Nrf2-ARE通路在大鼠脊髓损伤后的神经保护作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Neuroprotection of Nrf2-ARE Activation Following Spinal Cord Injury in Rats
  • 作者:王笑亮
  • 论文级别:博士
  • 学科专业名称:外科学
  • 学位年度:2011
  • 导师:王汉东
  • 学科代码:100210
  • 学位授予单位:南京大学
  • 论文提交日期:2011-05-12
摘要
第一章绪论
     本章旨在介绍本论文相关研究背景,包括脊髓损伤;Keap1-Nrf2-ARE的结构及激活模式;Nrf2的神经保护作用;Nrf2与NF-κB之间的相互关系以及莱菔硫烷的药代动力学。
     第二章Nrf2-ARE通路激活对大鼠脊髓损伤的神经保护作用
     脊髓损伤(spinal cord injury, SCI)继发性损伤常导致氧化应激损伤、炎症反应、线粒体功能丧失的产生,最终导致细胞死亡。核因子E2相关因子2-抗氧化反应元件(nuclear factor E2-related factor 2 antioxidant response element, Nrf2-ARE)通路能有效地调节上述继发性损伤机制。因此,在本研究中我们探讨Nrf2-ARE通路激活是否对大鼠脊髓损伤具有神经保护作用。使用NYU冲击仪制得雌性Fischer大鼠胸段(T8)脊髓中度损伤模型。损伤后,Nrf2蛋白在脊髓组织多种神经细胞(神经元、星形细胞、小胶质细胞和少突胶质细胞)细胞质内活化、积聚并逐渐向细胞核内转移,并启动ARE调控的保护因子如血红素加氧酶1(heme oxygenasel, HO-1)和谷氨酸半胱氨酸链接酶催化亚单位(glutamate-cysteine ligase catalytic subunit, GCLC)的表达。莱菔硫烷(Sulforaphane, SFN)作为Nrf2-ARE通路激动剂能有效地提高大鼠脊髓组织中Nrf2及GCLC的含量,同时抑制核因子κB (nuclear factor-KB, NF-κB)的活化以及降低炎症因子如白介素1β(interleukin-1β,IL-1β)和肿瘤坏死因子α(tumor necrosis factor-α, TNF-α)的表达,最终减少脊髓损伤体积并改善大鼠运动协调性。这些结果表明,Nrf2-ARE的激活对大鼠脊髓损伤具有神经保护作用,同时SFN也可作为治疗脊髓损伤的神经保护药物。Ⅲ
     第三章SFN抑制ATP诱导的NF-κB激活的作用
     第二章实验研究已经证实,莱菔硫烷(sulforaphane, SFN)可以有效地提高大鼠损伤脊髓组织中核因子E2相关因子2(nuclear factor E2-related factor 2,Nrf2)及下游保护因子的表达,同时抑制核因子κB (nuclear factor-κB, NF-κB)的激活及下游炎症因子的表达,最终改善大鼠运动功能。然而,Nrf2与NF-κB之间具体的作用机制尚未明确。本章节实验旨在使用原代大鼠神经元培养,明确Nrf2的抗炎作用及Nrf2与NF-κB具体相互作用机制。原代大鼠神经元使用不同浓度SFN (0, 10μM和20μM)预处理2小时,随后加入1mM ATP诱导NF-κB通路的激活。使用蛋白免疫印迹法检测Nrf2及下游因子、炎症因子和phospho-IκBα的含量。结果显示,SFN呈浓度依赖性的提高大鼠神经元中Nrf2及下游保护因子的含量,同时抑制细胞中ATP诱导的Caspase-1、白介素1β(Inteluekin-1β, IL-1β)及肿瘤坏死因子α(tumor necrosis factorα, TNF-α)的表达;另外,IKBα的磷酸化程度及IL-1β前体(pro-IL-1β)表达也被明显抑制,提示ATP诱导的NF-κB通路被SFN抑制。综上所述,SFN不仅能上调大鼠神经元内Nrf2及下游保护因子的表达,同时抑制ATP诱导的NF-κB活化及下游因子表达。本实验揭示了Nrf2与NF-κB之间复杂的相互作用中一种新的作用机制。
     第四章Nrf2-ARE在神经元、星形细胞和小胶质细胞损伤后的表达
     在第二章中,激光共聚焦方法已经证实在大鼠脊髓损伤1天后,核因子E2相关因子2(nuclear factor E2-related factor 2, Nrf2)能在脊髓前角区域内的神经元、星形细胞、少突胶质细胞以及小胶质细胞中激活。但是,Nrf2-ARE在各种细胞损伤后的表达情况目前还没有研究。在本章中,使用可控性的细胞损伤仪对各种神经细胞进行损伤,然后使用蛋白免疫印迹法测定Nrf2及下游因子在细胞损伤后的蛋白水平,明确Nrf2-ARE通路在各种神经细胞损伤后的表达情况。在神经元中,Nrf2-ARE通路在损伤后15分钟即被激活。在星形细胞中,Nrf2蛋白水平在损伤后随时间推移而逐渐降低,下游因子蛋白水平也未见升高;在小胶质细胞中,Nrf2激活在细胞损伤后1小时出现,晚于在神经元中的激活。这些结果表明,Nrf2-ARE通路在各种神经细胞损伤后的表达各不相同,提示各种神经细胞在组织中的功能及作用各不相同。各种细胞类型中Nrf2-ARE具体的神经保护机制以及各种细胞之间的相互作用值得进一步研究。
ChapterⅠIntroduction
     In this chapter, the background of this study is introduced, including the reviews of spinal cord injury, structure and activation of Keap1-Nrf2-ARE pathway, neuroprotection of Nrf2, interactions between Nrf2 and NF-κB and pharmacokinetic of sulforaphane.
     Chapter II Activation of the Nrf2-ARE Pathway is Neuroprotective Following Spinal Cord Injury
     The activation of oxidative damage, neuroinflammation and mitochondrial dysfunction has been implicated in secondary pathomechanisms following spinal cord injury (SCI). These pathophysiological processes lead to cell death and are tightly regulated by nuclear factor E2 related factor 2 antioxidant response element (Nrf2-ARE) signaling. Here, we investigated whether activation of Nrf2-ARE is neuroprotective following SCI. Female Fischer rats were subjected to mild thoracic SCI (T8) using the New York University injury device. As early as 30 min after SCI, levels of Nrf2 transcription factor were increased in both nuclear and cytoplasmic fractions and remained elevated for 3 days. Treatment of injured rats with sulforaphane (SFN), an activator of Nrf2-ARE signaling, significantly increased levels of Nrf2 and glutamate-cysteine ligase (GCL), a rate-limiting enzyme for synthesis of glutathione, and decreased levels of inflammatory cytokines, interleukin-1β(IL-1β) and tumor necrosis factor-a (TNF-α) thus leading to a reduction in contusion volume and improvement in coordination. These results show that activation of the Nrf2-ARE pathway following SCI is neuroprotective and that SFN presents a viable compound for neurotherapeutic intevention in blocking pathomechanisms following SCI.
