马鞍型并联跟踪台的若干关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为满足对运动目标进行多自由度跟踪的需求,并联跟踪台技术逐渐发展起来。本文主要围绕具备一个平移自由度和两个旋转自由度的并联跟踪台即马鞍型并联跟踪台中的若干关键技术进行探讨,主要有拓扑结构、可视化参数化设计方法、运动学和动力学建模、自动控制和手动介入控制方法以及标定技术。
     研究机构的拓扑结构是实现机构布局优化设计的关键,其目的是通过建立机构的拓扑特性衍生出能够实现所需要求的可能机构,而后通过判定准则从可能机构中优选出最佳布局方案。本文以单开链拓扑理论为基础,依据并联机构拓扑设计准则,着重对能够实现空间三自由度运动的并联机构的拓扑特性进行研究,给出了一种新型的呈马鞍型并联支撑布局的并联跟踪机构方案,即马鞍型并联跟踪台。
     机构尺寸的优化设计是通过参数化设计方法来实现。本文以空间两坐标系变换关系原理为依据,构建了马鞍型并联跟踪台的位置逆解模型,并以该模型为核心,提出了一种基于简化结构的并联跟踪台可视化、参数化设计方法。实验表明,该方法不但能够实现马鞍型并联跟踪台的尺寸优化设计、而且能够扩展应用到多自由度并联机构的尺寸优化设计中去。
     运动学和动力学建模和分析是研究机构动态特性的主要方面。本文概述了目前各种运动学和动力学方法各自的特点及适用范围,提出了一种基于点运动合成理论的运动学建模方法,并采用Kane方法建立了动力学模型。就模型的实现方法:编程实现方法和虚拟样机技术方法进行了分析和比较,在两者实现同等效果的基础上,以效率更高的虚拟样机技术实现方法为基础,通过仿真实验得到了反映马鞍型并联跟踪台动态特性的一系列运动学和动力学性能数据,为后续的跟踪控制系统各零部件的选型和系统搭建提供了理论依据。
     控制环节在跟踪系统的设计中占有重要地位,控制的好坏将直接决定跟踪的最终效果。本文首先依据已得到的运动学和动力学仿真实验数据完成了跟踪控制系统的硬件结构设计和系统搭建,而后,根据目标跟踪机理,以位置逆解模型实现了跟踪台的自动控制,并进行了自动控制实验,实验验证了模型的有效性。手动控制方面,分析了现有手控方法的特点和不足,提出了一种交互性更强的基于二轴操纵杆的手动介入控制方法,利用空间几何关系获取控制信息,结合操纵杆摆动方向与跟踪台运动方向间建立的映射关系,实现了跟踪台与人手的协同动作和控制。
     实现并联跟踪台的高精度跟踪和定位是通过对并联跟踪台的标定来实现。本文采用双CCD组合测量方法对马鞍型并联跟踪台的运动重复性精度进行了实验验证。
Parallel tracking platform technology is developed gradually to meet the need of multi-freedom tracking of the moving target. In this paper ,the following key technology of the U-shaped parallel tracking platform, which is of one advection freedom and two revolution freedom, is deeply discussed: topological structure; methods of the visible parameterization design; modeling of the kinematics and the kinetics; auto-control and manual intervention control methods; calibration methods.
     The key of realizing the optimization design of the device layout is studying the device topological structure, which aims to derive the probable structure meeting the need by building the topological character of the device. According to the single-open-chain topological theory and the topological design principle of the parallel device, the topological character of the parallel device, which can realize the space three freedom movement of parallel device, is deeply studied in this paper and further gives a new plan of the parallel tracking device with U-shaped parallel support layout, namely the U-shaped parallel tracking platform.
     The optimization design of the device size is realized through the parameterization design method. The mathematical model of the U-shaped parallel tracking platform is built according to the transformation relationship between two coordinate systems. Basing on this model, a visual parameterization design method of the parallel tracking platform is given. Experiments show that, this method can realize the optimization design of the U-shaped parallel tracking platform and be applied to the optimization design of the multi freedom parallel devices.
