基于显微干涉术的微机电系统动态测试方法与系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微机电系统(MEMS)测试的主要目的是为科学研究与产品开发中的各个环节提供数据反馈,其中一个重要方面就是MEMS器件三维运动特性的表征。一种基于显微干涉术的计算机控制的动态测试系统被开发,用于MEMS可动部件的离面运动特性测量,实现了纳米级分辨力。论文完成了以下主要工作:
    1.对干涉条纹自动分析技术进行讨论,重点介绍了时间相移干涉高精度测试方法,针对三个核心算法-相位提取算法、相位展开算法和图像预处理算法展开分析; 对影响相位提取精度的误差源进行详细分析,并提出了相应的解决方案;
    2.系统地分析了国内外MEMS静态和动态测试技术,基于虚拟仪器的模块化设计思想构建了集光学、机械、电子、计算机于一体的MEMS动态测试平台,满足了MEMS测试的多种需要,实现了高精度、快速、大量程非接触测量,系统配置灵活,可扩充性好、通用性强、容易操作; 设计并调试了频闪驱动电路和高压放大电路,实现了MEMS器件的频闪照明和高压静电驱动; 设计了LED频闪照明和MEMS器件驱动之间的同步控制方案,通过软件进行延迟补偿,实现了高精度、宽频MEMS运动特性的测量;
    3.将相移技术分别应用在单色光干涉测量、时间平均干涉测量以及白光垂直扫描干涉测量中,实现了对干涉条纹相位信息的调制,可以用于MEMS器件运动特性的分析中;
    4.提出了利用条纹对比度这个重要参数来进行图像质量分析、相位提取算法分析、质量图导引的局部相位展开算法和加权最小二乘全局相位展开算法分析,并应用对比度变化实现时间平均干涉方法和白光垂直扫描干涉方法对MEMS器件离面运动的测量;
    5.提出了MEMS器件离面运动分析中的基于时间轴和空间轴的双向相位展开思想,将MEMS器件运动的空间信息和时间信息有机结合起来,有利于对MEMS器件动态过程进行分析,配合基于模板的全场重建技术,实现了对MEMS器件的整体三维运动表征;
    6.提出了MEMS运动特性的差分测量方法,通过选取被测器件上的固定点作为参考点,可以减小随机噪声对MEMS器件运动特性测量的影响,提高了系统测量的重复性和精度。
A key purpose for testing MEMS is to provide data feedback of measurements for every stage in the process of scientific research and product development, where MEMS devices’ three-dimensional motions characterization is a very important aspect. A dynamic testing system based on microscopic interferometry and controlled by computer is developed, which is used to test the out-of-plane motions of movable MEMS components with nanometer resolution. This dissertation’s main work is as following:
    1. The techniques of interferometric fringe automatic analysis are discussed. The temporal phase-shifting interferometry with high accuracy is introduced and developed, aiming at three core algorithms, including phase-shifting algorithm, phase-unwrapping algorithm and image preprocessing algorithm. The error sources, which influence the phase extracting accuracy, are analyzed in detail. And the solutions are presented respectively.
    2. Domestic/foreign static and dynamic testing techniques of MEMS are analyzed systematically. A dynamic testing platform is built up according to the modularized design based on the virtual instruments concept, integrated with optical, mechanical, electronical and computer technology. It has many excellent features, such as high precision, high speed, non-contact measurement in a large range, good expandability, high versatility, easy operation and flexible configuration. A stroboscopic drive circuit and a high-voltage amplifier circuit are designed and debugged, in order to realize stroboscopic illumination and high-voltage electrostatic stimulation of MEMS devices. A method of synchronization control between LED stroboscopic illumination and stimulation of MEMS devices is put forward, where software delay compensation is processed, with the result that the system can achieve high precision and broadband MEMS dynamic testing.
    3. The phase-shift technology is applied to monochromatic light interferometry measurement, time-average interferometry measurement and white-light vertical scanning interferometry measurement respectively. By this way, phase information of interferometric fringe can be modulated,
    which is used in the analysis of MEMS dynamic behaviors. 4. A very important parameter, fringe contrast, is proposed, which can be used in analysis such as image-quality, phase-shifting algorithm, the local phase-unwrapping algorithm and global phase-unwrapping algorithm using weighted least-square method. Appling its variation, the system can measure the out-of-plane motions of MEMS devices with time-average interferometry method and white-light vertical scanning interferometry method. 5. In MEMS out-of-plane motion measurement, the two-direction phase-unwrapping method based on time axis and space axis is demonstrated. And the time and space information of MEMS motions are combined in favor of analyzing MEMS dynamic behaviors. In addition, 3-D motions of MEMS devices can be measured by using the whole field rebuilding technology based on mask. 6. The differential measurement method of MEMS dynamic characterization is put forward. A fixed point on the tested device is chosen as a reference point. It can decrease the influence of the random noise resource on the dynamic measurement, and improve the precision and repeatability of the system.
