静电纺射流形态控制及其纤维结构与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
静电纺丝是制备微米至纳米级纤维的最简单的方法之一,是在高压电场作用下使熔体或溶液拉伸变成极细的纤维的过程。静电纺丝自20世纪末受到广泛关注至今,已有了长足的进步,特别是在生物支架材料、过滤材料、催化剂载体、增强材料、无机材料、防伪材料等领域具有良好的前景。但是自21世纪以来,静电纺丝的理论研究却没有非常大的突破。这主要是由于检测手段无法适应静电纺丝的特性。静电纺丝由于射流很细,飞行速度极快,且作用力为难以检测的电场力,再加上射流的凝固过程中的各种传质传热过程,使得整个过程非常复杂。另外,静电纺丝产品的形态多样,但难以调控。本研究中,通过干喷湿法静电纺丝、高速卷绕静电纺丝等研究静电纺丝过程中射流的形态、相互作用、运动参数,获得了相应的不同尺度的电纺纤维材料,并对其结构和性能进行调控。
     1.通过干喷湿法静电纺丝方法,研究了聚(羟基丁酸-co-羟基戊酸酯)(PHBV)/CHCl3容液的静电纺丝过程中微球结构、串珠结构和纤维结构的成形机理和形态演变。PHBV;容液随着浓度增加,粘度增大,静电纺得到的产品由微球演变为带串珠的纤维,直至变成无缺陷的纤维。而在溶液中添加乙醇后,溶液电导率提高,串珠结构减少直至消失。2wt%PHBV溶液电喷得到的微球结构随着接收距离的增加,首先呈现不规则的光滑球形,再呈现红细胞状结构,最终形成了多孔的规则球形。借助荧光材料的标定,发现这一变化过程和微球的凝固过程有关。短距离接收时,球形表面未凝固,强烈的双扩散作用造成球体不规则,且塌陷成红细胞状,而较大距离接收时,球形表面已部分凝固,因此双扩散作用变得缓和,最终形状为规则球形,并在后续收缩过程中形成了多孔结构。6wt%PHBV溶液纺丝得到的带有串珠的纤维结构。该溶液的电纺射流在稳定段和非稳定段分界处时收集时,出现了豆荚状串珠,为普通串珠的两倍,说明射流在进入非稳定段时,首先拉伸成为纤维,而中间部分则成为初生串珠,由于纤维部分因拉伸和固化而增强,初生串珠在进一步拉伸过程中形成次生串珠,即常见的普通串珠。但是若纤维部分强度不足,则纤维被拉断,但串珠则没有分裂。而添加乙醇的6.wt%PHBV溶液电纺得到无串珠的纤维,在短距离接收时,由于射流中存在较多的溶剂,进入凝固浴后收缩剧烈,形成表面有凹坑的纤维。而接收距离增大后,凹坑消失,成为光滑纤维,纤维之间无相互粘连。经接触角测定发现,通过干喷湿法静电纺丝制备的电纺材料的接触角比普通方法得到的高,说明该方法得到的电纺材料中较少粘连,且结构更为疏松。可以通过不同的接收方式和接收距离,在较大的范围内调控纤维膜的表面性能。
     2.以高电导率的溶液作为研究对象进行静电纺丝的成形过程。当PAN/DMF溶液浓度达到16wt%时,在纤维接触点处出现了数十纳米的纤维。这些纤维并非是静电纺丝中形成,而是在落到接收装置表面后形成的。纤维落到接收装置后,快速释放电荷并带有相反的电荷,当后续纤维落在上面时,纤维之间形成较强的电场。而纤维未完全凝固,未凝固部分在电场作用下二次静电纺丝,形成新的纤维。通过PHBV的乳液静电纺丝同样证明了这一结果。将部分高浓度、高电导率的DMF溶液静电纺丝时,当相对湿度低于40%时,可以形成环形堆积结构。当浓度低于12wt%或者湿度高于40%时,无论如何调整纺丝参数都不能得到环形结构。因此环状结构是射流相互排斥作用使射流的随机运动降低,向轴的外部排列堆积。纺丝的参数,例如纺丝距离、电压、推进速率都会影响到堆积环的形态。另外,当纺丝时间高于10min后,纤维会在原有的环外部形成第二个环,并且与原有的环完全分开。这种外环结构是由于内部环的残留电荷将射流向外排斥,得到了第二个环,并且由于更强的电荷排斥作用,第二个环中纤维的排列更好,宏观上具有较好的光泽。