     The main aspects of the device dynamic character study are the modeling and analysis of the kinematics and kinetics. The features and application range of the current kinematics and kinetics methods are summarized in this paper. The kinematics modeling method based on the point movement synthesis theory is given and the kinetics model is built using the Kane method.The kinematics and kinetics model of the U-shaped parallel tracking platform are built and the two model realization methods, which are coding and virtual prototype, are analyzed and compared. The virtual prototype technology has higher efficiency among the two methods to achieve the same effect. The kinematics and kinetics character data, which reflects the dynamic character of the U-shaped parallel tracking platform,is got through emulation experiments, which provides the theory support for the later accessory selection of the tracking control system and the system building.
     The control annulus is an important part in the tracking system design, which directly affects the final tracking result. In this paper, the hardware structure design and system building of the tracking control system is finished firstly according to the gotten emulation experiment data of the kinematics and kinetics. Then according to the target tracking mechanism, the auto-control model of the U-shaped parallel tracking platform is built, the auto-control experiments are done and its validity is validated. The feature and drawback of the current manual control methods are analyzed and a manual intervention control method with two-axis control stick is given, which is more interactive. The concerted movement and control are realized between the tracking platform and hand through using spatial geometrical relationship to get the control information and combining the control stick swinging direction and tracking platform moving direction to build the mapping relation.
     It is the calibration of the parallel tracking platform to realize its high accuracy tracking and positioning. The repeatability accuracy of the U-shaped parallel tracking platform is validated in this paper by two-CCD compound measurement.
引文
[1]陈晓东,精密光学跟踪平台控制系统的实现,浙江工商职业技术学院学报,2004,3(1):60~63
    [2]李永鑫,当代飞行仿真转台发展状况及其特点,现代防御技术,1992,(2):24~31
    [3]蒋威威,贾建援,三轴跟踪瞄准装置的机电动力学仿真,电子科技,2005,4:2~5
    [4]http: //www. kh17. com/gsjj. asp
    [5]www. mw1950. com
    [6]http: //www. molds. cn/html/2008/01/07095039838. htm
    [7]http: //www. molds. cn/html/2008/06/03083902877.htm
    [8]http: //www. cmiw. cn/?action-viewnews-itemid-253323
    [9]http: //ime. pim. tsinghua. edu. cn/research/research1. html
    [10]http: //www. icad. com. cn/wencui/ShowArticle. asp?ArticleID=22077
    [11]杨斌久,蔡光起,罗继曼等,少自由度并联机器人的研究现状,机床与液压,2006,(5):202~206