引文
[1] 莫锦秋,梁庆华,汪国宝等,微机电系统设计与制造,北京:化学工业出版社,2004
    [2] R P Feynman, There’s plenty of room at the bottom, J. Microelectromech. Syst., 1992, 1(1): 60-66
    [3] Z H Ding, G Y Wang, Z J Wang, Microscopic interferometer for surface roughness measurement, Opt. Eng., 1996, 35(10): 2956-2961
    [4] A Harasaki, J Schmit, J C Wyant, Improved vertical-scanning interferometry, Appl. Opt., 2000, 39(13): 2107-2115
    [5] .F M Serry, M L Osborn, T Ballinger, et al, 3D MEMS metrology with the stylus profiler and the atomic force profiler, Veeco Instruments Inc.
    [6] F M Serry, T A Stout, M J Zecchino, et al, 3D MEMS metrology with optical profilers, Veeco Instruments Inc.
    [7] D Grigg, E Felkel, J Roth, et al, Static and dynamic characterization of MEMS and MOEMS devices using optical interference microscopy, Proc. SPIE, 2004, 5455: 429-435
    [8] W W Wang, R M LIN, Z Wang, Image measurement of geometrical size for three-dimensional microstructure of MEMS, J. Micromech. Microeng., 2003, 13: 300-306
    [9] J W G Tyrrell, C D Savio, R Kruger-sehm, et al, Development of a combined interference microscope objective and scanning probe microscope, Rev. Sci. Instr., 2004, 75(4): 1120-1126
    [10] J Degrieck, W Van Paepegem, P Boone, Application of digital phase-shifting shadow Moiré to micro deformation measurements of curved surface, Optics and Lasers in Engineering, 2001, 36: 29-40
    [11] S Wolfing, D Banitt, N Ben-Yosef, et al, Innovative metrology method for the 3D measurement of MEMS structures, Proc. SPIE, 2004, 5343: 255-263
    [12] R Windecker, S Franz, H J Tiziani, High-speed optical 3D roughness measurements, Proc. SPIE, 1999, 3824: 105-114
    [13] M Adachi, K Ueda, High-speed precision surface profilometry using large phase shifting, Proc. SPIE, 2003, 5264: 322-331
    [14] M Hart, D G Vass, M L Begbie, Fast surface profiling by spectral analysis of white-light interferograms with Fourier transform spectroscopy, Appl. Opt., 1998, 37(10): 1764-1769
    [15] N Metchkarov, V Sainov, P Boone, High-accuracy surface measurement using laser-diode phase-stepping interferometry, Vacuum, 2000, 58: 464-469
    [16] C Saxer, K Ferischlad, Interference microscope for sub-Angstrom surface roughness measurements, Proc. SPIE, 2003, 5144: 37-45
    [17] 王琪民,微型机械导论,合肥:中国科技技术大学出版社,2003
    [18] S H Wang, C J Tay, C Quan, et al, Determination of deflection and Young's modulus of a micro-beam by means of interferometry, Meas. Sci. Technol., 2001, 12: 1279-1286
    [19] S H Wang, C Quan, C J Tay, et al, Deformation measurement of MEMS components using optical interferometry, Meas. Sci. Technol., 2003, 14: 909-915
    [20] H D Espinosa, B C Prorok, M Fischer, A methodology for determining mechanical properties of freestanding thin films and MEMS materials, Journal of the Mechanics and Physics of Solids, 2003, 51: 47-67
    [21] M W Denhoff, A measurement of Young’s modulus and residual stress in MEMS bridges using a surface profiler, J. Micromech. Microeng., 2003, 13: 686-692
    [22] L A Starman Jr, J A Lott, M S Amer, et al, Stress characterization of MEMS microbridges by micro-Raman spectroscopy, Sensors and Actuators A, 2003, 104: 107-116
    [23] D T Read, Young's modulus of thin films by speckle interferometry, Meas. Sci. Technol., 1998, 9: 676-685
    [24] W Osten, S Seebacher, W Jüpner, The application of digital holography for the inspection of microcomponents, Proc. SPIE, 2001, 4400: 1-15