     ChapterⅢ
     Sulforaphane suppresses ATP-induced nuclear factor-κB activation via Nrf2 in primary rat neurons
     Previous studies have shown treatment with sulforaphane (SFN), an activator of nuclear factor E2-related factor 2 (Nrf2), significantly increased levels of Nrf2 and downstream signalings, and decreased levels of inflammatory cytokines by suppressing nuclear factor-KB (NF-κB) pathway. However, the precise mechanism is not fully documented. The role of this study was to investigate the molecular mechanisms of Nrf2 involved in anti-inflammation by depressing NF-κB in primary rat neurons. Dosage of 1 mM ATP was added for 45 min to induce NF-κB activation. Cells were pretreated without SFN, or with SFN (10μM, 20μM) for 2 hrs. Immunoblotting was performed to detect levels of Nrf2 and downstream signalings, cytokines, and phospho-1κBα. SFN increased levels of Nrf2 and downstream signalings, and attenuated the ATP-induced increase of Caspase-1, IL-1βand TNF-α, in a concentration-dependent manner. Consequently, phosphorylation of IκBαand synthesis of pro-IL-1βwere inhibited, which indicated NF-κB pathway was depressed. This study suggests one possible molecular mechanism of Nrf2 anti-inflammation ability by regulating NF-κB.
     Chapter IV
     Expression of Nrf2-ARE in neurons, astrocytes and microglia after injury:an in vitro study
     In Chapter II, it is demonstrated by using laser scanning confocal scanning, that Nrf2 is activated in motor neurons, astrocytes, oligodendrocytes and microglia in the ventral horn of cords 1 day following spinal cord injury (SCI) in rats. However, Nrf2 expression pattern of each cell type after injury remains unknown. In this chapter, a controlled cell injury model was employed to investigate Nrf2 expression in rat neurons, astrocytes and microglia. Immunoblotting was carried out to determine levels of Nrf2 protein and downstream proteins. Nrf2-ARE was activated 15 min after injury in neurons; In astrocytes, trauma decreased Nrf2 levels time-dependently, no significant changes were observed in HO-1 and NQ01; Nrf2 activation is delayed than in neurons following injury. This study described the Nrf2 expression in each cell type after injury, however further studies are needed to accomplish the precise mechanisms of Nrf2 neuroprotection in each cell type and the interactions between cell types after injury.
引文
[1]Ackery, A., Tator, C., Krassioukov, A., A global perspective on spinal cord injury epidemiology, J. Neurotrauma 21 (2004) 1355-1370.
    [2]Tyor, W.R., Avgeropoulos, N., Ohlandt, G., Hogan, E.L., Treatment of spinal cord impact injury in the rat with transforming growth factor-beta, J. Neurol. Sci.200 (2002) 33-41.
    [3]Nandoe Tewarie, R.D., Hurtado, A., Bartels, R.H., Grotenhuis, J.A., Oudega, M., A clinical perspective of spinal cord injury, NeuroRehabilitation 27 (2010) 129-139.
    [4]Bracken, M.B., Shepard, M.J., Collins, W.F., Holford, T.R., Young, W., Baskin, D.S., Eisenberg, H.M., Flamm, E., Leo-Summers, L., Maroon, J., et al., A randomized, controlled trial of methylprednisolone or naloxone in the treatment of acute spinal-cord injury. Results of the Second National Acute Spinal Cord Injury Study, N. Engl. J. Med.322 (1990) 1405-1411.
    [5]Robins, S.L., Fehlings, M.G., Models of experimental spinal cord injury: Translational relevance and impact, Drug Discovery Today: Disease Models 5 (2008) 5-11.
    [6]de Rivero Vaccari, J.P., Regulation of the NALP1 inflammasome in neurons:A therapeutic target for spinal cord injury. Department of Physiology & Biophysics, Vol. Phd, University of Miami, Miami,2007.
    [7]Motohashi, H., O'Connor, T., Katsuoka, F., Engel, J.D., Yamamoto, M., Integration and diversity of the regulatory network composed of Maf and CNC families of transcription factors, Gene 294 (2002) 1-12.
    [8]Itoh, K., Wakabayashi, N., Katoh, Y., Ishii, T., Igarashi, K., Engel, J.D., Yamamoto, M., Keapl represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain, Genes Dev.13 (1999) 76-86.
    [9]Motohashi, H., Yamamoto, M., Nrf2-Keapl defines a physiologically important stress response mechanism, Trends Mol Med 10 (2004) 549-557.
    [10]Itoh, K., Chiba, T., Takahashi, S., Ishii, T., Igarashi, K., Katoh, Y., Oyake, T., Hayashi, N., Satoh, K., Hatayama, I., Yamamoto, M., Nabeshima, Y., An Nrf2/small Maf heterodimer mediates the induction of phase Ⅱ detoxifying enzyme genes through antioxidant response elements, Biochem. Biophys. Res. Commun.236 (1997) 313-322.
    [11]Katsuoka, F., Motohashi, H., Ishii, T., Aburatani, H., Engel, J.D., Yamamoto, M., Genetic evidence that small maf proteins are essential for the activation of antioxidant response element-dependent genes, Mol. Cell. Biol.25 (2005] 8044-8051.
    [12]Nioi, P., Nguyen, T., Sherratt, P.J., Pickett, C.B., The carboxy-terminal Neh3 domain of Nrf2 is required for transcriptional activation, Mol. Cell. Biol.25 (2005) 10895-10906.
    [13]Katoh, Y., Itoh, K., Yoshida, E., Miyagishi, M., Fukamizu, A., Yamamoto, M., Two domains of Nrf2 cooperatively bind CBP, a CREB binding protein, and synergistically activate transcription, Genes Cells 6 (2001) 857-868.
    [14]McMahon, M., Thomas, N., Itoh, K., Yamamoto, M., Hayes, J.D., Redox-regulated turnover of Nrf2 is determined by at least two separate protein domains, the redox-sensitive Neh2 degron and the redox-insensitive Neh6 degron, J. Biol. Chem.279 (2004) 31556-31567.
    [15]Snyder, G.H., Cennerazzo, M.J., Karalis, A.J., Field, D., Electrostatic influence of local cysteine environments on disulfide exchange kinetics, Biochemistry (Mosc).20 (1981) 6509-6519.