    [12]李长河,蔡光起,并联机床发展与国内外研究现状,青岛理工大学学报,2008,29(1):7~13
    [13]李强,闰洪波,张玉宝,并联机床发展的历史、研究现状与展望,机床与液压,2007,35(3):206~210
    [14]J Tlusty, J Ziegert, S Ridgeway. Fundamental Comparison of the Use of Serial and Parallel Kinematics for Machine Tools. Annals of the CIRP, 1999, 48(1): 351~356
    [15]F Jovane, S P Ne , I Fassi, et al. Design Issue for Reconfignrable PKMs. The 3rd Chemnitz Parallel Kinematics Seminar. Chemnitz, Germany, 2002: 17~47
    [16]KHWurst, U Peting. PKM Concept for Reconfigurable Machine Tols. The 3rd Chemnitz Parallel Kinematics Seminar. Chemnitz, Ge rm any, 2003: 63~66
    [17]Gosselin C M J. Dyn. Sys. Meas. Control. Trans. Of the ASME, 1996, 118(4): 22~28
    [18]Cai G Q, Hu M, Guo C, et al. Development and. study of fl new kind of tripod. Annals of CIRP, 1999(1): 333~336
    [19]Hunt K H . Structural kinematics of in-parallel-actuated robot arm. Journal of Mechanism, Transmission, and Automation in Design, 1983, 105(2): 15~22
    [20]Kim J, Park FC, Lee JM. A New Parallel Mechanism Machine Tool Capable of Five-Face Machining. Annals of the CIRP, 1999, 48(1): 337~340
    [21]Cai G Q, Wang Q M. Hu M. A study on the kinematics and dynamics of a 3-DOF parallel machine toot. Journal of Material of Processing Technology, 2001, lII: 269~272
    [22]Hunt K H . Structural Kinematics of In-parallel-actuated Robot-arms. Transmissions and Automation in Design, 1983, 105(4): 705~712
    [23]F. Pierrot, 0. Company, H4: anew family of 4-DOF parallel robots. In: Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Atlanta, GA, September 19-23, 1999: 508~513
    [24]C. M. Gosselin, S. Lemieux, J. P. Merlet. A new architecture of planar three-degrees-of-freedom parallel manipulator. In: proceedings of the IEEE International Conference on Robotics and Automation, Minneapolis, MN, Apri1 22-28, 1996: 3738~3743
    [25]Mechanism. International Journal of Robotics Research, 2000, 19(1):5~11
    [26]杨廷力,机器人拓扑结构学,北京:机械工业出版社,2003
    [27]韩建友,高等机构学,北京:机械工业出版社,2004
    [28]黄真,赵永生,赵铁石,高等空间机构学,北京:高等教育出版社,2006
    [29]牧野洋,空间机构及机器人机构学,北京:机械工业出版社,1987
    [30]黄真,空间机构学,北京:机械工业出版社,1991
    [31]尹小琴,杨启志,马履中等,3-RRC并联机构的变拓扑结构及其特性分析,中国机械工程,2006,17(24):2531~3535
    [32]Pritschow G, Wurst K H. Systematic Design of Hexapods and Other Parallel Link System. Annals of the CIRP, 1997, 46(1): 291~295
    [33]陈红亮,罗玉峰,杨廷力等,对称三自由度并联机器人拓扑结构型综合与分类,2008,39(1):138~141
    [34]Tsai L W. Robot analysis-the mechanics of serial and parallel manipulators. John Wiley& Sons, NewYork, 1999杭鲁滨,王彦,吴俊,基于单开链的纯转动三自由度并联机器人机型设计方法,中国机械工程,2005,16(9):819~822
    [35]Di Gregorio R. A new parallel wrist using only revo-lute pairs: the 3-RU U wrist. Robotica, 2001, 19(3): 305~309
    [36] SameerA. Joshi. A Comparative Study of Two Classes of 3-DOF Parallel Manipulators. America: The University of Maryland, 2002
