Stewart平台的运动学与逆动力学的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Stewart平台并联机构由于具有刚度大、承载能力强、位置误差不累计等特点,在应用上与串联机构形成互补,已成为空间机构学的研究热点。目前,Stewart平台并联机构已经在航空、航天、海底作业、地下开采、制造装配等行业有着广泛的应用。尽管并联机构的实际应用和理论研究取得了大量的研究成果,但是在运动学、奇异性、动力学方面仍然存在一些有挑战性的问题,如少自由度并联机构雅可比矩阵的求解目前还没有1个统一的方法;寻求一种能求出并联机构位置正解的所有解的算法;寻求一种高效的逆动力学问题的解法等。本文将从空间并联机构的运动学、奇异性和逆动力学等方面对上述问题进行深入的研究。
     雅可比矩阵是Stewart平台并联机构的1个主要内容,它表示由输入关节到末端执行器输出的一种映射。对于空间6自由度的Stewart平台并联机构,本文采用运动法求解其雅可比矩阵。对于少自由度并联机构,本文通过在每个支链上增加单自由度运动副,将每个支链等效转化为6自由度的支链,用运动法来求该转化机构的雅可比矩阵。该方法可以得到少自由度并联机构的完整雅可比矩阵,该方法对建立少自由度并联机构的雅可比矩阵具有通用性。
     对于空间并联机构的奇异性问题。本文结合Stewart平台的位形参数与已求出的雅可比矩阵的结论,通过对该雅可比矩阵的化简求出了Stewart平台的1个奇异位形,该过程也验证了雅可比矩阵求解的正确性。当Stewart平台处于奇异位形时,动平台将得到多余的自由度并出现瞬时的螺旋运动,该螺旋运动可由动平台上不共线的3点的运动合成,并且只有当这3点速度的法平面的公共点在这3点所确定的平面内,这3点的运动才能合成1个螺旋运动。
     对于Stewart平台并联机构的位置正解,本文以Stewart平台为例,建立了并联机构的约束方程组,该方程组为1组强耦合的非线性方程组,通过万能公式把该非线性方程组转化为多项式方程组的形式,最后,构造了初始方程组。本文基于同伦路径跟踪原理,提出预估——校正法,得到了求出并联机构所有位置正解的算法。通过具体的例子求出了Stewart平台位置正解的所有解,通过运动的连续性判断出其中的合理解。最后通过与其它算法结果的对比验证了该算法的正确性,有效性。
     对于Stewart平台并联机构的的逆动力学问题,本文采用Kane方法,根据Stewart平台的特点采用动平台的位置和姿态参数作为广义坐标,以速度和角速度分量作为广义速度。在考虑Stewart平台的动平台和各个分支的重力和惯性力的基础上建立了完整的逆动力学模型。通过在分支的上、下连杆的质心建立局部坐标系,借助各个分支连杆的空间位置关系简化了分支连杆在惯性坐标系中惯性张量的求解。最后,对Stewart平台的逆动力学模型进行了数据仿真计算与仿真实验,同时也与现有的研究结果进行了对比实验,通过仿真实验与对比实验结果表明该模型的正确性,并且具有很高的精度。
Stewart platform is characterized by the high rigidity, large load handling capability, and non-accumulation of position error. Parallel mechanism is the supplement of the series mechanism and become the focus of the research in spatial mechanism. At present, Stewart platform extensive and important applications in many aspects such as aviation, flight, busywork in sea and land, underground exploitation, manufacturing and so on. However, despite the plentiful research achievements in the practical application and theory study in parallel mechanism, there are many challenging problems in kinematics, singularity and dynamics. For example, there is no a uniform method for solving the Jacobian matrix of the parallel mechanism which is deficient degrees of freedom, and searching for an algorithm that could solve all solutions to the forward kinematics of parallel mechanism and so on. In this dissertation, it was systematically dealed with kinematics, singularity, inverse dynamic for parallel mechanism.