    [25] W Osten, W Jüpner, S Seebacher, et al, The qualification of optical measurement techniques for the investigation of material parameters of microcomponents, Proc. SPIE, 1999, 3825: 152-163
    [26] www.mdl.sandia.gov/micromachine/
    [27] D J Burns, H F Helbig, A system for automatic electrical and optical characterization of microelectromechanical devices, J. Microelectromech. Syst., 1999, 8(4): 473-482
    [28] L Salbut, K Patorski, M Jozwik, et al, Active microelement testing by interferometry using time-average and quasi-stroboscopic techniques, Proc. SPIE, 2003, 5145: 23-32
    [29] S Petitgrand, R Yahiaoui, A Bsseboeuf, et al, Quantitative time-averaged microscopic interferometry for micromechanical device vibration mode characterization, Proc. SPIE, 2001, 4400: 51-60
    [30] C Q Davis, D M Freeman, Using a light microscope to measure motions with nanometer accuracy, Opt. Eng., 1998, 37(4): 1299-1304
    [31] C Q Davis, Z Z Karu, D M Freeman, Equivalence of subpixel motion estimators based on optical flow and block matching, IEEE, 1995, 7-12
    [32] D M Freeman, A J Aranyosi, M J Gordon, et al, Multidimensional motion analysis of MEMS using computer microvision, Solid State Sensor & Actuator Workshop, Hilton Head, USA, 1998, 150-155
    [33] C Rembe, R S Muller, Measurement system for full three-dimensional motion characterization of MEMS, J. Microelectromech. Syst., 2002, 11(5): 479-488
    [34] C Rembe, L Muller, R S Muller, et al, Full three-dimensional motion characterization of a gimballed electrostatic microactuator, IEEE, 2001, 91-98
    [35] M R Hart, R A Conant, K Y Lau, et al, Stroboscopic interferometer system for dynamic MEMS characterization, J. Microelectromech. Syst., 2000, 9(4): 409-418
    [36] M Hart, R A Conant, K Y Lau, et al, Time-resolved measurement of optical MEMS using stroboscopic interferometry, Proc. Transducers’99, Sendai, Japan, 1999, 470-473
    [37] W Hemmert, M S Mermelstein, D M Freeman, Nanometer resolution of three-dimensional motions using video interference microscopy, IEEE International MEMS’99, Orlando, USA, 1999, 302-308
    [38] S Petitgrand, R Yahiaoui, K Danaie, et al, 3D measurement of micromechanical devices vibration mode shapes by stroboscopic microscopic interferometry, Optics and Lasers in Engineering, 2001, 36: 77-101
    [39] A Bosseboeuf, P Nerin, P Vabre, et al, 3D Full field dynamical characterization of micromechanical devices by stroboscopic white light scanning interferometry, Proc. SPIE, 2001, 4400: 36-42
    [40] A Hafiane, S Petitgrand, O Gigan, Study of subpixel image processing algorithms for MEMS in-plane vibration measurements by stroboscopic microscopy, Proc. SPIE, 2003, 5415: 169-179
    [41] A Bosseboeuf, J P Gilles, K Danaie, et al, A Versatile microscopic profilometer-vibrometer for static and dynamic characterization of micromechanical devices, Proc. SPIE, 3825: 123-133
    [42] A Bosseboeuf, S Petitgrand, Application of microscopic interferometry techniques in the MEMS field, Proc. SPIE, 2003, 5145: 1-16
    [43] S Petitgrand, A Bosseboeuf, Simultaneous mapping of phase and amplitude of MEMS vibrations by microscopic interferometry with stroboscopic illumination, Proc. SPIE, 2003, 5145: 33-44
    [44] R C Gutierrez, K V Shcheglov, T K Tang, Pulsed-source interferometry for characterization of resonant micromachined structures, IEEE, 1998, 324-327
    [45] M Zecchino, E Novak, J Schmit, Advances in optical profiling open new applications, Veeco Instruments Inc.