    [37]王向军,刘峰,马鞍型并联跟踪台,中国专利,申请号:200810052641.6,2008-04-03
    [38]张峰,李兆前,黄传真,参数化设计的研究现状与发展趋势,2002,1(11):13~15
    [39]叶耘,参数化设计的研究与应用,佳木斯大学学报,2004,22(1):23~27
    [40]孟祥旭,徐延宁,参数化设计研究,计算机辅助设计与图形学学报,2002,14(11):1806~1089
    [41]银红霞,杜四春,蔡立军,计算机图形学,中国水利水电出版社,2005
    [42]张秉森,王钰编,计算机辅助设计教程,北京:清华大学出版社,2005
    [43]http://www1.bigc.edu.cn/jxyl/Content/main_01.htm
    [44]袁耀明,结构矩阵分析及可视化,北京:北京工业大学出版社,1999
    [45]王道斌,结构矩阵分析原理与程序设计,成都:西南交通大学出版社,2004
    [46]尚平,樊昌信,工程矩阵方法(ENGINEERING MATRIX METHODS),北京:电子工业出版社,1988
    [47]丁学仁,蔡高厅,工程中的矩阵理论,天津:天津大学出版社,1985
    [48]宋增来,陈振华,N自由度机器人仿真的实现,计算机工程与设计,2006,27(24):4813~4816
    [49]李坤,杨家军,5自由度焊接机械手的运动学研究,机器人技术,2007,(4):20~22
    [50]黄真,孔令富,方跃法,并联机器人机构学理论及控制,北京:机械工业出版社,1997
    [51]王乐锋,荣伟彬,孙立宁,三支链六自由度并联柔性铰微动机器人的研究,光学精密工程,2007,15(4):529~534
    [52]陶建峰,朱野,闫述等,重载三自由度旋转并联平台的位置逆解及其分析,上海交通大学学报,2007,41(4):546~550
    [53]刘晶红,孙辉,张葆,等,航空光电成像平台的目标自主定位,光学精密工程,2007,15(8):1305~1310
    [54]汪列隆,朱壮瑞,参数化设计在模具设计中应用研究,2006,33(7):27~30
    [55]王国庆,结构化程序设计方法,1997,(3):87~90
    [56]唐习龙,林可勃,贾妮,等,结构计算软件中的模块化设计,2005,31(6):49~52
    [57]朱圣松,刘蔚然,钱乐秋,一种基于概念格的模块划分及耦合分析方法,计算机应用与软件,2008,25,(5):128~131
    [58]唐习龙,林可勃,贾妮,等,结构计算软件中的模块化设计,四川建筑科学研究,2005,31(6):49~51
    [59]胡伟,冯瑜,软件的模块化及在工程中的应用研究,计算机工程,1999,25(6):76~77
    [60]童时中,模块化原理设计方法及应用,北京:中国标准出版社,1999
    [61]杨邵伟,韩天,尹忠俊,等.MATLAB GUI界面设计在电机故障诊断中的应用,机电产品开发与创新,2007,20(6):118~119
    [62]印金国,Matlab可视化界面设计与控件使用,电脑编程技巧与维护,2007,(1):30~35
    [63]童秉枢,尚凤武,李学志,参数化计算机绘图与设计,北京:清华大学出版社,1997
    [64]尚涛,工程计算可视化与MATLAB实现,武汉:武汉大学出版社,2002
    [65]刘白雁,陈新元,傅连东,机电系统动态仿真基于MATLAB/Simulink,北京:机械工业出版社,2006
    [66]张立勋,董玉红,机电系统仿真与设计,哈尔滨:哈尔滨工程大学出版社,2006
    [67]约翰.F.加德纳,周进雄,机构动态仿真使用MATLAB和SIMULINK,西安:西安交通大学出版社,2002
    [68]曲秀全,基于MATLAB/Simulink平面连杆机构的动态仿真,哈尔滨:哈尔滨工业大学出版社,2007
    [69]王正林,龚纯,何倩,精通MATLAB科学计算,北京:电子工业出版社,2007
    [70]李朴,基于Matlab的并联机器人运动学和动力学仿真研究:[硕士学位论文],合肥;合肥工业大学,2001
    [71]黄真,王洪波,复杂多环空间机构动力分析的影响系数法,机械工程学报,1986,74~80
    [72]孙立宁,于晖,祝宇虹,机构影响系数和并联机器人雅克比矩阵的研究,哈尔滨工业大学学报,2002,34(6):810~815
    [73]盂祥志,孙奕澎,黄玮,新型三腿并联机床的速度及加速度分析,东北大学学报,2003,24(3):264~267
    [74]代小林,丛大成,韩俊伟,等,基于凯恩方程的并联运动平台多刚体动力学建模,液压气动与密封,2008,(4):60~63
    [75]黄其涛,韩俊伟,何景峰,六自由度并联运动平台动力学建模及分析,机械科学与技术,2006,25(4):382~386
    [76]程靳,简明理论力学,北京:高等教育出版社,2004
    [77]mechanics.hhuc.edu.cn/content/ebook/CONTENT/CH0704.HTM
    [78]韦林,周松鹤,唐晓弟,理论力学,上海:同济大学出版社,2007
    [79]赵亮,3-TPT并联机器人的动力学研究,2005,7(1):1~3
    [80]赵永生,郑魁敬,施毅,5-UPS RPU五自由度并联机床动力学建模,机械设计与研究,2004,24(3):45~48
    [81]荣辉,曹红波,丁洪生,等,并联机床动力学研究进展,机床与液压,2005,(1):9~12
    [82]罗磊,莫锦秋,王石刚,等,并联机构动力学建模和控制方法分析,上海交通大学学报,2005,39(1):75~79
    [83]刘敏杰,田涌涛,李从心,并联机器人动力学的子结构Kane方法,上海交通大学学报,2001,35(7):1302~1305
    [84]张国伟,宋伟刚,并联机器人动力学问题的Kane方法,系统仿真学报,2004,16(7):1386~1392
    [85]高洪,赵韩,并联机器人机构学理论研究综述,安徽工程科技学院学报,2006,21(1):73~80
    [86]李兵,王知行,李建生,基于凯恩方程的新型并联机床动力学研究,机械科学与技术,1999,18(1):41~43