     Jacobian matrix is an important aspect of spatial parallel mechanism. Jacobian matrix is a mapping from input to outout. Method of motion was adopted to solve the Jacobian matrix of spatial parallel mechanism of 6 degrees of freedom. However, there is no a uniform method for solving the Jacobian matrix of the parallel mechanism which is deficient degrees of freedom. In this dissertation, the Jacobian matrix of deficient degrees of freedom parallel mechanism was established by adding imaginary kinematic pairs to each kineamtc branched-chain, which make every branched-chain to transform an imaginary mechanism with six degrees of freedom. The complete Jacobian matrix was derived from the imaginary parallel mechanism. This method is universal for deficient degrees of freedom parallel mechanism. The value of the Jacobian matrix determinant was detected in the course of motion planning based on the inverse kinematics to determine the reasonableness of the trajectory planned.
     The singularity is an importan aspect that needed to be considered, and the Jacobian matrix palys an important role in this part. It could be determined the singularity of parallel mechanism by simplifiing the Jacobian matrix that had derived from the positon and configruation of the parallel mechanism. A singuilarity configuration was founded by simplifiing the Jacobian matrix, which verified the correctness of the Jacobian matrix. The moblie platform would get unexpect degrees of freedom and an instantaneous screw motion if it is in singularity configuration. The instaneous screw motion could be synthesised by the motion of three pointes that are not located in the same line on the mobile platform. The motion of the three points could synthesis a screw motin only when the intersection point of the three normal planes of velocity located in the plane that is determined by the three pointes.
     As for the forward kinematics of the spatial parallel mechanism, Stewart platform was seltct as an example in this dissertation, by adopting homotype approach, an equation system of the mechanism structure constrain was established, which was a strong coupling equation system. Universial formula was used to transform nonlinear equation system into polynomial equation system. At last, the initial equation system was established. A predictor—corrector method to get the forward solutions was proposed based on the principle of homotypy, which is an method that could solve all solutions to all possible configuration of parallel mechanism. All solutions of Stewart platform was solved by this method, and all reasonable solutions were determined by considering the continuity of the motion of the platform. The comparison of the results of the homotopy and other algorithm was carried out, which verified the correctness and validity of the homotopy.
     As for the inverse dynamic of the parallel mechanism, the parameters of the position and configuration were generalized coordinates according to the principle of the Kane, and the linear velocity and angular velocity were generalized velocity. The complete inverse dynamic model was built by considering the gravity and inertial of the all chains and mobile platform. The local frames of axes were located in the mass center of the each kinematic chain, which simplified the computation process inertial tensor of the every kinematic chain in the inertial frame of the axes. At last, the computer simulation was carried out to verify the correctness and reasonableness of the inverse dynamic model. The contrast test was carried out with the existing studing results, which showed that the homotopy algorithm of the inverse dynamics had high precision.