    [46] E Novak, Der-Shen Wan, P Unruh, et al, Dynamic MEMS measurement using a strobed interferometric system with combined coherence sensing and phase information, ICMENS’03, IEEE, 2003, 285-288
    [47] E Novak, MEMS metrology using strobed interferometry, Micro System Technologies, Munich, Germany, 2003
    [48] E Novak, Three dimensional characterization of actuating MEMS components, ASME Annual Meeting, Washington DC, USA, 2003
    [49] M Zecchino, E Novak, MEMS in motion -a new method for dynamic MEMS metrology, Veeco Instruments Inc.
    [50] E Novak, M Schurig, Dynamic MEMS measuring interferometric microscope, Veeco Instruments Inc.
    [51] J Schmit, M Krell, E Novak, Calibration of high-speed optical profiler, Veeco Instruments Inc.
    [52] Y Nishikura, A Torii, A Ueda, et al, Vibration transmission of USM rotor observed by phase-shift interferometry, IEEE International Symposium on Micromechatronics and Human Science, 2000, 107-112
    [53] Y Nishikura, A Torii, A Ueda, et al, Transient vibration measurement of an ultrasonic motor using stroboscopic phase-shift interferometry, IEEE International Symposium on Micromechatronics and Human Science, 1998, 225-230
    [54] N F Smith, D M Tanner, S E Swanson, et al, Non-destructive resonant frequency measurement on MEMS actuators, IEEE, 2001, 99-105
    [55] S Kurth, Interference microscopic techniques for dynamic testing of MEMS, Annual Research Report, Chemnitz University of Technology, Germany, 2002
    [56] P Aswendt, C D Schnidt, D Zielke, et al, ESPI solution for non-contacting MEMS-on-wafer testing, Optics and Lasers in Engineering, 2003, 40: 501-515
    [57] P Aswendt, Claus-Dieter Schmidt, Dirk Zielke, HNDT solution for MEMS testing on wafer level, The 4th International Workshop on Automatic Processing of Fringe Patterns, Bremen, Germany, 2001
    [58] P Aswendt, R Hofling, K Hiller, Testing microcomponent by speckle interferometry, Proc. SPIE, 1999, 3825: 165-173
    [59] P Aswendt, C D Schmidt, D Zielke, et al, Inspection system for MEMS characterization on wafer level using ESPI, Proc. SPIE, 2001, 4400:43-50
    [60] P Aswendt, Micromotion analysis by deep-UV speckle interferometry, Proc. SPIE, 2003, 5145: 17-22
    [61] M P Georges, P C Lemaire, Real-time stroboscopic holographic interferometry using sillenite crystals for the quantitative analysis of vibrations, Opt. Comm., 1998, 145: 249-257
    [62] 孙长库,叶声华,激光测量技术,天津:天津大学出版社,2001
    [63] K E Speller, H Goldberg, J Gannon, et al, Unique MEMS characterization solutions enabled by laser Doppler vibrometer measurements, Proc. SPIE, 2002, 4827: 478-485
    [64] C Rembe, R Kant, R S Muller, Optical Measurement Methods to Study Dynamic Behavior in MEMS, Proc. SPIE, 2001, 4400: 127-137
    [65] www.polytec.de
    [66] A Bosseboeuf, S Petitgrand, Characterization of the static and dynamic behaviour of M(O)EMS by Optical Techniques, J. Micromech. Microeng., 2003, 13: 23-33
    [67] E M Lawrence, K E Speller, Duli Yu, Laser Doppler Vibrometry for optical MEMS, Proceedings of the 5th International Conference on Vibration Measurements by Laser Techniques, Ancona, Italy, 2002
    [68] E M Lawrence, C Rembe, MEMS characterization using new hybrid laser Doppler vibrometer strobe video system, Proc. SPIE, 2004, 5343: 45-54
    [69] J S Burdess, A J Harris, D Wood, et al, A system for the dynamic characterization of microstructures, J. Microelectromech. Syst., 1997, 6: 322-328
    [70] C H Liu, A M Barzilai, J K Reynolds, et al, Characterization of a high-sensitivity micromachined tunneling accelerometer with micro-g resolution, J. Microelectromech. Syst., 1998, 7: 235-244