    [16]Dinkova-Kostova, A.T., Holtzclaw, W.D., Cole, R.N., Itoh, K., Wakabayashi, N., Katoh, Y., Yamamoto, M., Talalay, P., Direct evidence that sulfhydryl groups of Keapl are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants, Proc. Natl. Acad. Sci. U. S. A. 99 (2002) 11908-11913.
    [17]Zhang, D.D., Hannink, M., Distinct cysteine residues in Keapl are required for Keap1-dependent ubiquitination of Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress, Mol. Cell. Biol.23 (2003) 8137-8151.
    [18]Levonen, A.L., Landar, A., Ramachandran, A., Ceaser, E.K., Dickinson, D.A., Zanoni, G., Morrow, J.D., Darley-Usmar, V.M., Cellular mechanisms of redox cell signalling:role of cysteine modification in controlling antioxidant defences in response to electrophilic lipid oxidation products, Biochem. J. 378 (2004) 373-382.
    [19]Wakabayashi, N., Dinkova-Kostova, A.T., Holtzclaw, W.D., Kang, M.I., Kobayashi, A., Yamamoto, M., Kensler, T.W., Talalay, P., Protection against electrophile and oxidant stress by induction of the phase 2 response:fate of cysteines of the Keapl sensor modified by inducers, Proc. Natl. Acad. Sci. U. S. A.101 [2004] 2040-2045.
    [20]Yamamoto, T., Suzuki, T., Kobayashi, A., Wakabayashi, J., Maher, J., Motohashi, H., Yamamoto, M., Physiological significance of reactive cysteine residues of Keapl in determining Nrf2 activity, Mol. Cell. Biol.28 (2008] 2758-2770.
    [21]Wang, X.J., Sun, Z., Chen, W., Li, Y., Villeneuve, N.F., Zhang, D.D., Activation of Nrf2 by arsenite and monomethylarsonous acid is independent of Keap1-C151:enhanced Keap1-Cul3 interaction, Toxicol. Appl. Pharmacol. 230 (2008) 383-389.
    [22]Baird, L, Dinkova-Kostova, A.T., The cytoprotective role of the Keap1-Nrf2 pathway, Arch. Toxicol. (2011).
    [23]Rushmore, T.H., Pickett, C.B., Transcriptional regulation of the rat glutathione S-transferase Ya subunit gene. Characterization of a xenobiotic-responsive element controlling inducible expression by phenolic antioxidants, J. Biol. Chem.265 (1990) 14648-14653.
    [24]Friling, R.S., Bensimon, A., Tichauer, Y., Daniel, V., Xenobiotic-inducible expression of murine glutathione S-transferase Ya subunit gene is controlled by an electrophile-responsive element, Proc. Natl. Acad. Sci. U. S. A.87 (1990) 6258-6262.
    [25]Venugopal, R., Jaiswal, A.K., Nrfl and Nrf2 positively and c-Fos and Fral negatively regulate the human antioxidant response element-mediated expression of NAD(P)H:quinone oxidoreductasel gene, Proc. Natl. Acad. Sci. U. S. A.93 (1996) 14960-14965.
    [26]He, C.H., Gong, P., Hu, B., Stewart, D., Choi, M.E., Choi, A.M., Alam, J., Identification of activating transcription factor 4 (ATF4) as an Nrf2-interacting protein. Implication for heme oxygenase-1 gene regulation, J. Biol. Chem.276 (2001) 20858-20865.
    [27]Zhou, W., Lo, S.C., Liu, J.H., Hannink, M., Lubahn, D.B., ERRbeta:a potent inhibitor of Nrf2 transcriptional activity, Mol. Cell. Endocrinol.278 (2007) 52-62.
    [28]Wang, X.J., Hayes, J.D., Henderson, C.J., Wolf, C.R., Identification of retinoic acid as an inhibitor of transcription factor Nrf2 through activation of retinoic acid receptor alpha, Proc. Natl. Acad. Sci. U. S. A.104 (2007) 19589-19594.
    [29]Dhakshinamoorthy, S., Jain, A.K., Bloom, D.A., Jaiswal, A.K., Bach1 competes with Nrf2 leading to negative regulation of the antioxidant response element (ARE)-mediated NAD(P)H:quinone oxidoreductase 1 gene expression and induction in response to antioxidants, J. Biol. Chem. 280 (2005) 16891-16900.
    [30]Gong, P., Stewart, D., Hu, B., Vinson, C., Alam, J., Multiple basic-leucine zipper proteins regulate induction of the mouse heme oxygenase-1 gene by arsenite, Arch. Biochem. Biophys.405 (2002) 265-274.
    [31]Li, J., Lee, J.M., Johnson, J.A., Microarray analysis reveals an antioxidant responsive element-driven gene set involved in conferring protection from an oxidative stress-induced apoptosis in IMR-32 cells, J. Biol. Chem. 277(2002)388-394.
    [32]Thimmulappa, R.K., Mai, K.H., Srisuma, S., Kensler, T.W., Yamamoto, M., Biswal, S., Identification of Nrf2-regulated genes induced by the chemopreventive agent sulforaphane by oligonucleotide microarray, Cancer Res.62 (2002) 5196-5203.
    [33]Cho, H.Y., Reddy, S.P., Debiase, A., Yamamoto, M., Kleeberger, S.R., Gene expression profiling of NRF2-mediated protection against oxidative injury, Free Radic. Biol. Med.38 (2005) 325-343.
    [34]Lyakhovich, V.V., Vavilin, V.A., Zenkov, N.K., Menshchikova, E.B., Active defense under oxidative stress. The antioxidant responsive element, Biochemistry (Mosc).71 (2006) 962-974.
    [35]Enomoto, A., Itoh, K., Nagayoshi, E., Haruta, J., Kimura, T., O'Connor, T., Harada, T., Yamamoto, M., High sensitivity of Nrf2 knockout mice to acetaminophen hepatotoxicity associated with decreased expression of ARE-regulated drug metabolizing enzymes and antioxidant genes, Toxicol. Sci.59 (2001) 169-177.
    [36]Jin, W., Wang, H., Ji, Y., Zhu, L., Yan, W., Qiao, L., Yin, H., Genetic ablation of Nrf2 enhances susceptibility to acute lung injury after traumatic brain injury in mice, Exp Biol Med (Maywood) 234 (2009) 181-189.
    [37]Jin, W., Wang, H., Yan, W., Xu, L., Wang, X., Zhao, X., Yang, X., Chen, G., Ji, Y., Disruption of Nrf2 enhances upregulation of nuclear factor-kappaB activity, proinflammatory cytokines, and intercellular adhesion molecule-1 in the brain after traumatic brain injury, Mediators Inflamm. 2008 (2008) 725174.