引文
[1] A. Cauchy. Deuxieme memoire sur les polygons et les polyedres. Journal de I'Ecole Polytechnique, 1813,(5):87-88
    
    [2] J.E. Gwinnett. Amusement device. United States Patent 1789680,1931
    
    [3] V.E. Gough, S.G. Whitechall. Universal tyre test machine. Proceedings of the FISITA Ninth International Technical Congress, May, 1962,117-137
    [4] K.L. Cappel. Motion simulator. United States Patent 3295224,1967
    [5] D. Stewart. A platform with six degrees of freedom. proceedings of the IMechE, 1965, 180(15):371-385
    [6] R.F. King. A flight simulator for advanced aircraft-servo: design to realization. Proceedigns of the Summer Computation Simulation, Montreal, Canada, 1973,248-253
    [7] D. Marchegiani. Motion simulator. United States Patent 3967387, 1976
    [8] R. Hoffman, M.G. McKinnon. Vibrational modes of an aircraft simulator motion system. In 5 IFToMM World Congress on the Theory of Machines and Mechanisms, Montreal, Canada, July 1979,603-606
    
    [9] K.H. Hunt. Kinematic geoemtry of mechanisms. Oxford: Oxford Claredon Press, 1978
    [10] H.MacCallion, D.T. Pham. The analysis of a 6-DOF work station for mechanized assembly. Proceedings of 5th Congress on TMM, Montreal, Canada, 1979,611-616
    
    [11] E.F. Fichter, E.D. McDowell. A novel design for robot arm. Proceedings of International Computer Technical Conference, San Francisco, USA, 1980,250-255
    
    [12] M.A. Lande, R.J.P. David. Articulation for manipulator arm. United States Patent 4300362, 1981
    [13] E.F. Fichter. A Stewart platform-based manipulator: general theory and practical construction. The Journal of Robotics Research, 1986, 5(2):157-182
    [14] J.P. Merlet. Parallel manipulators part 2: Singular configurations and grassmann geometry. Technology Report. INRIA, Sophia Antipols, France, 1988, 66-70
    [15] C.F. Eral, J. Rooney. Some kinematics structures for robot manipulator design. Journal of Mechanisms, Transmissions and Automation in Design, 1983, 105(1): 15-22
    [16] K.H. Hunt. Structural kinematics of in parallel actuated robot arms. Journal of Mechanisms, Transmissions and Automation in Design,1983,105(4):705-712
    [17]J.Rooney,C.F.Eral.Manipulator postures and kinematics assembly configurations.In 6~(th) IFToMM World Congress on the Theory of Machines and Mechanisms,New-Delhi,1983,1014-1020
    [18]D.C.H.Yang,T.W.Lee.Feasibility study of a platform type of robotic manipulator from a kinematic viewpoint.Journal of Mechanisms,Transmissions and Automation in Design,1984,106(2):191-198
    [19]M.G.Mohamed,J.Sanger,J.Duffy.Instantaneous kinematics of fully-parallel devices.In 6~(th)IFToMM World Congress on the Theory of Machines and Mechanisms,New-Delhi,1983,77-80
    [20]M.G.Mohamed,J.Duffy.A direct determination of the instantaneous kinematics of fully parallel robot manipulators.Journal of Mechanisms,Transmissions and Automation in Design,1985,107(2):226-229
    [21]K.L.Ting,G.H.Tsai.Mobility and synthesis of five-bar programmable linkage.In 9~(th) Applied Mechanisms Conference,Kansas City:MO,1985,Ⅲ.1-Ⅲ.8
    [22]K.Sugimoto.Kinematic and dynamic analysis of parallel manipulators by means of motor algebra.Journal of Mechanisms,Transmissions and Automation in Design,1987,109(1):3-7
    [23]F.Behi.Kinematic analysis for a six-degree-of freedom 3-PRPS parallel mechanism.IEEE Journal of Robotics and Automation,1988,4(5):561-565
    [24]W.Q.D.Do,D.C.H.Yang.Inverse dyanmic analysis of a paltform type of robot.Journal of Robotic Systems,1988,5(3):209-227