    [71] M Kujawinska, Modern optical measurement station for micro-materials and micro-elements studies, Sensors and Actuators A, 2002, 99: 144-153
    [72] C Rembe, B Tibken, E P Hofer, Analysis of the dynamics in microactuators using high-speed cine photomicrography, J. Microelectromech. Syst., 2001, 10(1): 137-145
    [73] S Dontai, M Norgia, V A Lodi, et al, Measurement of MEMS mechanical parameters by injection interferometry, Proc. International Confernence on Optical MEMS, Sheraton Kauai, USA, 2000, 89-90
    [74] T S Leu, A M Lanzillotto, M Amabile, et al, Analysis of fluidic and mechanical motion in MEMS by using high speed X-ray micro imaging technology, Proc. Transducers’97, Chicago, USA, 1997,149-150
    [75] B Zhao, A Asundi, Microscopic grid methods-resolution and sensitivity, Optics and Lasers in Engineering, 2001, 36: 437-450
    [76] 王琪民,单保祥,连东侠等,微电子机械系统中构件的基本力学量检测,实验力学,1997,12(4):487-499
    [77] H Huang, F Spaepen, Tensile Testing of Free-standing Cu, Ag, and Al Thin Films and Ag/Cu Multilayers, Acta Material, 2000, 48: 3261-3269
    [78] L Salbut, M Kujawinska, The optical measurement station for complex testing of microelements, Optics and Lasers in Engineering, 2001, 36: 225-240
    [79] G Benedetto, R Gavioso, R Spagnolo, Measurement of microphone membrane displacement with an optical deflection technique, Rev. Sci. Instr., 1995, 66: 5563-5566
    [80] W N Sharper, B Yuan, R Vaidyanathan, Measurements of Young’s modulus, Poisson’s ratio, and tensile strength of polysilicon, Proc. the Tenth IEEE International Workshop on Microelectromechanical Systems, Nagoya, Japan, 1997, 424-429
    [81] K E Peterson, C R Guarnieri, Young’s modulus measurements of thin films using micromechanics, J. Appl. Phys., 1979, 50: 6761-6765
    [82] 张泰华,杨业敏,赵亚溥等,MEMS 材料力学性能的测试技术,力学进展,2002,32(4):545-562
    [83] H C Tsai, W Fang, Determining the Poisson’s ratio of thin film materials using resonant method, Sensors and Actuators A, 2003, 103: 377-383
    [84] www.etec-inc.com
    [85] www.intersci.com
    [86] www.veeco.com
    [87] www.umech.com
    [88] 何小元,康新,衡伟等,微电子与微电子机械系统(MEMS)中的现代光学测试技术,机械强度,2001,23(4):447-451
    [89] 朱俊华,叶雄英,何日辉等,复合膜机械特性的片上测量,中国机械工程,2002,13(11):987-989
    [90] 姜岩峰,黄庆安,MEMS 领域中微结构机械参数在线测量方法的研究和进展,微纳电子技术,2003,4:34-39
    [91] 李代林,王向朝,王学锋等,复合光源实时微振动干涉测量仪,中国激光,2004,31(3):350-353
    [92] 杨国光,近代光学测试技术,杭州:浙江大学出版社,1997
    [93] A G Olszak, J Schmit, M G Heaton, Interferometry: technology and applications, Veeco Instruments Inc.
    [94] H Takasaki, Moiré topography, Appl. Opt., 1970, 9(4): 1457-1472
    [95] D M Meadows, W D Johnson, J B Allen, Generation of surface contours by moiré pattern, Appl. Opt., 1970, 29(4): 942-948
    [96] S W Kim, G H Kim, Thickness-profile measurement of transparent thin-film layers by white-light scanning interferometry, Appl. Opt., 1999, 38(28): 5968-5973
    [97] C O Mahony, M Hill, M Brunet, et al, Characterization of micromechanical structures using white-light interferometry, Meas. Sci. Technol., 2003, 14: 1807-1814
    [98] P J Caber, Interferometric profiler for rough surfaces, Appl. Opt., 1993, 32(19): 3438-3441
    [99] 殷纯永,现代干涉测试技术,天津:天津大学出版社,1999
    [100] G S Kino, S S C Chim, Mirau correlation microscope, Appl. Opt., 1990, 29(26): 3775-3783
    [101] 于起峰,陆宏伟,刘肖琳,基于图像的精密测量与运动测量,北京:科学出版社,2002
    [102] S Nakadate, N magome, T Honda, et al, Hybrid holographic interferometer for measuring three-dimensional deformations, Opt. Eng., 1981, 20(2): 246-252
    [103] M C Park, S W Kim, Direct quadratic polynomial fitting for fringe peak detection of white light scanning interferograms, Opt. Eng., 2000, 39(4): 952-959