    [38]Wakabayashi, N., Itoh, K., Wakabayashi, J., Motohashi, H., Noda, S., Takahashi, S., Imakado, S., Kotsuji, T., Otsuka, F., Roop, D.R., Harada, T., Engel, J.D., Yamamoto, M., Keap1-null mutation leads to postnatal lethality due to constitutive Nrf2 activation, Nat. Genet.35 (2003) 238-245.
    [39]Nakaso, K., Yano, H., Fukuhara, Y., Takeshima, T., Wada-Isoe, K., Nakashima, K., PI3K is a key molecule in the Nrf2-mediated regulation of antioxidative proteins by hemin in human neuroblastoma cells, FEBS Lett. 546 (2003) 181-184.
    [40]Huang, H.C., Nguyen, T., Pickett, C.B., Phosphorylation of Nrf2 at Ser-40 by protein kinase C regulates antioxidant response element-mediated transcription, J. Biol. Chem.277 (2002) 42769-42774.
    [41]Xu, C., Yuan, X., Pan, Z., Shen, G., Kim, J.H., Yu, S., Khor, T.O., Li, W., Ma, J., Kong, A.N., Mechanism of action of isothiocyanates:the induction of ARE-regulated genes is associated with activation of ERK and JNK and the phosphorylation and nuclear translocation of Nrf2, Mol Cancer Ther 5 (2006) 1918-1926.
    [42]Kobayashi, M., Yamamoto, M., Nrf2-Keap1 regulation of cellular defense mechanisms against electrophiles and reactive oxygen species, Adv. Enzyme Regul.46 (2006) 113-140.
    [43]Zhang, D.D., Lo, S.C., Cross, J.V., Templeton, D.J., Hannink, M., Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex, Mol. Cell. Biol.24 (2004) 10941-10953.
    [44]Surh, Y.J., Cancer chemoprevention with dietary phytochemicals, Nat Rev Cancer 3 (2003) 768-780.
    [45]Vargas, M.R., Johnson, J.A., The Nrf2-ARE cytoprotective pathway in astrocytes, Expert Rev Mol Med 11 (2009) e17.
    [46]Shibahara, S., Muller, R., Taguchi, H., Yoshida, T., Cloning and expression of cDNA for rat heme oxygenase, Proc. Natl. Acad. Sci. U. S. A.82 (1985) 7865-7869.
    [47]Maines, M.D., Trakshel, G.M., Kutty, R.K., Characterization of two constitutive forms of rat liver microsomal heme oxygenase. Only one molecular species of the enzyme is inducible, J. Biol. Chem.261 (1986) 411-419.
    [48]Schipper, H.M., Bernier, L., Mehindate, K., Frankel, D., Mitochondrial iron sequestration in dopamine-challenged astroglia:role of heme oxygenase-1 and the permeability transition pore, J. Neurochem.72 (1999) 1802-1811.
    [49]Regan, R.F., Guo, Y., Kumar, N., Heme oxygenase-1 induction protects murine cortical astrocytes from hemoglobin toxicity, Neurosci. Lett.282 (2000) 1-4.
    [50]Mehindate, K., Sahlas, D.J., Frankel, D., Mawal, Y., Liberman, A., Corcos, J., Dion, S., Schipper, H.M., Proinflammatory cytokines promote glial heme oxygenase-1 expression and mitochondrial iron deposition:implications for multiple sclerosis, J. Neurochem.77 (2001) 1386-1395.
    [51]Fauconneau, B., Petegnief, V., Sanfeliu, C., Piriou, A., Planas, A.M., Induction of heat shock proteins (HSPs) by sodium arsenite in cultured astrocytes and reduction of hydrogen peroxide-induced cell death, J. Neurochem.83 (2002) 1338-1348.
    [52]Poss, K.D., Tonegawa, S., Reduced stress defense in heme oxygenase 1-deficient cells, Proc. Natl. Acad. Sci. U. S. A.94 (1997) 10925-10930.
    [53]Chen, K., Gunter, K., Maines, M.D., Neurons overexpressing heme oxygenase-1 resist oxidative stress-mediated cell death, J. Neurochem.75 (2000) 304-313.
    [54]Schipper, H.M., Song, W., Zukor, H., Hascalovici, J.R., Zeligman, D., Heme oxygenase-1 and neurodegeneration:expanding frontiers of engagement, J. Neurochem.110 (2009) 469-485.
    [55]Hsieh, C.H., Rau, C.S., Hsieh, M.W., Chen, Y.C., Jeng, S.F., Lu, T.H., Chen, S.S., Simvastatin-induced heme oxygenase-1 increases apoptosis of Neuro 2A cells in response to glucose deprivation, Toxicol. Sci.101 (2008) 112-121.
    [56]Aoyama, K., Watabe, M., Nakaki, T., Regulation of neuronal glutathione synthesis, J Pharmacol Sci 108 (2008) 227-238.
    [57]Bains, J.S., Shaw, C.A., Neurodegenerative disorders in humans:the role of glutathione in oxidative stress-mediated neuronal death, Brain Res. Brain Res. Rev.25 (1997) 335-358.
    [58]Koppal, T., Drake, J., Yatin, S., Jordan, B., Varadarajan, S., Bettenhausen, L., Butterfield, D.A., Peroxynitrite-induced alterations in synaptosomal membrane proteins:insight into oxidative stress in Alzheimer's disease, J. Neurochem.72 (1999) 310-317.
    [59]Cooper, A.J., Kristal, B.S., Multiple roles of glutathione in the central nervous system, Biol. Chem.378 (1997) 793-802.
    [60]Poot, M., Teubert, H., Rabinovitch, P.S., Kavanagh, T.J., De novo synthesis of glutathione is required for both entry into and progression through the cell cycle, J. Cell. Physiol.163 (1995) 555-560.
    [61]Sagara, J., Makino, N., Glutathione induces neuronal differentiation in rat bone marrow stromal cells, Neurochem. Res.33 (2008) 16-21.
    [62]Tanaka,J., Toku, K., Zhang, B., Ishihara, K., Sakanaka, M., Maeda, N., Astrocytes prevent neuronal death induced by reactive oxygen and nitrogen species, Glia 28 (1999) 85-96.
    [63]Rowland, L.P., Shneider, N.A., Amyotrophic lateral sclerosis, N. Engl.J. Med.344 (2001) 1688-1700.
    [64]Rosen, D.R., Siddique, T., Patterson, D., Figlewicz, D.A., Sapp, P., Hentati, A., Donaldson, D., Goto, J., O'Regan, J.P., Deng, H.X., et al., Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis, Nature 362 (1993) 59-62.