    [25]K.M.Lee,D.K.Shah.Kinematic analysis of a three-degrees-of-freedom in parallel actuated manipulator.IEEE Journal of Robotics and Automation,1988,4(3):354-360
    [26]K.M.Lee,D.K.Shah.Dynamic analysis of a three-degrees-of-freedom in parallel actuated manipulator.IEEE Journal of Robotics and Automation,1988,4(3):361-368
    [27]J.P.Merlet.Force-feedback control of parallel manipulators.IEEE International Conference on Robotics and Autoamtion,Philadephia,United States,April,1988,1484-1489
    [28]杜铁军.机器人误差补偿器研究.燕山大学硕士学位论文,1994
    [29]范守文,徐礼矩,甘泉.一种新型虚拟轴机床的结构设计与位置分析.电子科技大学学报,2001,30(5):464-467
    [30]蔡光起,胡明,郭成.机器人化三腿磨削机床的研制.制造技术与机床,1998,10:4-6
    [31]黄田,倪雁冰,王洋等.Kinematic design of 3-HSS parallel machine tool.制造技术与机床,2000, 3:13-15
    [32]赵辉.五自由度五轴并联机床关键技术研究.北京航空航天大学博士学位论文,2004
    [33]P.Nanua,K.J.Waldron,V.Murthy.Direct kinematic solution of a Stewart platform.IEEE Transactions on Robotics and Automation,1990,6(4):438-444
    [34]M.Raghavan.The Stewart platform of general geometry has 40 configurations.ASME Journal Mechanical Design,1993,115(2):277-281
    [35]M.L.Husty.An algorithm for solving the direct kinematic of Stewart-Gough-type platforms.Mechanism and Machine Theory,1996,31(4):365-380
    [36]C.W.Wampler.Forward displacememt analysis of general six-in-parallel SPS(Stewart) platform manipulators using some coordinates.Mechanism and Machine Theory,1996,31(3):331-337
    [37]O.Didrit,M.Petitot,E.Walter.Guaranteed solution of direct kinematic problems for general configurations of parallel manipulators.IEEE Transactions on Robotics and Automation,1998,14(2):259-266
    [38]J.P.Merlet.Direct kinematic of parallel manipulators.IEEE Transactions on Robotics and Automation,1993,19(6):842-846
    [39]C.Y.Yee,K.B.Lim.Forward kinematics solution of Stewart platform using neural networks.Neurocomputing,1997,16(3):333-349
    [40]I.A.Boney,J.Ryu,S.G.Kim,et al.A closed-form solution to the direct kinematics of nearly general parallel manipulators with optimally located three linear extra sensors.IEEE Transactions on Robotics and Automation,2001,17(2):148-156
    [41]P.J.Parikh,S.S.Y.Lam.A hybrid strategy to solve the forward kinematics problem in parallel manipulators.IEEE Transactions on Robotics,2005,21(1):18-25
    [42]X.S.Gao,D.L.Lei,Q.Z.Liao,et al.Generalized Stewart-Gough platforms and their direct kinematics.IEEE Transactions on Robotics,2005,21(2):141-151
    [43]J.S.Zhao,J.Yun,L.P.Wang,et al.Investigation of the forward kinematics of the Gough-Stewart manipulator with natural coordinates.International Journal of Advanced Manufacturing Technology,2006,30(7):700-716
    [44]K.H.Hunt.Kinematic geoemtry of mechanisms.Oxford:Oxford Claredon Press,1978
    [45]C.M.Gosselin,J.Angeles.Singularity analysis of closed-loop kinematic chains.IEEE Transaction on Robotics and Automation,1990,6(3):281-290.
    [46] F.C. Park, J.M. Kirn. Singularity analysis of closed kinematic chains. ASME Journal of Mechanical Design, 1999, 121(1): 32-38
    [47] J. Hesselbach, C. Bier, A. Campos, et al. Direct kinematic singularity direction of a Hexa parallel robot. Proceedings of IEEE International Conference on Robotics and Automations, 2005, 3238-3243
    [48] G. Alici, B. Shirinzadeh. Loci of singular configurations of a 3-DOF spherical parallel manipulator. Robotics and Autonomous Systems, 2004, 48(2): 77-91