    [104] K G Larkin, Efficient nonlinear algorithm for envelope detection in white light interferometry, J. Opt. Soc. Am. A, 1996, 13(4): 832-843
    [105] R J Recknagel, G Notni, Analysis of white light interferograms using wavelet methods, Opt. Comm., 1998,148: 122-128
    [106] B V Dorrio, J L Fernandez, Phase-evaluation methods in whole-field optical measurement techniques, Meas. Sci. Technol., 1999, 10: 33-35
    [107] P Carré, Installation et utilisation du comparateur photoelectrique et interferentiel du Bureau International des Poids et Mesures, Metrologia, 1966, 2: 13-23
    [108] J H Bruning, D R Herriot, J E Gallager, et al, Digital wavefront measuring interferometer for testing optical surfaces and lenses, Appl. Opt., 1974, 13: 2693-2703
    [109] Y Surrel, Design of algorithms for phase measurements by the use of phase stepping, Appl. Opt., 1996, 35(1): 51-60
    [110] D W Phillion, General methods for generating phase-shifting interferometry algorithms, Appl. Opt., 1997, 36(31): 8098-8115
    [111] I B Kong, S W Kim, General algorithm of phase-shifting interferometrty by iterative least-squares fitting, Opt. Eng., 1995, 34(1): 183-187
    [112] E W Rogala, H H Barrett, Assessing and optimizing the performance of a phase-shifting interferometer capable of measuring the complex index of refraction and the surface profile of a test surface, J. Opt. Soc. Am. A, 1998, 15(6): 1670-1685
    [113] Y Y Cheng, J C Wyant, Two-wavelength phase-shifting interferometry, Appl. Opt., 1984, 23(24): 4539-4543
    [114] Y Y Cheng, J C Wyant, Multiple-wavelength phase-shifting interferometry, Appl. Opt., 1985, 24(6): 804-806
    [115] 惠梅,表面微观形貌测量中的相移干涉术的算法与实验研究,博士学位论文,中国科学院西安光学精密机械研究所,2001
    [116] 朱日宏,相移干涉术及 PZT 相移器分析与研究,博士学位论文,华东工学院,1991
    [117] H Takajo, T Takahashi, Least-squares phase estimation from phase difference, J. Opt. Soc. Am. A, 1988, 5(3): 416-425
    [118] K Kinnstaetter, A W lohmann, J Schwider, et al, Accuracy of phase shifting interferometry, Appl. Opt., 1988, 27: 5082-5089
    [119] P J de Groot, L L Deck, Numerical simulations of vibration in phase-shifting interferometry, Appl. Opt., 1996, 35(13): 2172-2178
    [120] P L Wizinowich, Phase shifting interferometry in the presence of vibration: a new algorithm and system, Appl. Opt., 1990, 29(22): 3271-3279
    [121] J M Huntley, Suppression of phase errors from vibration in phase-shifting interferometry, J. Opt. Soc. Am. A, 1998, 15(8): 2233-2241
    [122] M Milman, Optimization approach to the suppression of vibration errors in phase-shifting interferometry, J. Opt. Soc. Am. A, 2002, 19(5): 992-1004
    [123] S Ellingsrud, G O Rosvold, Analysis of data-based TV-holography system used to measure small vibration amplitude, J. Opt. Soc. Am. A, 1992, 9: 237-251
    [124] A J Moore, J R Tyrer, F Mendoza-Santoyo, Phase extract from electronic speckle pattern interferometry addition fringe, Appl. Opt., 1994, 33: 7312-7320
    [125] D Malacara(Ed.), Optical Shop Testing 2nd edition, New York: John Wiley & Sons Inc., 1992, 501-598
    [126] J Schwider, R Burow, K E Elssner, et al, Digital wave-front measuring interferometry: some systematic error sources, Appl. Opt., 1983, 22: 3421-3432
    [127] J Schmit, K Creath, Extended averaging technique for derivation of error-compensating algorithms in phase-shifting interferometry, Appl. Opt., 1995, 34(19): 3610-3619
    [128] J M Hibino, Susceptibility of systematic error-compensating algorithms to random noise in phase-shifing interferometry, Appl. Opt., 36: 2084-2093
    [129] P Hariharan, B F Oreb, T Eiju, Digital phase-shifting interferometry: a simple error-compensating phase calculation algorithm, Appl. Opt., 1987, 26(13): 2504-2505