    [65]Sarlette, A., Krampfl, K., Grothe, C., Neuhoff, N., Dengler, R., Petri, S., Nuclear erythroid 2-related factor 2-antioxidative response element signaling pathway in motor cortex and spinal cord in amyotrophic lateral sclerosis, J. Neuropathol. Exp. Neurol.67 (2008) 1055-1062.
    [66]Vargas, M.R., Johnson, D.A., Sirkis, D.W., Messing, A., Johnson, J.A., Nrf2 activation in astrocytes protects against neurodegeneration in mouse models of familial amyotrophic lateral sclerosis, J. Neurosci.28 (2008) 13574-13581.
    [67]Thomas, B., Beal, M.F., Parkinson's disease, Hum. Mol. Genet.16 Spec No.2 (2007) R183-194.
    [68]Alam, Z.I., Daniel, S.E., Lees, A.J., Marsden, D.C., Jenner, P., Halliwell, B., A generalised increase in protein carbonyls in the brain in Parkinson's but not incidental Lewy body disease, J. Neurochem.69 (1997) 1326-1329.
    [69]van Muiswinkel, F.L., de Vos, R.A., Bol, J.G., Andringa, G., Jansen Steur, E.N., Ross, D., Siegel, D., Drukarch, B., Expression of NAD(P)H:quinone oxidoreductase in the normal and Parkinsonian substantia nigra, Neurobiol. Aging 25 (2004) 1253-1262.
    [70]Burton, N.C., Kensler, T.W., Guilarte, T.R., In vivo modulation of the Parkinsonian phenotype by Nrf2, Neurotoxicology 27 (2006) 1094-1100.
    [71]Yan, W., Wang, H.D., Feng, X.M., Ding, Y.S., Jin, W., Tang, K., The expression of NF-E2-related factor 2 in the rat brain after traumatic brain injury,J. Trauma 66 (2009) 1431-1435.
    [72]Yan, W., Wang, H.D., Hu, Z.G., Wang, Q.F., Yin, H.X., Activation of Nrf2-ARE pathway in brain after traumatic brain injury, Neurosci. Lett.431 (2008) 150-154.
    [73]Yan, W., Wang, H.D., Zhu, L., Feng, X.M., Qiao, L., Jin, W., Tang, K., Traumatic brain injury induces the activation of the Nrf2-ARE pathway in the lung in rats, Brain Inj.22 (2008) 802-810.
    [74]Zhao, J., Moore, A.N., Redell, J.B., Dash, P.K., Enhancing expression of Nrf2-driven genes protects the blood brain barrier after brain injury, J. Neurosci.27 (2007) 10240-10248.
    [75]Satoh, T., Okamoto, S.I., Cui, J., Watanabe, Y., Furuta, K., Suzuki, M., Tohyama, K., Lipton, S.A., Activation of the Keap1/Nrf2 pathway for neuroprotection by electrophilic [correction of electrophillic] phase II inducers, Proc. Natl. Acad. Sci. U. S. A.103 (2006) 768-773.
    [76]Yang, C., Zhang, X., Fan, H., Liu, Y., Curcumin upregulates transcription factor Nrf2, HO-1 expression and protects rat brains against focal ischemia, Brain Res.1282 (2009) 133-141.
    [77]Wang, J., Fields, J., Zhao, C., Langer, J., Thimmulappa, R.K., Kensler, T.W., Yamamoto, M., Biswal, S., Dore, S., Role of Nrf2 in protection against intracerebral hemorrhage injury in mice, Free Radic. Biol. Med.43 (2007) 408-414.
    [78]Zhao, X., Sun, G., Zhang, J., Strong, R., Dash, P.K., Kan, Y.W., Grotta, J.C., Aronowski, J., Transcription factor Nrf2 protects the brain from damage produced by intracerebral hemorrhage, Stroke 38 (2007) 3280-3286.
    [79]Wakabayashi, N., Slocum, S.L., Skoko, J.J., Shin, S., Kensler, T.W., When NRF2 talks, who's listening?, Antioxid Redox Signal 13 (2010) 1649-1663.
    [80]Li, W., Khor, T.O., Xu, C., Shen, G.; Jeong, W.S., Yu, S., Kong, A.N., Activation of Nrf2-antioxidant signaling attenuates NFkappaB-inflammatory response and elicits apoptosis, Biochem. Pharmacol.76 (2008) 1485-1489.
    [81]Heiss, E.; Herhaus, C., Klimo, K., Bartsch, H., Gerhauser, C., Nuclear factor kappa B is a molecular target for sulforaphane-mediated anti-inflammatory mechanisms,J. Biol. Chem.276 (2001) 32008-32015.
    [82]Karuri, A.R., Huang, Y., Bodreddigari, S., Sutter, C.H., Roebuck, B.D., Kensler, T.W., Sutter, T.R.,3H-1,2-dithiole-3-thione targets nuclear factor kappaB to block expression of inducible nitric-oxide synthase, prevents hypotension, and improves survival in endotoxemic rats, J. Pharmacol. Exp.Ther.317 (2006) 61-67.
    [83]Sriram, N., Kalayarasan, S., Sudhandiran, G., Epigallocatechin-3-gallate augments antioxidant activities and inhibits inflammation during bleomycin-induced experimental pulmonary fibrosis through Nrf2-Keap1 signaling, Pulm. Pharmacol. Ther.22 (2009) 221-236.
    [84]Liu, Y.C., Hsieh, C.W., Wu, C.C., Wung, B.S., Chalcone inhibits the activation of NF-kappaB and STAT3 in endothelial cells via endogenous electrophile, Life Sci.80 (2007) 1420-1430.
    [85]Liu, G.H., Qu, J., Shen, X., NF-kappaB/p65 antagonizes Nrf2-ARE pathway by depriving CBP from Nrf2 and facilitating recruitment of HDAC3 to MafK, Biochim. Biophys. Acta 1783 (2008) 713-727.
    [86]Seldon, M.P., Silva, G., Pejanovic, N., Larsen, R., Gregoire, I.P., Filipe, J., Anrather, J., Soares, M.P., Heme oxygenase-1 inhibits the expression of adhesion molecules associated with endothelial cell activation via inhibition of NF-kappaB RelA phosphorylation at serine 276, J. Immunol. 179 (2007) 7840-7851.
    [87]Jun, C.D., Kim, Y., Choi, E.Y., Kim, M., Park, B., Youn, B., Yu, K., Choi, K.S., Yoon, K.H., Choi, S.C., Lee, M.S., Park, K.I., Choi, M., Chung, Y., Oh, J., Gliotoxin reduces the severity of trinitrobenzene sulfonic acid-induced colitis in mice:evidence of the connection between heme oxygenase-1 and the nuclear factor-kappaB pathway in vitro and in vivo, Inflamm. Bowel Dis.12 (2006) 619-629.
