设计的基本理论与技术. 中国机械工程, 2000, 11(1-2):139-143
    101 檀润华, 张瑞红, 江屏, 等. 产品设计中的冲突确定方法及解决过程. 机械设计, 2003, 20(10): 4-7
    102 G. Altshuller. The Innovation Algorithm. TRIZ, Systematic Innovation and Technical Creativity. Technical Innovation Center, INC, Worcester, 1999
    103 J. K. Salisbury and J. J. Craig. Articulated Hands: Force Control and Kinematic Issues. International Journal of Robotic Research, 1982, 1(1): 4-12
    104 C. Gosselin and J. Angeles. A global Performance Index for the Kinematic Optimization of Robotic Manipulators. Transaction of the ASME Journal of Mechanical Design, 1991, 113: 220-226

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700