    [49] GY. Yang, I.M. Chen, W. Lin, et al. Singularity analysis of three-legged parallel robots based on passive-joint velocities. IEEE Transaction on Robotics and Automation, 2001, 17(4): 413-422
    [50] N. Simaan, M. Shoham. Singularity analysis of a class of composite serial in-parallel robots. IEEE Transaction on Robotics and Automation, 2001, 17(3): 301-311
    [51] M.K. Lee, K.W. Park. Workspace and singularity analysis of a double parallel manipulator. IEEE Transaction on Mechatronics, 2000, 5(4): 367-375
    [52] D. Kim, W. Chun. Analytic singularity equation and analysis of six-DOF parallel manipulators using local structurization method. IEEE Transaction on Robotics and Automation, 1999, 15(4): 612-622
    [53] C.M. Gosselin, J. Wang. Singularity loci of planar parallel manipulators with revolute actuators. Robotics and Autonomous Systems, 1997, 21(4): 377-398
    [54] W. Khalil, D. Muraeci. Kinematic analysis and singular configurations of a class of parllel robots. Mathematics and Computers in Simulation, 1996, 41(3): 377-390
    [55] J. Sefrioui, C.M. Gosselin. On the quadratic nature of the singularity curves of planar three-degree-of-freedom parallel manipulators. Mechanism and Machine Theory, 1995, 30(4):533-551
    [56] H.R.M. Daniali, P.J. Zsombor-Murray, J. Angeles. Singulartiy analysis of planar parallel manipulators. Mechanism and Machine Theory, 1995, 30(5): 665-678
    [57] F.C. Park, J.M. Kim. Singularity analysis of closed kinematic chains. ASME Journal of Mechanical Design, 1999, 121(1): 32-38
    [58] M. Zein, P. Wenger, D. Chablat. Singular curves and cusp points in the joint space of 3-RPR parallel manipulators. Proceedings of IEEE International Conference on Robotics and Automation, 2006, 777-782
    [59] S. Bandyopadhyay, A. Ghosal. Analysis of configuration space singularities of closed-loop mechanisms and parallel manipulators. Mechanism and Machine Theory, 2004,39(5): 519-544
    [60] C.L. Collins, J.M. McCarthy. The quartic singularity Surfaces of Planar Platform in the Clifford Algebra of the Projective Plane. Mechanism and Machine Theory, 1998, 33(7): 931-944
    [61] D. Basu, A. Ghosal. Singularity analysis of platform-type multi-loop spatial mechanisms. Mechanism and Machine Theory, 1997, 32(3): 375-389
    [62] G.F. Liu, Y.J. Lou, Z.X. Li. Singularities of parallel manipulators a geometric treatment. IEEE Transaction on Robotics and Automation, 2003,19(4): 579-594
    [63] A. Wolf, E. Ottaviano, M. Shoham, et al. Application of line geometry and linear complex approximation to singularity analysis of the 3-DOF CaPaMan parallel manipulator. Mechanism and Machine Theory, 2004,39(1): 75-95
    [64] C. Torras, F. Thomas, M. Alberich-Carramiflana. Stratifying the singularity loci of a class of parallel manipulators. IEEE Transaction on Robotics, 2006,22(1): 23-32
    [65] D.A. Smith. Reaction force analysis in generalized machine systems. ASME Journal of Engineering and Industy, 1973,95: 617-623
    [66] B. Paul. Analytical dynamics of mechanism-A computer oriented overview. Mechanism and Machine Theory, 1975,10:481-507
    
    [67] J. Wittenburg. Dynamics of systems of rigid bodies. B.G. Teubner, Stuttgart, 1977
    [68] M.W. Walker, D.E. Orin. Efficient dynamic computer simulation of robotic mechanisms. ASME Journal of Dynamic Systems, Measurement and Control, 1982, 104(9): 205-211
    [69] J.Y.S. Luh, Y. Zheng. Computation of input generalized force for robots with closed kinematic chain mechanism. IEEE Transaction on Robotics and Automation, 1985,1(2): 95-103