     3.采用高速卷绕法制备了取向的电纺纤维膜,用以研究了不同电导率溶液静电纺丝的运动状态。通过建立模型,计算了不同卷绕速率下纤维膜的取向度,并用来估算射流在接收装置表面的水平运动速率,再经过运动速率的分解,求得垂直方向上的运动速率。可以发现,当PAN溶液浓度为10-14wt%时,随着浓度增大,射流的运动速率,无论是水平方向还是垂直方向,都明显下降。其中垂直方向上的运动速率下降更为明显。而12和14wt%时的垂直运动速率都较低。这说明在射流飞行过程中,高浓度的溶液射流飞行速率较慢,当射流相互排斥作用时,射流有足够的时间受到电场的影响,从而可以形成环状的堆积结构;而低浓度的射流飞行速率较快,射流在电场中没有充足的时间调整飞行的路径,因此只能得到圆形堆积结构。低电导率的PHBV溶液电纺射流飞行速率虽然不大,但是电荷相互排斥作用弱,也无法得到环状堆积结构。纤维膜的力学性能随着卷绕速度增大而提高,但是即使在600m/min的高速下,纤维膜的取向度和力学性能都不是非常好,说明该方法无法制备高性能的纤维膜。随着卷绕速率提高,纤维膜的在卷绕方向的拉伸强度增强,而断裂伸长降低,但是在垂直于卷绕方向上拉伸时,虽然拉伸强度变化不大,但是断裂功和断裂伸长则明显下降。无论从哪个方向进行拉伸,随着卷绕速率增加,断面都趋向平行于卷绕方向。
     4.将环状堆积结构与干喷湿法静电纺丝相结合,制备连续的PAN纱线结构。在改进的干喷湿法静电纺丝装置上,具有环状堆积结构的纺丝过程,可以在较高速率的卷绕下得到高度排列的纱线。浓度越大的溶液,最大的卷绕速率越高。当溶液浓度为14wt%,相对湿度为20%时,可达到最大卷绕速率,为65m/min。纱线中纤维的排列随着浓度和卷绕速率的升高而变好。根据理论计算,当环形堆积时,纱线中缺陷的数量非常少,卷绕速率增加,随机缺陷减少,纱线的强度明显增加。制得的纱线还可经过类似湿法纺丝的后处理过程,在沸水浴中牵伸5倍。随着牵伸倍率的提高,纱线中纤维的直径明显降低,而强度则有明显高,通过红外二色性和X射线衍射也可以看到纤维中分子链的取向提高。当牵伸倍率达到5倍时,纱线强度为580MPa,断裂伸长率12%。纱线具有制备成纳米碳纤维的可能性。
Electrospinning is one of the easiest methods for prepraring micro or even nano scale fibers. It uses a high voltage field to draw melt or solution into very fine fibers. After attracting extensive attention at the end of20th century, electrospinning has rapid progress, especially for the application of materials in scaffold materials, filtration materials, catalysts carriers, reinforcement materials, inorganic nanofibers, anti-fake materials and etc. However, little breakthrough has been made in the theory of electrospinning in the21st century. The main reason is that the existing measurement methods are not competent for characterizing the process of the electrospinning process. The extremely fine jet in electrospinning process flies very fast. Besides, the driving force is electric force, which is difficult to determine. Mass and heat transfer and jet solidification also complicate the electrospinning process. Besides, the electrospun products have various morphologies, which are not easy to control. So in this research, new methods are used for studying jet morphology, interaction and movement parameters in order to prepare materials with different scales and morphologies. The properties of these obtained materials are studied and modulated.