    [88]Rushworth, S.A., MacEwan, D.J., O'Connell, M.A., Lipopolysaccharide-induced expression of NAD(P)H:quinone oxidoreductase 1 and heme oxygenase-1 protects against excessive inflammatory responses in human monocytes, J. Immunol.181 [2008] 6730-6737.
    [89]Iskander, K.; Li, J., Han, S., Zheng, B., Jaiswal, A.K., NQO1 and NQO2 regulation of humoral immunity and autoimmunity, J. Biol. Chem.281 (2006) 30917-30924.
    [90]Hirota, K., Murata, M., Sachi, Y., Nakamura, H., Takeuchi, J., Mori, K., Yodoi, J., Distinct roles of thioredoxin in the cytoplasm and in the nucleus. A two-step mechanism of redox regulation of transcription factor NF-kappaB, J. Biol. Chem.274 (1999) 27891-27897.
    [91]Alam, J., Stewart, D., Touchard, C., Boinapally, S., Choi, A.M., Cook, J.L., Nrf2, a Cap'n'Collar transcription factor, regulates induction of the heme oxygenase-1 gene, J. Biol. Chem.274 (1999) 26071-26078.
    [92]Lavrovsky, Y., Schwartzman, M.L., Levere, R.D., Kappas, A., Abraham, N.G., Identification of binding sites for transcription factors NF-kappa B and AP-2 in the promoter region of the human heme oxygenase 1 gene, Proc. Natl. Acad. Sci. U. S. A.91 (1994) 5987-5991.
    [93]Mulcahy, R.T., Wartman, M.A., Bailey, H.H., Gipp, J.J., Constitutive and beta-naphthoflavone-induced expression of the human gamma-glutamylcysteine synthetase heavy subunit gene is regulated by a distal antioxidant response element/TRE sequence,J. Biol. Chem.272 (1997) 7445-7454.
    [94]Kimura, T., Kawasaki, Y., Okumura, F., Sone, T., Natsuki, R., Isobe, M., Ethanol-induced expression of glutamate-cysteine ligase catalytic subunit gene is mediated by NF-kappaB, Toxicol. Lett.185 (2009) 110-115.
    [95]Cheung, K.L., Kong, A.N., Molecular targets of dietary phenethyl isothiocyanate and sulforaphane for cancer chemoprevention, AAPSJ12 (2010) 87-97.
    [96]Hong, F., Freeman, M.L., Liebler, D.C., Identification of sensor cysteines in human Keapl modified by the cancer chemopreventive agent sulforaphane, Chem. Res. Toxicol.18 (2005) 1917-1926.
    [97]Clarke, J.D., Dashwood, R.H., Ho, E., Multi-targeted prevention of cancer by sulforaphane, Cancer Lett.269 (2008) 291-304.
    [98]Petri, N., Tannergren, C,, Holst, B., Mellon, F.A., Bao, Y., Plumb, G.W., Bacon, J., O'Leary, K.A., Kroon, P.A., Knutson, L., Forsell, P., Eriksson, T., Lennernas, H., Williamson, G., Absorption/metabolism of sulforaphane and quercetin, and regulation of phase II enzymes, in human jejunum in vivo, Drug Metab lism and Disposition:The Biological Fate of Chemicals 31 [2003) 805-813.
    [99]Conaway, C.C., Getahun, S.M., Liebes, L.L., Pusateri, D.J., Topham, D.K., Botero-Omary, M., Chung, F.L., Disposition of glucosinolates and sulforaphane in humans after ingestion of steamed and fresh broccoli, Nutr. Cancer 38 (2000) 168-178.
    [100]Vermeulen, M., Klopping-Ketelaars, I.W., van den Berg, R., Vaes, W.H., Bioavailability and kinetics of sulforaphane in humans after consumption of cooked versus raw broccoli, Journal of Agricultural and Food Chemis ry 56(2008)10505-10509.
    [101]Hu, R., Hebbar, V., Kim, B.R., Chen, C., Winnik, B., Buckley, B., Soteropoulos, P., Tolias, P., Hart, R.P., Kong, A.N., In vivo pharmacokinetics and regulation of gene expression profiles by isothiocyanate sulforaphane in the rat, J. Pharmacol. Exp. Ther.310 (2004) 263-271.
    [102]Ye, L., Dinkova-Kostova, A.T., Wade, K.L., Zhang, Y., Shapiro, T.A., Talalay, P., Quantitative determination of dithiocarbamates in human plasma, serum, erythrocytes and urine:pharmacokinetics of broccoli sprout isothiocyanates in humans, Clin. Chim. Acta 316 (2002) 43-53.
    [103]Cornblatt, B.S., Ye, L., Dinkova-Kostova, A.T., Erb, M., Fahey, J.W., Singh, N.K., Chen, M.S., Stierer, T., Garrett-Mayer, E., Argani, P., Davidson, N.E., Talalay, P., Kensler, T.W., Visvanathan, K., Preclinical and clinical evaluation of sulforaphane for chemoprevention in the breast, Carcinogenesis 28 (2007) 1485-1490.
    [104]Lee, J.M., Johnson, J.A., An important role of Nrf2-ARE pathway in the cellular defense mechanism, J Biochem Mol Biol 37 (2004) 139-143.
    [105]Li, W., Kong, A.N., Molecular mechanisms of Nrf2-mediated antioxidant response, Mol. Carcinog.48 (2009) 91-104.
    [106]Keane, R.W., Kraydieh, S., Lotocki, G., Bethea, J.R., Krajewski, S., Reed, J.C., Dietrich, W.D., Apoptotic and anti-apoptotic mechanisms following spinal cord injury, J. Neuropathol. Exp. Neurol.60 (2001) 422-429.
    [107]de Rivero Vaccari, J.P., Lotocki, G., Marcillo, A.E., Dietrich, W.D., Keane, R.W., A molecular platform in neurons regulates inflammation after spinal cord injury, J. Neurosci.28 (2008) 3404-3414.
    [108]de Rivero Vaccari, J.P., Marcillo, A., Nonner, D., Dietrich, W.D., Keane, R.W., Neuroprotective effects of bone morphogenetic protein 7 (BMP7) treatment after spinal cord injury, Neurosci. Lett.465 (2009) 226-229.
    [109]Basso, D.M., Beattie, M.S., Bresnahan, J.C., A sensitive and reliable locomotor rating scale for open field testing in rats, J. Neurotrauma 12 [1995] 1-21.
    [110]Hamers, F.P., Koopmans, G.C., Joosten, E.A., CatWalk-assisted gait analysis in the assessment of spinal cord injury, J. Neurotrauma 23 [2006] 537-548.