    [87]王启明,胡明,孙希龙,三自由度并联机器人机构动力学研究,机槭科学与技术,1999,18(4):596~599
    [88]李永刚,宋轶民,冯志友,等.基于牛顿欧拉法的3-RPS并联机构逆动力学分析,航空学报,2008,28(5):1210~1205
    [89]陈丽,Stewart平台6-DOF并联机器人完整动力学模型的建立,燕山大学学报,2004,28(3):228~232
    [90]张建政,刘伟,高峰,6-PSS并联机器人动力学模型的牛顿-欧拉方法,机械设计与研究,2007,23(3):54~57
    [91]http://www.web3d.com.cn/new/news/dissertation/2008/1/3/2299062.html
    [92]曾芬芳,虚拟现实技术,上海:上海交通大学出版社,1997
    [93]宋健,基于ADAMS的虚拟样机技术研究综述,潍坊学院学报,2006,6(6):72~75
    [94]黄康,机械CAD与Solidworks三维计算机辅助设计,合肥:中国科学技术大学出版社,2005
    [95]江洪,魏峥,王涛威,Solid Works二次开发实例解析,北京:机械工业出版社,2004
    [96]胡明,邓宗全,高海波,基于ADAMS的六轮月球车动力学建模与仿真,哈尔滨工业大学学报,2007,39(1):28~32
    [97]郝秀清,胡福生,郭宗和等,基于ADAMS的3一PTT并联机构运动学和动力学仿真,机械设计,2006,23(9):9~12
    [98]游世明,陈思忠,梁贺明,基于ADAMS的并联机器人运动学和动力学仿真,计算机仿真,2005,22(8):181~186
    [99]王国强,张进平,马若丁,虚拟样机技术及其在ADAMS上的实践,西安:西北工业大学出版社,2002
    [100]刘得军,陈晓晖,王世营,等.ADAMS环境下并联坐标测量机运动分析与仿真,组合机床与自动化加工技术,2007,11:18~21
    [101]罗磊,莫锦秋,王石刚,等,并联机构动力学建模和控制方法分析,上海交通大学学报,2005,39(1):75~79
    [102]刘永信,陈志梅,现代控制理论,北京:中国林业出版社,北京大学出版社,2006
    [103]韩致信,袁朗,姚运萍,机械自动控制工程,北京:科学出版社2004
    [104]Hashimoto Ketai. An Implementation Parallel Algorithm for Real-timeModel-based Control on a Network of Microprocessors . J Of Robotics Research, 1990, 9(6)2005
    [105]李铁桥,张虹,计算机控制理论与应用,哈尔滨:哈尔滨工业大学出版社2005
    [106]Frohlich P. New Trends in Automation : Concepts of PC-based Controllers. Real Time Magazine(Belgium), 1997, (4): 67~70
    [107]Willian E Ford. What is all Open Architecture Robot Controller .IEEE International Symposium on Intelligent Control, 1994, 14
    [108]刘安心,杨廷力,机械系统运动学设计,北京:中国石化出版社,1999
    [109]黄象鼎,曾钟刚,马亚南,非线性数值分析的理论与方法,武汉:武汉大学出版社,2004
    [110]孙志毅,自动控制理论,北京:兵器工业出版社,2001
    [111]丹尼斯·克拉克,迈克尔·欧文斯,机器人设计与控制,北京:科学出版社,2004
    [112]王学军,多轴运动控制系统的控制方式,电子工业专用设备,2002,31(3):163~166
    [113]韩光照,姜晶,施小成,多自由度运动计算机控制系统的设计,控制系统,2005,21(9):59~61
    [114]郑右非,赵新华,基于PMAC的3-RRRT并联机器人控制系统的研究与开发,天津理工大学学报,2005,21(4):49~52
    [115]纳萨尔(Nasar,S.A.),(美)昂尼韦尔(Unnewehr,L.E.),电机及其电子控制,北京:科学出版社,1992
    [116]王鉴光,电机控制系统,北京:机械工业出版社,1994
    [117]吴红星,电机驱动与控制专用集成电路及应用,北京:中国电力出版社,2006
    [118]阎治安,崔新艺,苏少平,电机学,西安:西安交通大学出版社,2006
    [119]杨耕,罗应立,电机与运动控制系统,北京:清华大学出版社,2006
    [120]邓星钟,机电传动控制,武汉:华中科技大学出版社,2007
    [121]史敬灼,步进电动机伺服控制技术,北京:科学出版社,2006
    [122]钟诗胜,王瑞,王知行,新型并联数控铣床手轮模块功能的实现,机械设计,2006,23(5):7~9
    [123]石勇,王知行,刘文涛,并联机床工件位姿测量系统的研究,机械设计与研究,2003,19(3):23~25
    [124]王哲,卓桂荣,王知行,并联机床手动自动采点功能的实现机械设计,2003,20(10):53~55
    [125]刘安心,扬廷力,机械系统运动学设计,北京:中国石化出版社,1999
    [126]李瑰贤,空间几何建模及工程应用,北京:高等教育出版社,2007
    [127]黄真,孔令富,方跃法,并联机器人机构学理论及控制,北京:机械工业出版社,1997
    [128]John E.Swanke.Visual C++MFC扩展编程实例[M].北京:机械工业出版社,2000
    [129]费业泰,误差理论与数据处理,北京:机械工业出版社,2004
    [130]高玉斌,潘晋孝,概率论与数理统计,北京:兵器工业出版社,1996
    [131]史长虹,张建民,张同庄,变轴数控机床重复定位精度评定策略探讨,北京理工大学学报,2001,21(4):450~453
    [132]李德仁,袁修孝,误差处理与可靠性理论,武汉:武汉大学出版社,2002
    [133]毛英泰,误差理论与精度分析,北京:国防工业出版社,1982