     The forming mechanisms and morphology evolutions of microspheres, beaded structures and bead-free fibers in electrospinning of poly (hydroxybutyrate-co-hydroxyvalerate)(PHBV)/CHCl3solution are studied by dry-jet-wet-electrospinning (DJWE) method. The solution viscosity raises, with increasing the polymer concentration. And the obtained products are micropaticles at very low concentration, then beaded fibers and at last even fibers with increasing concentration. But if ethanol is added into solution, the conductivity increases, and beaded structures decrease with ethanol content. The morphology of microspheres, which is obtained from electrospinning of2wt%PHBV solution, varies with collection distance. When collected at very low distance, the microparticles show irregular but smooth spheres. When the distance increases to5cm, particles like blood cells can be observed. Porous and regular spheres can be obtained in larger collection distance. With assistance of fluorescent materials, the morphology variation is found to relate to particle solidification process. When collected at low distance, the spheres do not have solidified surface. So the double-diffusion is very violent, which leads to the irregular and surface collapse. While collected in large distance, the surface has solidified already before falling into the bath. So the double-diffusion is moderate. And the obtained structure is regular. In the subsequent shrinkage process, the porous structures appear. The beads with beanpod-like structures and twice the volume of normal beads can be obtained at the boundary of stability and instability section in electrospinning of6wt%PHBV solution. It can be inferred that the jet is firstly stretched at the defects and formed the primary beads and fibers between adjacent beads. Then, if the fibers solidify and are stronger than the beads, the primary beads are further stretched and secondary beads which were common in electrospun fiber appeared. Otherwise, the fiber might be break down by the electric field force. For the bead-free fibers, when collected at low distance, the jet contains much solvent. After falling into bath, the jet has severe double-diffusion at the interface. The inner part of jet shrank heavily and caves on the surface occurred. But if collected at longer distance, the fibers show smooth surface. After contact angle test, electrospun products prepared by DJWE are more hydrophobic than that prepared by normal electrospinning, which indicates the DJWE products have fewer adhesions and more loose structure.
     Electrospun solutions of high conductivity are used as research system in electrospinning. When the concentration of PAN/DMF solution reaches16wt%, some nanofibers with diameter of tens nanometers can be observed at the tie points of two micrometer fibers. These fibers do not come from electrospinning process, but from electrospinning of the unsolidified parts of fiber which have already fallen on collector. When electrospun fibers fall on collector, the positive charges on the fiber surface is repulsed by the electrical field and negative charges migrate onto the fiber. Then following positively charged fibers fall onto the negatively charged fibers, and new electrical field forms between the two fibers. The tie point of the two fibers has the largest electric field strength. So the unsolidified parts on the fiber will be secondary-electrospun and the nanowebs mainly forms on that spot. The nanowebs can also be observed in PHBV W/O emulsion electrospinning. Some high conductivity solutions using DMF as solvent, if electrospun at relative humidity lower than40%, can get ringlike deposition. Otherwise, if the conductivity is lower or other solvents are used, no ringlike deposition can be obtained, no matter how to adjust the electrospinning parameters. This deposition pattern is found the result of the balance of jet mutual repulsion and jet flying randomness. Higher concentration solution jet has stronger repulsion and less randomness, so the jet will be pushed out and deposit into a ring. Electrospinning parameters, such as collection distance, voltage, feeding rate, affect the morphology of the deposition pattern. Besides, if the spinning time is longer than10cm, a larger and glossier ring outside the previous one will appear. The two rings are separated and have no intersection. The out-ring structure is the result of the repulsion of jet by the first ring. Because there are some residue charges on the first ring, after certain amount, the jet will be push out to larger area. The second ring has better fiber alignment as a result of larger repulsion.
     High speed rotating method is applied for preparing electrospun aligned mats from solutions of different conductivities. Via developing a mathematical modeling, the orientations of the fibers in the mats prepared by various rotating speeds are calculated. The flying speeds of the PAN jet in vertical and perpendicular directions can also be estimated by speed decomposition. The result shows that the speeds in both vertical and perpendicular directions decrease when the concentration of PAN solution increases from10wt%to14wt%. But the vertical speed decreases sharper. The result infers that the jet from higher concentration solution flies slower and has longer flying time. So the jet has longer time to interact to reduce the randomness. The vertical speeds of12and14wt%are quite low, so the fibers deposits into a ringlike pattern. The mechanical properties of the electrospun mats increases with higher rotating speed. But even if the rotating speed higher than600m/min, the mat orientation and mechanical properties are not good enough. Though the jet from PHBV solution of low conductivity is even slower than the PAN jets, the surface charge density is too low to repulse mutually. So the ringlike deposition pattern cannot be obtained. The tensile strength increased and the elongation at break decreased with the increasing orientation when the tensile direction was parallel to the rotating direction. But in the perpendicular direction, the work of fracture and the elongation at break decreased, and the strength varied little. The fractures tended to parallel the rotating direction with increasing orientation factors in both tensile directions.