    [130] B Zhao, A statistical method for fringe intensity-correlated error in phase-shifting measurement-the effect of quantization error on the N-bucket algorithm, Meas. Sci. Technol., 1997, 8: 147-153
    [131] G Fornaro, G Franceschetti, R Lanari, et al, Global and local phase-unwrapping techniques: a comparison, J. Opt. Soc. Am. A, 1997, 14(10): 2702-2708
    [132] A Baldi, F Bertolino, F Ginesu, On the performance of some unwrapping algorithms, Optics and Lasers in Engineering, 2002, 37: 313-330
    [133] J R Buckland, J M Huntley, S R E Turner, Unwrapping noisy phase maps by use of a minimum-cost-matching algorithm, Appl. Opt., 1995, 34(23): 5100-5108
    [134] J A Quiroga, A Gonzalez-Cano, E Bernabeu, Stable-marriages algorithm for preprocessing phase maps with discontinuity sources, Appl. Opt., 1995, 34(23): 5029-5038
    [135] M Servin, D Malacara, F J Cuevas, Path-independent phase unwrapping of subsampled phase maps, Appl. Opt., 1996, 35(10): 1643-1649
    [136] J L Marroquin,M Tapia, R Rodriguez-Vera, et al, Parallel algorithms for phase unwrapping based on Markov random field models, J. Opt. Soc. Am. A, 1995, 12(12): 2578-2585
    [137] M Servin, R Rodriguez-vera, A J Moore, A robust cellular processor for phase unwrapping, J. Modern Opt., 1994, 41(1): 119-127
    [138] G Fornaro, G Franceschetti, R Lanari, et al, Robust phase-unwrapping techniques: a comparison, J. Opt. Soc. Am. A, 1996, 13(12): 2355-2366
    [139] M D Pritt, Comparison of path-following and least-squares phase unwrapping algorithms, IEEE, 1997, 872-874
    [140] K Itoh, Analysis of the phase unwrapping algorithm, Appl. Opt., 1982, 21(14): 2470
    [141] R M Goldstein, H A Zebker, C L Werner, Satellite radar interferimetry: Two-dimensional phase unwrapping, Radio Science, 1988, 23(4): 713-720
    [142] J M Huntley, Noise-immune phase unwrapping algorithm, Appl. Opt., 1989, 28(15): 3268-3271
    [143] S Stramaglia, L Guerriero, G Pasquariello, et al, Mean-field annealing for phase unwrapping, Appl. Opt., 1999, 38(8): 1377-1383
    [144] D J Bone, Fourier fringe analysis: the two dimensional phase unwrapping problem, Appl. Opt., 1991, 30(25): 3627-3632
    [145] Y Xu, C Ai, Simple and effective phase unwrapping technique, Proc. SPIE, 1993, 2003: 254-263
    [146] J A Quiroga, A Gonzalez-Cano, E Bernabeu, Phase-unwrapping algorithm based on an adaptive criterion, Appl. Opt., 1995, 34(14): 2560-2563
    [147] W Xu, I Cumming, A region growing algorithm for InSAR phase unwrapping, Proc. the 1996 International Geosience and Remote Sensing Symposium, Lincoln, USA, 1996, 2044-2046
    [148] D Kerr, G H Kaufmann, G E Galizzi, Unwrapping of interferometric phase-fringe maps by the discrete cosine transform, Appl. Opt., 1996, 35(5): 810-816
    [149] D C Ghjiglia, L A Romero, Minimum Lp -norm two-dimensional phase unwrapping, J. Opt. Soc. Am. A, 1996, 13(10): 1999-2013
    [150] J A Quiroga, E Bernabeu, Phase-unwrapping algorithm for noisy phase-map processing, Appl. Opt., 1994, 33(29): 6725-6731
    [151] P G Charette, L W Hunter, Robust phase-unwrapping method for phase images with high noise content, Appl. Opt., 1996, 35(19): 3506-3513
    [152] T J Flynn, Two-dimensional phase unwrapping with minimum weighted discontinuity, J. Opt. Soc. Am. A, 1997, 14(10): 2692-2701
    [153] D C Ghiglia, L A Romero, Two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative method, J. Opt. Soc. Am. A, 1994, 11(1): 107-117
    [154] M I Younus, M S Alam, Enhanced phase-stepped interferometry via appropriate filtering, Opt. Eng., 1999, 38(11): 1918-1923
    [155] 缪泓,束方军,冯传玉,基于小波分析的条纹滤波方法,实验力学,1999,14(3):354-358