    [134]王武义,徐定杰,陈健翼,误差原理与数据处理,哈尔滨:哈尔滨工业大学出版社,2001
    [135]刘文耀,光电图像处理,北京:电子工业出版社,2002
    [136]贾永红,计算机图像处理与分析,武汉:武汉大学出版社,2001
    [137]余成波,数字图像处理及MATLAB实现,重庆:重庆大学出版社,2003
    [138]Huang, T., Hong, Z. Y., Mei J. P., et al. Kinematic calibration of the 3-DOF module of a 5-DO reconfigurable hybrid robot using a double-ball-bar system. 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2006,2006,508~512
    [139]Lyzell, C. Hovland, G. Verification of the dynamics of the 5-DOF Gantry-Tau parallel kinematic machine. Proceedings of the 13th IASTED International Conference on Robotics and Applications, 2007, 445~50
    [140]Wee Kiat Lim, Guilin Yang, Song Huat Yeo, et al. Kinematic analysis and self-calibration of three-legged dular parallel robots. Source : Proceedings of the SPIE-The International Society for Optical Engineering, 1999,3839: 224~35
    [141]Ecorchard G. , Maurine P. , Self-calibration of delta parallel robots with elastic deformation compensation. 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005, 1283~1288
    [142]Yu Alexander, Bonev Ilian A. , Zsombor-Murray Paul. Geometric approach to the accuracy analysis of a class of 3-DOF planar parallel robots. Mechanism and Machine Theory, 2008, 43(3): 364~375
    [143]Jim-Woo Kim, Chang-Rok Shin, Han-Sung Kim, et al. Error model and kinematic calibration of a 5-axis hybrid machine tool,.2006 SICE-ICASE International Joint Conference (IEEE Cat. No. 06TH8879), 2007, 18~21
    [144]Duc E. , Chanal H. , Ray P., et al. New approach for the geometrical calibration of parallel kinematics machines tools based on the machining of a dedicated part. International Journal of Machine Tools & Manufacture, 2007,47(8): 1151~ 63
    [145]Dacheng Cong, Dayong Yu, Junwei anH, Kinematic calibration of parallel robots using CMM. Sixth World Congress on Intelligent Control and Automation (IEEE Cat. No. 06EX1358C),2006,5: 21~23
    [146]Pashkevich A. , Gomolitsky R. , Wenger P. , et al. Calibration of quasi-isotropic parallel kinematic machines: orthoglide. Proceedings of the Fourth International Conference on Informatics in Control , Automation and Robotics, 2007, 1: 84~91
    [147]Boye Tim, Verl Alexander, Pott Andreas, Optimal tolerance, model and pose selection for calibration of parallel Manipulators, . VDI Berichte, 2006, 267~270
    [148]Last P. , Hesselbach J. , Plitea N, An extended inverse kinematic model of the HEXA-parallel-robot for calibration purposes.2005 IEEE International Conference on Mechatronics and Automation (IEEE Cat. No. 05EX1044),2005,v3, 1294-1299
    [149]Deblaise D. , Maurine P, Effective geometrical calibration of a delta parallel robot used in neurosurgery.2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005, 1313~18