     The ringlike deposition, combined with the DJWE method, is used for preparing well-aligned PAN electrospun continuous yarns. A modified DJWE apparatus is developed to collect yarns. This structure can be wound at much higher speed in the electrospinning process. And fibers in the obtained yarn have very good alignment. Higher concentration the solution is, the fast winding speed can be applied. When the concentration is14wt%and relate humidity is20%, the winding speed reaches the maximum, that is65m/min. The fiber alignment increases with the increasing concentration and winding speed. According to theoretical calculation, when the deposition pattern is ringlike, the amount of defects in the yarn is very low. The yarn strength also increases with alignment. The as-spun yarn can also be post-treated. The draw ratio in boiling water can reach up to5times. With higher draw ratio, the diameter of the fibers in the yarn decrease, and the strength increases obviously. The molecules in the fiber can also be observed in infrared dichroism and X-ray diffraction. When the draw ratio reaches up to5times, the tensile strength of the drawn yarn is580MPa and elongation at break is12%. The yarn is a probable candidate for precusor of high performance carbon nanofibers.
引文
1. Doshi J, Reneker DH. Journal of Electrostatics.1993:1698-1703.
    2. Srinivasan G, Reneker DH. Polymer International.1995,36:195-201.
    3. Reneker DH, Yarin AL, Fong H, Koombhongse S. Journal of Applied Physics 2000,87:4531-4547.
    4. Spivak AF, Dzenis YA, Reneker DH. Mechanics Research Communications. 2000,27:37-42.
    5. Han T, Reneker DH, Yarin AL. Polymer.2007,48:6064-6076.
    6. Hohman MM, Shin M, Rutledge G, Brenner MP.Physics of Fluids. 2001,13:2201-2220.
    7. Hohman MM, Shin M, Rutledge G, Brenner MP.Physics of Fluids. 2001,13:2221-2236.
    8. Taylor G. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.1964,280:383-397.
    9. Taylor G. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.1969,313:453-475.
    10. Yarin AL, Koombhongse S, Reneker DH. Journal of Applied Physics 2001,90:4836-4846.
    11. Reneker DH, Yarin AL. Polymer.2008,49:2387-2425.
    12. Fang X, Reneker DH. Journal of Macromolecular Science-Physics. 1997,B36:169-173.
    13. Koombhongse S, Liu WX, Reneker DH. Journal of Polymer Science Part B: Polymer Physics 2001,39:2598-2606.
    14. Fong H, Chun I, Reneker DH. Polymer.1999,40:4585-4592.
    15. Choi JS, Lee SW, Jeong L, Bae SH, Min BC, Youk JH, Park WH. International Journal of Biological Macromolecules.2004,34:249-256.
    16. Casper CL, Stephens JS, Tassi NG, Chase DB, Rabolt JF. Macromolecules. 2004,37:573-578.
    17. Wang C, Hsu CH, Lin JH. Macromolecules.2006,39:7662-7672.
    18. Arayanarakul K, Choktaweesap N, Aht-ong D, Meechaisue C, Supaphol P. Macromolecular Materials and Engineering.2006,291:581-591.
    19. Pattamaprom C, Hongrojjanawiwat W, Koombhongse P, Supaphol P, Jarusuwannapoo T, Rangkupan R. Macromolecular Materials and Engineering. 2006,291:840-847.