    [156] F Qian, X Z Wang, X F Wang, et al, Adaptive filter for unwrapping noisy phase image in phase-stepping interferometry, Optics and Laser Tech., 2001, 33: 479-486
    [157] 金翠云,基于机器微视觉的 MEMS 平面微运动测试技术的研究,硕士学位论文,天津大学,2003
    [158] K A Goldberg, J Bokor, Fourier-transform method of phase-shift determination, Appl. Opt., 2001, 40(17): 2886-2894
    [159] X Chen, M Gramaglia, J A Yeazell, Phase-shift calibration algorithm for phase-shifting interferometry, J. Opt. Soc. Am. A, 2000, 17(11): 2061-2066
    [160] Y Y Cheng, J C Wyant, Phase shifter calibration in phase-shifting interferometry, J. Microelectromech. Syst., 1997, 6(4): 322-328
    [161] J S Harris, R L Fusek, J S Marcheski, Stroboscopic interferometer, Appl. Opt., 1979, 18(14): 2368-2371
    [162] J F Biegen, Calibration requirements for Mirau and Linnik microscope interferometers, Appl. Opt., 1989, 28(11): 1972-1974
    [163] C Q Davis, D M Freeman, Statistics of subpixel registration algorithms based on spatiotemporal gradients or block matching, Opt. Eng., 1998, 37(4): 1290-1298
    [164] B Cretin, B Serio, P Vairac, In-plane optical measurement of vibrations of MEMS: gradient methods using interferometry and image processing, Proc. SPIE, 2003, 5145: 161-168
    [165] J Schmit, J C Wyant, Large field of view, high spatial resolution surface measurements, Veeco Instruments Inc.
    [166] M Zecchino, A Olszak, High speed surface measurement with lateral scanning white light interferometry, Veeco Instruments Inc.
    [167] D J Bone, H A Bachor, R J Sandeman, Fringe-pattern analysis using a 2-D Fourier transform, Appl. Opt., 1986, 25(10): 1653-1660
    [168] M Takeda, H Ina, S Kobayashi, Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry, J. Opt. Soc. Am. A, 1982, 72(1): 156-159
    [169] M Takeda, K Mutoh, Fourier transform profilometry for the automatic measurement of 3-D object shapes, Appl. Opt., 1983, 22(24): 3977-3982
    [170] C Roddier, F Roddier, Interferogram analysis using Fourier transform techniques, Appl. Opt., 1987, 26(9): 1668-1673
    [171] M Kujawinska, J Wojciak, High Accuracy Fourier transform fringe pattern analysis, Optics and Lasers in Engineering, 1991, 14: 325-339
    [172] 钱克矛,光学干涉计量中的位相测量方法研究,博士学位论文,中国科学技术大学,2000
    [173] P Sandoz, J Calatroni, G Tribillon, White light interferometry -innovative algorithms and performances, Proc. SPIE, 1999, 3572: 172-175
    [174] P Pavlicek, J Soubusta, Theoretical measurement uncertainty of white-light interferometry on rough surfaces, Appl. Opt., 2003, 42(10): 1809-1813
    [175] B Bowe, V Toal, White light interferometric surface profiler, Opt. Eng., 1998, 37(6): 1796-1799
    [176] P Groot, L Deck, Surface profiling by analysis of white-light interferograms in the spatial frequency domain, J. Modern Opt., 1995, 42(2): 389-401
    [177] P Sandoz, G Tribillon, Profilometry by zero-order interference fringe identification, J. Modern Opt., 1993, 40(9): 1691-1700
    [178] P Sandoz, An algorithm for profilometry by white-light phase-shifting interferometry, J. Modern Opt., 1996, 43(8): 1545-1554
    [179] P Sandoz, R Devillers, A Plata, Unambiguous profilometry by fringe-order identification in white-light phase-shifting interferometry, J. Modern Opt., 1997, 44(3): 519-534
    [180] A Olszak, J Schmit, High-stability white-light interferometry with reference signal for real-time correction of scanning errors, Opt. Eng., 42(1): 54-59
    [181] D N Wang, C Shu, Improving measurement resolution in white light interferometry, Proc. SPIE, 1999, 3860: 375-381
    [182] S M Ryoo, Y K Seong, T S Choi, 3D profilometry based on the white light interferometer for rough surfaces, Proc. SPIE, 1999, 3782: 619-626

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700