    [70] R. Featherstone. Robot Dynamic Algorithms. Norwell: Kluwer Academic, 1987
    [71] Y. Nakamura, M. Ghodoussi. Dynamics computation of closed-link robot mechanisms with nonredundant and redundant actuatora. IEEE Transaction on Robotics and Automation, 1989, 5(3): 294-302
    [72] F. Ghorbel, O. Chetelat, R. Longchamp. A reduced model for constrained rigid bodies with application to parallel robots. Proceedings of the IFAC Symposium on Robot Control, 1994, 57-62
    [73] F. Ghorbel. Modeling and pd control of closed-chain mechanical systems. Proceedings of the IEEE Conference on Decision and Control, 1995, 1:540-542
    [74]R.Murray,Z.X.Li,S.Sastry.A Mathematical Introduction to Robotic Manipulator.CRC Press,1994
    [75]Z.Huang.Modeling formulation of 6-DOF parallel manipulators part 2-dynamic modeling and example.The 4~(th) IFToMM Conference on Mechanisms and CAD,Bucharest,Romania,1985
    [76]E.F.Fichter.A Stewart Platform-Based Manipulator:General Theory and Practical Construction.The Journal of Robotics Research,1986,5(2):157-182
    [77]B.Dasgupta.A general strategy based on Newton-Euler approach for the dynamic formulation of parallel manipulator.Mechanism and Machine Theory,1999,34(6):801-824
    [78]郭祖华,陈五一,陈鼎昌.6-UPS型并联机构刚体动力学模型.机械工程学报,2002,38(11):53-57
    [79]李剑峰,王新华,魏源迁等.3-RSR并联机构的微分运动学及动力学分析.北京工业大学学报,2003,29(4):418-423
    [80]孔令富,张世辉,肖文辉等.基于Newton-Euler方法的6-PUS并联机构刚体动力学模型.机器人,2004,26(5):395-399
    [81]L.W.Tsai.The Mechanics of Serial and Parallel Manipulators.New York,USA:John wiley&sons,Inc.Press,1999
    [82]J.F.Li.Inverse kinematic and dynamic analysis of 3-DOF parallel mechanism.Chinese Journal of Mechanical Engineering,2003,16(1):54-58
    [83]E.F.Fichter.A Stewart platform based manipulator:general theory and practical construction.The International Journal of Robotics Research,1986,5(2):157-182
    [84]K.Y.Tsai,D.Kohli.Modified Newton-Euler computational scheme for dynamic analysis and simulation of parallel manipulators with applications to configuration based on R-L actuator.Proceedings of The ASME Design Engineering Technicalo Conference,Irvine,USA,1990
    [85]王洪波,黄真.六自由度并联机构的拉格朗日方程.机器人,1990,90(1):23-26
    [86]白志富,韩先国,陈五一.基于Lagrange方程三自由度并联机构动力学研究.北京航空航天大学学报,2004,30(1):51-54
    [87]H.Pendar,M.Vakil,H.Zohoor.Efficient dynamic equation of 3-RPS parallel mechanism through Lagrange method.Proceedings of the 2004 IEEE Conference on Robotics,Automation and Mechatronics,Singapore,2004,1152-1157
    [88]K.M.Lee,D.K.Shah.Dynamic analysis of a three-degree-of-freedom in-parallel actuated manipulator.IEEE Transaction on Robotics and Automation,1998,4(3):361-367
    [89]H.Pang,M.Shaingpoor.Inverse dynamic of a parallel manipulator.Journal of Robotic System,1994,11(8):693-702
    [90]Y.K.Yiu,H.Cheng,Z.H.Xiong.et al.On the dynamic of parallel manipulators.Proceedings of IEEE International Conference on the Robotics and Automation,2001,3766-3771
    [91]C.M.Gosselin,J.Angeles.A global performance index for kinematic optimization of robotic manipulators.ASME Journal of Mechanical Design,1991,113(3):220-226.
    [92]C.M.Gosselin.Stiffness mapping for parallel manipulators.IEEE Transaction on Robotics and Automation,1990,6(3):337-382.
    [93]J.P.Merlet.Jacobian,manipulability,condition number,and accuracy of parallel robots.ASME Journal of Mechanical Design,2006,128(1):199-206.
    [94]黄真,孔令富,方跃法.并联机构机构学理论及控制.北京:机械工业出版社,1997.