    20. Nasouri K, Shoushtari AM, Kaflou A. Micro & Nano Letters.2012,7:423-426.
    21. Uyar T, Besenbacher F. Polymer.2008,49:5336-5343.
    22. Moghe AK, Hufenus R, Hudson SM, Gupta BS. Polymer.2009,50:3311-3318.
    23. Mazinani S, Ajji A, Dubois C. Polymer.2009,50:3329-3342.
    24. Subramanian C, Weiss RA, Shaw MT. Polymer.2010,51:1983-1989.
    25. Nartetamrongsutt K, Chase GG. Polymer.2013,54:2166-2173.
    26. Pu C, He J, Cui S, Gao W. Fibers and Polymers.2013,14:382-388.
    27. Acatay K, Simsek E, Ow-Yang C, Menceloglu YZ. Angewandte Chemie-International Edition.2004,43:5210-5213.
    28. Ma ML, Mao Y, Gupta M, Gleason KK, Rutledge GC. Macromolecules. 2005,38:9742-9748.
    29. Yoon K, Kim K, Wang XF, Fang DF, Hsiao BS, Chu B. Polymer. 2006,47:2434-2441.
    30. Zhan NQ, Li YX, Zhang CQ, Song Y, Wang HG, Sun L, Yang QB, Hong X. Journal of Colloid and Interface Science.2010,345:491-495.
    31. Islam MS, Akter N, Karim MR. Colloids and Surfaces a-Physicochemical and Engineering Aspects.2010,362:117-120.
    32. Zhu MF, Zuo WW, Yu H, Yang W, Chen YM. Journal of Materials Science. 2006,41:3793-3797.
    33. Jiang L, Zhao Y, Zhai J. Angewandte Chemie-International Edition. 2004,43:4338-4341.
    34. Agarwal S, Horst S, Bognitzki M. Macromolecular Materials and Engineering. 2006,291:592-601.
    35. Eda G, Shivkumar S. Journal of Materials Science.2006,41:5704-5708.
    36. Eda G, Shivkumar S. Journal of Applied Polymer Science.2007,106:475-487.
    37. Lee KH, Kim HY, Bang HJ, Jung YH, Lee SG. Polymer.2003,44:4029-4034.
    38. Somvipart S, Kanokpanont S, Rangkupan R, Ratanavaraporn J, Damrongsakkul S. International Journal of Biological Macromolecules 2013,55:176-184.
    39. Wang H, Shao HL, Hu XC. Journal of Applied Polymer Science. 2006,101:961-968.
    40. Zhu JX, Shao HL, Hu XC. International Journal of Biological Macromolecules. 2007,41:469-474.
    41. Ner Y, Stuart JA, Whited G, Sotzing GA. Polymer.2009,50:5828-5836.
    42. Megelski S, Stephens JS, Chase DB, Rabolt JF. Macromolecules. 2002,35:8456-8466.
    43. Pornsopone V, Supaphol P, Rangkupan R, Tantayanon S. Polymer Engineering and Science.2005,45:1073-1080.
    44. Ding B, Li C, Miyauchi Y, Kuwaki O, Shiratori S. Nanotechnology. 2006,17:3685.
    45. Wang XF, Ding B, Yu JY, Wang MR, Pan FK. Nanotechnology.2010,21.
    46. Ding B, Wang MR, Wang XF, Yu JY, Sun G. Materials Today 2010,13:16-27.
    47. Bognitzki M, Czado W, Frese T, Schaper A, Hellwig M, Steinhart M, Greiner A, Wendorff JH. Advanced Materials.2001,13:70-72.
    48. McCann JT, Marquez M, Xia YN. Journal of the American Chemical Society. 2006,128:1436-1437.
    49. Lin JY, Ding B, Yu JY, Hsieh Y. Acs Applied Materials & Interfaces. 2010,2:521-528.
    50. Bognitzki M, Frese T, Steinhart M, Greiner A, Wendorff JH, Schaper A, Hellwig M. Polymer Engineering and Science.2001,41:982-989.