    [111]Liu, Y., Tachibana, T., Dai, Y., Kondo, E., Fukuoka, T., Yamanaka, H., Noguchi, K., Heme oxygenase-1 expression after spinal cord injury:the induction in activated neutrophils, J. Neurotrauma 19 (2002) 479-490.
    [112]Ishii, T., Itoh, K., Takahashi, S., Sato, H., Yanagawa, T., Katoh, Y., Bannai, S., Yamamoto, M., Transcription factor Nrf2 coordinately regulates a group of oxidative stress-inducible genes in macrophages, J. Biol. Chem.275 (2000) 16023-16029.
    [113]Ramos-Gomez, M., Kwak, M.K., Dolan, P.M., Itoh, K., Yamamoto, M., Talalay, P., Kensler, T.W., Sensitivity to carcinogenesis is increased and chemoprotective efficacy of enzyme inducers is lost in nrf2 transcription factor-deficient mice, Proc. Natl. Acad. Sci. U. S. A.98 (2001) 3410-3415.
    [114]Aoki, Y., Sato, H., Nishimura, N., Takahashi, S., Itoh, K., Yamamoto, M., Accelerated DNA adduct formation in the lung of the Nrf2 knockout mouse exposed to diesel exhaust, Toxicol. Appl. Pharmacol.173 (2001) 154-160.
    [115]Chan, K., Kan, Y.W., Nrf2 is essential for protection against acute pulmonary injury in mice, Proc. Natl. Acad. Sci. U. S. A.96 (1999) 12731-12736.
    [116]Soane, L., Li Dai, W., Fiskum, G., Bambrick, L.L., Sulforaphane protects immature hippocampal neurons against death caused by exposure to hemin or to oxygen and glucose deprivation, J. Neurosci. Res.88 (2010) 1355-1363.
    [117]Khodagholi, F., Eftekharzadeh, B., Maghsoudi, N., Rezaei, P.F., Chitosan prevents oxidative stress-induced amyloid beta formation and cytotoxicity in NT2 neurons:involvement of transcription factors Nrf2 and NF-kappaB, Mol. Cell. Biochem.337 (2010) 39-51.
    [118]Reddy, P.V., Lungu, G., Kuang, X.; Stoica, G., Wong, P.K., Neuroprotective effects of the drug GVT (monosodium luminol) are mediated by the stabilization of Nrf2 in astrocytes, Neurochem. Int.56 [2010] 780-788.
    [119]Brandenburg, L.O., Kipp, M., Lucius, R., Pufe, T., Wruck, C.J., Sulforaphane suppresses LPS-induced inflammation in primary rat microglia, Inflamm. Res.59 (2010) 443-450.
    [120]Shih, A.Y., Johnson, D.A., Wong, G., Kraft, A.D., Jiang, L., Erb, H., Johnson, J.A., Murphy, T.H., Coordinate regulation of glutathione biosynthesis and release by Nrf2-expressing glia potently protects neurons from oxidative stress, J. Neurosci.23 [2003] 3394-3406.
    [121]Kotlo, K.U., Yehiely, F., Efimova, E., Harasty, H., Hesabi, B., Shchors, K., Einat, P., Rozen, A., Berent, E., Deiss, L.P., Nrf2 is an inhibitor of the Fas pathway as identified by Achilles'Heel Method, a new function-based approach to gene identification in human cells, Oncogene 22 [2003] 797-806.
    [122]Zhao, X., Song, S., Sun, G., Strong, R., Zhang, J., Grotta, J.C., Aronowski, J., Neuroprotective role of haptoglobin after intracerebral hemorrhage, J. Neurosci.29 (2009) 15819-15827.
    [123]Zhao, J., Kobori, N., Aronowski, J., Dash, P.K., Sulforaphane reduces infarct volume following focal cerebral ischemia in rodents, Neurosci. Lett.393 (2006) 108-112.
    [124]Jin, W., Wang, H., Yan, W., Zhu, L., Hu, Z., Ding, Y., Tang, K., Role of Nrf2 in protection against traumatic brain injury in mice, J. Neurotrauma 26 (2009) 131-139.
    [125]Peng, Z., Geh, E., Chen, L., Meng, Q., Fan, Y., Sartor, M., Shertzer, H.G., Liu, Z.G., Puga, A., Xia, Y., Inhibitor of kappaB kinase beta regulates redox homeostasis by controlling the constitutive levels of glutathione, Mol. Pharmacol.77 (2010) 784-792.
    [126]Lian, K.C., Chuang, J.J., Hsieh, C.W., Wung, B.S., Huang, G.D., Jian, T.Y., Sun, Y.W., Dual mechanisms of NF-kappaB inhibition in carnosol-treated endothelial cells, Toxicol. Appl. Pharmacol.245 (2010) 21-35.
    [127]Lu, S.C., Regulation of glutathione synthesis, Mol. Aspects Med.30 (2009) 42-59.
    [128]Jin, W., Zhu, L., Guan, Q., Chen, G., Wang, Q.F., Yin, H.X., Hang, C.H., Shi, J.X., Wang, H.D., Influence of Nrf2 genotype on pulmonary NF-kappaB activity and inflammatory response after traumatic brain injury, Ann. Clin. Lab. Sci.38 (2008) 221-227.
    [129]Pledgie-Tracy, A., Sobolewski, M.D., Davidson, N.E., Sulforaphane induces cell type-specific apoptosis in human breast cancer cell lines, Mol Cancer Ther 6 (2007) 1013-1021.
    [130]Song, M.Y., Kim, E.K., Moon, W.S., Park, J.W., Kim, H.J., So, H.S., Park, R., Kwon, K.B., Park, B.H., Sulforaphane protects against cytokine-and streptozotocin-induced beta-cell damage by suppressing the NF-kappaB pathway, Toxicol. Appl. Pharmacol.235 (2009) 57-67.
    [131]Kallifatidis, G., Rausch, V., Baumann, B., Apel, A., Beckermann, B.M., Groth, A., Mattern, J., Li, Z., Kolb, A., Moldenhauer, G., Altevogt, P., Wirth, T., Werner, J., Schemmer, P., Buchler, M.W., Salnikov, A.V., Herr,I., Sulforaphane targets pancreatic tumour-initiating cells by NF-kappaB-induced antiapoptotic signalling, Gut 58 (2009) 949-963.
    [132]Ferrari, D., Wesselborg, S., Bauer, M.K., Schulze-Osthoff, K., Extracellular ATP activates transcription factor NF-kappaB through the P2Z purinoreceptor by selectively targeting NF-kappaB p65, J. Cell Biol.139 (1997) 1635-1643.