    [95]C.M.Gosselin,J.Angeles.The optimum kinematic design of a spherical three-degree-of-freedom parallel manipulator.ASME Journal of Mechanisms,Transmissions and Automation in Design,1989,111(2):202-207.
    [96]J.Wang,C.M.Gosselin.Kinematic analysis and singularity loci of spatial four degree of freedom parallel manipulators.Proceedings of The ASME Mechanisms Conference,Irvine,California,19-22,August,1996.MECH:1106-1108.
    [97]C.M.Gosselin,J.Angeles.The optimum kinematic design of a planar three-degree-of-freedom parallel manipulator.ASME Journal of Mechanisms,Transmissions and Automation in Design,1988,110(1):35-41.
    [98]杨东超,杨向东.并联机构雅可比矩阵的求法及其计算精度研究.机械设计与研究,2007,23(6):23-26.
    [99]L.W.Tsai,S.Joshi.Kinematics and optimzation of a spatial 3-UPU parallel manipulator.ASME Journal of Mechanical Design,2000,122(4):439-446.
    [100]D.Zlatanov,R.G.Fenton,B.Benhabib.Singularity analysis of mechanism and robots via a velocity-equation model of the instantaneous kinematics.1994,Proceeding of the IEEE International Conference on Robotics and Automation,San Diego,CA,986-991.
    [101]李永刚,宋轶民.4自由度非全对称并联机构的完整雅可比矩阵.机械工程学报,2007,43(6):37-40.
    [102]郭希娟等,虚设机构法正确性的论证.机械工程学报,2001,34(5):40-43.
    [103]陈景良,陈向晖著.特殊矩阵.北京:清华大学出版社,2001.
    [104]黄真,曲义远.空间并联多环机构的特殊位形分析.第五届全国机构学学术会议.庐山,1987:1-7.
    [105]J.P.Merlet.Singular configurations of parallel manipulators and grassmann geometry.International Journal of Robot Research,1989,8(5):45-46.
    [106]V.K.Chan,I.Ebert-Uphold.Investigation of the deficiencies of parallel manipulators in singular configurations through Jacobian nullspace.Proceedings-IEEE International Conference on Robotics and Automation,Seoul,2001,(2):1313-1320.
    [107]黄真.空间机构学.北京:机械工业出版社,1991.
    [108]黄真,杜维.3/6-SPS型Stewart机器人的一般线性丛奇异分析.中国机械工程 1999,9(10):997-1000
    [109]熊有伦.机器人学.北京:机械工业出版社,1993.
    [110]M.Griffis,J.Diffy.A forward displacement analysis of a class of Stewart platforms.Journal of Robotic Systems,1989,20(6):703-720.
    [111]J.P.Merlet.Direct kinematics and assembly models of parallel manipulators.The International Journal of Robotics Research,1992,11(2):150-162.
    [112]J.P.Merlet.An algorithm for the forward kinematics of general parallel manipulators.In ICAR,Pisa,Italy.1991.1131-1135.
    [113]霍伟.机器人动力学与控制.北京:高等教育出版社,2005.
    [114]王则柯,高堂安.同伦方法引论.重庆:重庆出版社,1990
    [115]A.P.Morgan.Solving polynomial systems using continuation for engineering and scientific problems.Prentice-Hall,1987.
    [116]C.W.Wampler,A.P.Morgan,A.J.Sommese.Numerical continuation methods for solving polynomial systems arising in kinematics.Journal of Mechanical Design,1990,112(1):59-68.
    [117]张威,赵新华.3-RTT并联机器人位置分析.天津理工学院学报,2003,19(3):32-35.
    [118]赵慧,韩俊伟,张尚盈等.六自由度机器人动力学分析和计算.济南大学学报,2003,17(2):114-117.
    [119]李嘉,王记武,陈恳等.并联机构逆动力学.机器人,2000,22(2):89-95.
    [120]张立新,汪劲松,王立平等.匀速条件下并联机床刚体动力学模型的简化.清华大学学报(自 然科学版),2003,43(8):1041-1044.