    51. Han SO, Son WK, Cho DW, Youk JH, Park WH. Polymer Degradation and Stability.2004,86:257-262.
    52. Lee YH, Lee JH, An IG, Kim C, Lee DS, Lee YK, Nam JD. Biomaterials. 2005,26:3165-3172.
    53. Kim B-H, Yang KS, Ferraris JP. Electrochimica Acta 2012,75:325-331
    54. Yue Y, Hu GZ, Zheng MB, Guo Y, Cao JM, Shao SJ. Carbon.2012,50:107-114.
    55. Kim B-H, Yang KS. Electrochimica Acta 2013,88:597-603.
    56. Wang W, Feng Z, Jiang W, Zhan J. Crystengcomm.2013,15:1339-1344.
    57. Qiao L, Wang X, Sun X, Li X, Zheng Y, He D. Nanoscale.2013,5:3037-3042.
    58. Zhao Y, He X, Li J, Gao X, Jia J. Sensors and Actuators B-Chemical. 2012,165:82-87.
    59. Wang B, Cheng JL, Wu YP, Wang D, He DN. Electrochemistry Communications 2012,23:5-8.
    60. Kim B-H, Yang KS, Woo H-G. Materials Letters 2013,93:190-193.
    61. Wang HG, Liu QW, Yang QB, Li YC, Wang W, Sun L, Zhang CQ, Li YX. Journal of Materials Science.2010,45:1032-1038.
    62. Hong SH, Moon JH, Lim JM, Kim SH, Yang SM. Langmuir. 2005,21:10416-10421.
    63. Fantini D, Zanetti M, Costa L. Macromolecular Rapid Communications 2006,27:2038-2042.
    64. Park CH, Lee J. Journal of Applied Polymer Science 2009,114:430-437.
    65. Liu J, Kumar S. Polymer.2005,46:3211-3214.
    66. Han T, Reneker DH, Yarin AL. Polymer.2007,48:6064-6076.
    67. Li D, Wang YL, Xia YN. Nano Letters.2003,3:1167-1171.
    68. Li D, Wang YL, Xia YN. Advanced Materials.2004,16:361-366.
    69. Matthews JA, Wnek GE, Simpson DG, Bowlin GL. Biomacromolecules. 2002,3:232-238.
    70. Katta P, Alessandro M, Ramsier RD, Chase GG. Nano Letters. 2004,4:2215-2218.
    71. Fuh Y-K, Chen S, Jang JSC. Journal of Macromolecular Science Part a-Pure and Applied Chemistry.2012,49:845-850.
    72. Carnell L, Siochi E, Holloway N, Stephens R, Rhim C, Niklason L, Clark R. Macromolecules.2008,41:5345-5349.
    73. Badrossamay MR, Mcllwee HA, Goss JA, Parker KK. Nano Letters. 2010,10:2257-2261.
    74. Deitzel JM, Kleinmeyer JD, Hirvonen JK, Tan NCB. Polymer. 2001,42:8163-8170.
    75. Kim G, Cho YS, Kim WD. European Polymer Journal 2006,42:2031-2038.
    76. Teo WE, Kotaki M, Mo XM, Ramakrishna S. Nanotechnology. 2005,16:918-924.
    77. Wu YQ, Carnell LA, Clark RL. Polymer.2007,48:5653-5661.
    78. Theron A, Zussman E, Yarin AL. Nanotechnology.2001,12:384-390.
    79. Dalton PD, Klee D, Moller M. Polymer.2005,46:611-614.
    80. Smit E, Buttner U, Sanderson RD. Polymer.2005,46:2419-2423.
    81. Teo WE, Gopal R, Ramaseshan R, Fujihara K, Ramakrishna S. Polymer. 2007,48:3400-3405.
    82.Liu J, Chen G, Gao H, Zhang L, Ma S, Liang J, Fong H. Carbon. 2012,50:1262-1270.