    [150]Varziri M. Saeed, Notash Leila, Kinematic calibration of a wire-actuated parallel robotMechanism and Machine Theory, 2007,42 (8): 960~976
    
    [151]Savoure L. , Maurine P. , Corbel D. , Krut, S. An improved method for the geometrical calibration of parallelogram-based parallel robots. Proceedings. 2006 Conference on International Robotics and Automation (IEEE Cat. No. 06CH37729D), 2006, 769~76
    [152]Varziri Saeed, Notash Leila, Kinematic calibration of the central linkage of a wire-actuated parallel robot - A comparison between two nonlinear approaches. Proceedings of the ASME Dynamic Systems and Control Division, 2004: 1187~1194
    [153]Last P. ,Budde C. , Bier C. , Hesselbach, J. HEXA-parallel-structure calibration by means of angular passive joint sensors.2005 IEEE International Conference on Mechatronics and Automation (IEEE Cat. No. 05EX1044), 2005,3: 1300~1305
    [154]Tang Guobao, Huang Tian, Kinematic calibration of delta robot, Chinese Journal of Mechanical Engineering, 2003, 39(8): 55~60
    [155]Daney D. , Emiris I. Z, Robust parallel robot calibration with partial information. Proceedings-IEEE International Conference on Robotics and Automation, 2001, v 4: 3262~3267
    [156]Castillo-Castaneda, E. Takeda Y, Improving path accuracy of a crank-type 6-dof parallel mechanism by stiction compensation. Mechanism and Machine Theory,2008, 43 (1): 104~114
    [157]Yamaguchi Daisuke, Tagawa Yasutaka, Yamada Manabu, et al. Improvement of motion control performance for a power-aasist lifting device using wire-driven parallel mechanism. Nihon Kikai Gakkai Ronbunshu , C Hen/Transactions of the Japan Society of Mechanical Engineers, Part C, 2006,72, (4): 1178~1183
    [158]Zhuang H, Yan J, Masory O, Calibration of Stewart platform and other parallel manipulators by minimizing inverse kinematic residual. Robotic System, 1998, 15 (7): 395~405
    [159]Patel A J, Ehmann K F,Volumetric error analysis of a Stewart platform-based machine tool. CIRP Annals, 1997, 46 (1): 287~290
    [160]Song J, Mou J, King C, Error modeling and compensation for parallel kinematic machine. Proc. of USA-china Workshop on Advanced Machine Tools Research. University of South California. LA. 1999: 1~6
    [161]Ota H, Forward kinematic calibration method for parallel mechanism using pose data measured by a double ball bar system. Invited Speech of CIRP Workshou, paris, 2001
    [162]延皓,何景风,黄其涛,基于三坐标测量仪的Stewart平台标定技术,机床与液压,2007,35(7):11~15
    
    [163]高建设,程丽,赵永生,新型5自由度并联机床运动学自标定研究,计算机集成制造系统,2007,13(4):738~743
    [164]张维胜,王红兵随动系统几何校正实时,王永明,等,基于C6201的单轴算法,红外与激光工程,2003,32(2):186~190
    [165]周朴,王省书,秦石乔,等,激光陀螺捷联姿态测量系统误差建模与仿真研究.红外与激光工程,2007,36(4):565~569
    [166]彭斌彬,并联机器人的标定建模,机械工程学报,2005,41(8):132~135
    [167]辛福学,航向随动控制与姿态畸变校正的数学分析,红外与激光工程,2003,32(2):182~185

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700