    [121]韩佩富,王常武,孔令富等.改进的6-DOF并联机构Newton-Euler动力学模型.机器人,2000,22(4):315-318.
    [122]汪劲松,黄田.并联机床—机床行业面临的机遇与挑战.中国机械工程,1999,10(10):1103-1107.
    [123]Q.Huang,H.Hadeby,G.Sohlenius.Connection method for dynamic modeling and simulation of parallel kinematic machanism(PKM) machines.The International Journal of Advanced Manufacturing Technology,2002,19(3):163-173.
    [124]王启明,胡明,孙希龙等.三自由度并联机构机构动力学研究.机械科学与技术,1999,18(4):596-598.
    [125]J.M.Hollerbach.Arecursive lagrangian formulation of manipulator dynamic and a comparative study of dynamics formulation complexity.IEEE Trans.Syst.Man and Cybem,1980,10(11):730-736.
    [126]M.M.Sliver.On the equivalence of lagrangian and Newton-Euler dynamics for manipulators.International Journal of Robotics Research,1982,1(2):60-70.
    [127]John J.Murray,Gibert H.Lovell.Dynamic modeling of closed-chain robotic manipulators and Implications for trajectory control.IEEE Transactions on Robotics and Automation,1989,5(4):522-528.
    [128]T.R.Kane,D.A.Levison.Dynamics:theory and application.McGraww-Hill Book Company,1985.
    [129]Min-Jie Liu,Cong-Xin Li and Chong-Ni Li.Dynamic analysis of the Gough-Stewart platform manipulator.IEEE Transactions on Robotics and Automation,2000,16(1):94-98.
    [130]M.Sharifi,S.Mahalingam and S.Dwivedi.Derivation of Kane's dynamical equayions for a three link(3R) manipulator.IEEE,1998,573-580.
    [131]B.Dasgupta,T.S.Mruthyunjaya.Closed-form dynamic equations of the general Stewart platform through the Newton-Euler approach.Mechanism and Machine Theory.1998,33(7):993-1012.
    [132]B.Dasgupta,T.S.Mruthyunjaya.A general strategy based on the Newton-Euler approach for the dynamic formulation of parallel manipulators.Mechanism and Machine Theory.199,34(6):801-824.
    [133]邱秉权.分析力学.北京:中国铁道出版社.
    [134]梁崇高,荣辉.一种Stewart平台机械手位移正解.机械工程学报,1991,27(2):26-30
    [135]W.Lin,C.Crane,M.Griffs.Closed-form forward displacement analysis of the 4-5 in-parallel paltforms.Transimission of the ASME,Journal of Mechanical Design,1994,116:47-53.
    [136]J.Gallardo-Alvarado,J.M.Rico-Martinez,G.Alici.Kinematics and singulrity analysis of a 4-DOF parallel manipulator using screw theory.Mechanism and Machine Theory,2006,41(9):1048-1061
    [137]S.Bhattacharay,H.Hatwal,A.Ghosh.Comparsion of an exact and an approximate method of singularity avoidance in paltform type parallel manipulators.Mechanism and Machine Theory,1998,33(7):965-974
    [138]O.Altuzarra,C.Pinto,R.Aviles,et al.A practical procedure to analyze singular configruations in closed kinemantic chains.IEEE Transactions on Robotics,2004,20(6):929-940
    [139]P.A.Voglewede,I.Ebert-Uphoff.Overaching framework for measuring closeness to singularitise of parallel manipulators.IEEE Transactions on Robotics,2005,21(6):1037-1045
    [140]Y.K.Hwang,N.Ahuja.Cross motion planning-a surivey.ACM Computing Surveys,1992,24(3):219-292
    [141]杨灏泉,吴盛林,曹健等.考虑驱动分支惯量影响的Stewart平台动力学研究.中国机械工程,2002,13(12):1009-1012
    [142]肖咸宽.并行结构机器人机构学研究.西安交通大学硕士论文,1999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700