    83. Pan H, Li LM, Hu L, Cui XJ. Polymer.2006,47:4901-4904.
    84. Wang XF, Zhang K, Zhu MF, Yu H, Zhou Z, Chen YM, Hsiao BS. Polymer. 2008,49:2755-2761.
    85. Wang XF, Zhang K, Zhu MF, Hsiao BJS, Chu BJ. Macromolecular Rapid Communications 2008,29:826-831.
    86. Zhang K, Wang XF, Jing DZ, Yang Y, Zhu MF. Biomedical Materials. 2009,4:5004.
    87. Wu Y, Dong Z, Wilson S, Clark RL. Polymer.2010,51:3244-3248.
    1. Shin YM, Hohman MM, Brenner MP, Rutledge GC. Polymer. 2001,42:9955-9967.
    2. Hohman MM, Shin M, Rutledge G, Brenner MP. Physics of Fluids. 2001,13:2221-2236.
    3. Spivak AF, Dzenis YA, Reneker DH. Mechanics Research Communications. 2000,27:37-42.
    4. Reneker DH, Yarin AL. Polymer.2008,49:2387-2425.
    5. Shin YM, Hohman MM, Brenner MP, Rutledge GC. Applied Physics Letters. 2001,78:1149-1151.
    6. Hohman MM, Shin M, Rutledge G, Brenner MP. Physics of Fluids. 2001,13:2201-2220.
    7. Han T, Reneker DH, Yarin AL. Polymer.2007,48:6064-6076.
    8. Xin Y, Reneker DH. Polymer.2012,53:3629-3635.
    9. Reneker DH, Yarin AL, Fong H, Koombhongse S. Journal of Applied Physics 2000,87:4531-4547.
    10. Zuo WW, Zhu MF, Yang W, Yu H, Chen YM, Zhang Y. Polymer Engineering and Science.2005,45:704-709.
    11. Koombhongse S, Liu WX, Reneker DH. Journal of Polymer Science Part B: Polymer Physics 2001,39:2598-2606.
    12. Xu S, Zhang J, He A, Li J, Zhang H, Han CC. Polymer.2008,49:2911-2917.
    13. Viswanathan G, Murugesan S, Pushparaj V, Nalamasu O, Ajayan PM, Linhardt RJ. Biomacromolecules.2006,7:415-418.
    14. Ren XK, Sun B, Tsai CC, Tu YF, Leng SW, Li KX, Kang Z, Van Horn RM, Li XP, Zhu MF, Wesdemiotis C, Zhang WB, Cheng SZD. Journal of Physical Chemistry B 2010,114:4802-4810.