    [133]Franchi, L., Eigenbrod, T., Munoz-Planillo, R., Nunez, G., The inflammasome:a caspase-1-activation platform that regulates immune responses and disease pathogenesis, Nat Immunol 10 (2009) 241-247.
    [134]Song, M.Y., Jeong, G.S., Kwon, K.B., Ka, S.O.,Jang, H.Y., Park, J.W., Kim, Y.C., Park, B.H., Sulfuretin protects against cytokine-induced beta-cell damage and prevents streptozotocin-induced diabetes, Exp. Mol. Med.42 (2010) 628-638.
    [135]Kim, E.K., Kwon, K.B., Koo, B.S., Han, M.J., Song, M.Y., Song, E.K., Han, M.K., Park, J.W., Ryu, D.G., Park, B.H., Activation of peroxisome proliferator-activated receptor-gamma protects pancreatic beta-cells from cytokine-induced cytotoxicity via NF kappaB pathway, Int.J. Biochem. Cell Biol.39 (2007) 1260-1275.
    [136]Fujita, H., Shiosaka, M., Ogino, T., Okimura, Y., Utsumi, T., Sato, E.F., Akagi, R., Inoue, M., Utsumi, K., Sasaki, J., alpha-lipoic acid suppresses 6-hydroxydoparnine-induced ROS generation and apoptosis through the stimulation of glutathione synthesis but not by the expression of heme oxygenase-1, Brain Res.1206 [2008] 1-12.
    [137]Bergstrom, P., Andersson, H.C., Gao, Y., Karlsson, J.O., Nodin, C, Anderson, M.F., Nilsson, M., Hammarsten,O., Repeated transient sulforaphane stimulation in astrocytes leads to prolonged Nrf2-mediated gene expression and protection from superoxide-induced damage, Neuropharmacology 60 (2011) 343-353.
    [138]Dash, P.K., Zhao, J., Orsi, S.A., Zhang, M., Moore, A.N., Sulforaphane improves cognitive function administered following traumatic brain injury, Neurosci. Lett.460 (2009) 103-107.
    [139]Danilov, C.A., Chandrasekaran, K., Racz, J., Soane, L., Zielke, C., Fiskum, G., Sulforaphane protects astrocytes against oxidative stress and delayed death caused by oxygen and glucose deprivation, Glia 57 (2009) 645-656.
    [140]Yilmaz, O., Sater, A.A., Yao, L., Koutouzis, T., Pettengill, M., Ojcius, D.M., ATP-dependent activation of an inflammasome in primary gingival epithelial cells infected by Porphyromonas gingivalis, Cell Microbiol 12 (2010) 188-198.
    [141]Riteau, N., Gasse, P., Fauconnier, L., Gombault, A., Couegnat, M., Fick, L., Kanellopoulos, J., Quesniaux, V.F., Marchand-Adam, S., Crestani, B., Ryffel, B., Couillin, I., Extracellular ATP is a danger signal activating P2X7 receptor in lung inflammation and fibrosis, Am. J. Respir. Crit. Care Med. 182 (2010) 774-783.
    [142]Yin, F., Liu, J., Zheng, X., Guo, L., Xiao, H., Geniposide induces the expression of heme oxygenase-1 via PI3K/Nrf2-signaling to enhance the antioxidant capacity in primary hippocampal neurons, Biol. Pharm. Bull. 33 (2010) 1841-1846.
    [143]Eftekharzadeh, B., Maghsoudi, N., Khodagholi, F., Stabilization of transcription factor Nrf2 by tBHQ prevents oxidative stress-induced amyloid beta formation in NT2N neurons, Biochimie 92 (2010) 245-253.
    [144]Quesada, A., Ogi, J., Schultz, J., Handforth, A., C-terminal mechano-growth factor induces heme oxygenase-1-mediated neuroprotection of SH-SY5Y cells via the protein kinase C/Nrf2 pathway, J. Neurosci. Res.89 (2011) 394-405.
    [145]Espada, S., Ortega, F., Molina-Jijon, E., Rojo, A.I., Perez-Sen, R., Pedraza-Chaverri, J., Miras-Portugal, M.T., Cuadrado, A., The purinergic P2Y(13) receptor activates the Nrf2/H0-1 axis and protects against oxidative stress-induced neuronal death, Free Radic. Biol. Med.49 [2010) 416-426.
    [146]Haskew-Layton, R.E., Payappilly, J.B., Smirnova, N.A., Ma, T.C., Chan, K.K., Murphy, T.H., Guo, H., Langley, B., Sultana, R., Butterfield, D.A., Santagata, S., Alldred, M.J., Gazaryan, I.G., Bell, G.W., Ginsberg, S.D., Ratan, R.R., Controlled enzymatic production of astrocytic hydrogen peroxide protects neurons from oxidative stress via an Nrf2-independent pathway, Proc. Natl. Acad. Sci. U. S. A.107 (2010) 17385-17390.
    [147]Calkins, M.J., Vargas, M.R., Johnson, D.A., Johnson, J.A., Astrocyte-specific overexpression of Nrf2 protects striatal neurons from mitochondrial complex II inhibition, Toxicol. Sci.115 (2010) 557-568.
    [148]Dringen, R., Metabolism and functions of glutathione in brain, Prog. Neurobiol.62 (2000) 649-671.
    [149]Mariani, M.M., Kielian, T., Microglia in infectious diseases of the central nervous system, J Neuroimmune Pharmacol 4 (2009) 448-461.
    [150]Ni, M., Li, X., Yin, Z., Jiang, H., Sidoryk-Wegrzynowicz, M., Milatovic, D., Cai, J., Aschner, M., Methylmercury induces acute oxidative stress, altering Nrf2 protein level in primary microglial cells, Toxicol. Sci.116 (2010) 590-603.
    [151]Koh, K., Cha, Y., Kim, S., Kim, J., tBHQ inhibits LPS-induced microglial activation via Nrf2-mediated suppression of p38 phosphorylation, Biochem. Biophys. Res. Commun.380 (2009) 449-453.
    [152]Brandenburg, L.O., Kipp, M., Lucius, R., Pufe, T., Wruck, C.J., Sulforaphane suppresses LPS-induced inflammation in primary rat microglia, Inflamm. Res. (2009).
    [153]Koh, K., Kim, J., Jang, Y.J., Yoon, K., Cha, Y., Lee, H.J., Transcription factor Nrf2 suppresses LPS-induced hyperactivation of BV-2 microglial cells, J. Neuroimmunol. (2011).
    [154]Correa, F., Ljunggren, E., Mallard, C, Nilsson, M., Weber, S.G., Sandberg, M., The Nrf2-inducible antioxidant defense in astrocytes can be both up-and down-regulated by activated microglia:Involvement of p38 MAPK, Glia (2011).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700