    15. Eda G, Shivkumar S. Journal of Materials Science.2006,41:5704-5708.
    16. Fong H, Chun I, Reneker DH. Polymer.1999,40:4585-4592.
    17. Eda G, Shivkumar S. Journal of Applied Polymer Science.2007,106:475-487.
    18. Ding B, Kim HY, Lee SC, Lee DR, Choi KJ. Fibers and Polymers.2002,3:73-79.
    19. Zong XH, Kim K, Fang DF, Ran SF, Hsiao BS, Chu B. Polymer. 2002,43:4403-4412.
    20. Cassie ABD, Baxter S. Transactions of the Faraday Society.1944,40:546-551.
    1. Reneker DH, Yarin AL, Fong H, Koombhongse S. Journal of Applied Physics 2000,87:4531-4547.
    2. Li D, Wang YL, Xia YN. Nano Letters.2003,3:1167-1171.
    3. Catalani LH, Collins G, Jaffe M. Macromolecules.2007,40:1693-1697.
    4. Fong H, Chun I, Reneker DH. Polymer.1999,40:4585-4592.
    5. Shin YM, Hohman MM, Brenner MP, Rutledge GC. Polymer. 2001,42:9955-9967.
    6. Reneker DH, Yarin AL. Polymer.2008,49:2387-2425.
    7. Koombhongse S, Liu WX, Reneker DH. Journal of Polymer Science Part B: Polymer Physics 2001,39:2598-2606.
    8. Pornsopone V, Supaphol P, Rangkupan R, Tantayanon S. Polymer Engineering and Science.2005,45:1073-1080.
    9. Bin D, Chunrong L, Yasuhiro M, Oriha K, Seimei S. Nanotechnology. 2006,17:3685.
    10. Wang XF, Ding B, Yu JY, Si Y, Yang SB, Sun G. Nanoscale.2011,3:911-915.
    11. Wang X, Zhang K, Zhu M, Yu H, Zhou Z, Chen Y, Hsiao BS. Polymer. 2008,49:2755-2761.
    12. Megelski S, Stephens JS, Chase DB, Rabolt JF. Macromolecules. 2002,35:8456-8466.
    13. Schreuder-Gibson HL, Gibson P, Tsai P, Gupta P, Wilkes G. International Nonwovens Journal.2004,13:39-45.
    1. Shin YM, Hohman MM, Brenner MP, Rutledge GC. Polymer. 2001,42:9955-9967.
    2. Hohman MM, Shin M, Rutledge G, Brenner MP. Physics of Fluids. 2001,13:2221-2236.
    3. Reneker DH, Yarin AL. Polymer.2008,49:2387-2425.
    4. Jaworek A, Krupa A. Experiments in Fluids 1999,27:43-52.
    5. Matthews JA, Wnek GE, Simpson DG, Bowlin GL. Biomacromolecules. 2002,3:232-238.
    6. Sundaray B, Subramanian V, Natarajan TS, Xiang RZ, Chang CC, Farm WS. Applied Physics Letters 2004,84:1222-1224.
    7. Shin YM, Hohman MM, Brenner MP, Rutledge GC. Applied Physics Letters. 2001,78:1149-1151.
    8. Rutledge GC, Fridrikh SV. Advanced Drug Delivery Reviews. 2007,59:1384-1391.
    9. Han T, Reneker DH, Yarin AL. Polymer.2007,48:6064-6076.
    10. Reneker DH, Yarin AL, Fong H, Koombhongse S. Journal of Applied Physics 2000,87:4531-4547.
    11. Jaworek A, Krupa A. Experiments in Fluids 1999,27:43-52.
    12. Varesano A, Carletto RA, Mazzuchetti G. Journal of Materials Processing Technology.2009,209:5178-5185.
    13. Carnell L, Siochi E, Holloway N, Stephens R, Rhim C, Niklason L, Clark R. Macromolecules.2008,41:5345-5349.
    14. Kiselev P, Rosell-Llompart J. Journal of Applied Polymer Science 2012,125:2433-2441.
    1. Yee WA, Kotaki M, Liu Y, Lu X. Polymer.2007,48:512-521.
    2. Matthews JA, Wnek GE, Simpson DG, Bowlin GL. Biomacromolecules. 2002,3:232-238.
    3. Katta P, Alessandro M, Ramsier RD, Chase GG. Nano Letters. 2004,4:2215-2218.
    4. Zhou Z, Lai C, Zhang L, Qian Y, Hou H, Reneker DH, Fong H. Polymer. 2009,50:2999-3006.
    5. Badrossamay MR, Mcllwee HA, Goss JA, Parker KK. Nano Letters. 2010,10:2257-2261.
    6. Li D, Wang YL, Xia YN. Nano Letters.2003,3:1167-1171.
    7. Li D, Wang YL, Xia YN. Advanced Materials.2004,16:361-366.
    8. Sundaray B, Subramanian V, Natarajan TS, Xiang RZ, Chang CC, Fann WS. Applied Physics Letters 2004,84:1222-1224.
    9. Pan H, Li LM, Hu L, Cui XJ. Polymer.2006,47:4901-4904.
    10. Teo WE, Gopal R, Ramaseshan R, Fujihara K, Ramakrishna S. Polymer. 2007,48:3400-3405.
    11. Smit E, Buttner U, Sanderson RD. Polymer.2005,46:2419-2423.
    12. Wang X, Zhang K, Zhu M, Yu H, Zhou Z, Chen Y, Hsiao BS. Polymer. 2008,49:2755-2761.
    13. Wang XF, Zhang K, Zhu MF, Hsiao BJS, Chu BJ. Macromolecular Rapid Communications 2008,29:826-831.
    14. Afifi AM, Nakano S, Yamane H, Kimura Y. Macromolecular Materials and Engineering.2010,295:660-665.
    15. Ravandi SAH, Hassanabadi E, Tavanai H, Abuzade RA. Journal of Applied Polymer Science 2012,124:5002-5009.
    16. Liu J, Chen G, Gao H, Zhang L, Ma S, Liang J, Fong H. Carbon. 2012,50:1262-1270.
    17. Bashir Z, Tipping AR, Church SP. Polymer International 1994,33:9-17.
    18. Hohman MM, Shin M, Rutledge G, Brenner MP. Physics of Fluids. 2001,13:2221-2236.
    19. Hou XX, Yang XP, Zhang LQ, Waclawik E, Wu SZ. Materials & Design. 2010,31:1726-1730.
    20. Lai C, Zhong G, Yue Z, Chen G, Zhang L, Vakili A, Wang Y, Zhu L, Liu J, Fong H. Polymer.2011,52:519-528.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700