水下有界空间中弹性结构的声辐射预报方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水下结构的声辐射预报是水声领域的一项重要研究内容,是减振降噪、定量声学设计等工作的依据与理论基础。实际上,结构所处的环境往往并非自由空间,这涉及了结构与水的耦合振动、声的多途传播以及多次反射声造成的互散射与结构的耦合等多个问题,使得水下有界空间中结构的声辐射预报成为需要研究的课题。
     本文首先从现有的自由场声辐射预报方法入手,简单阐述了这些方法的基本原理,并进行了归类、对比。最后选择了点源波叠加法作为有界空间中声辐射预报的主要方法。然而波叠加法(又称作等效源法)却并不完善,存在等效源和振动测点的优化配置等问题。为此,提出了一种最小二乘意义下的等效源配置方法,该方法通过匹配少量参考点的声压幅值,可搜索得到最优的等效源位置,从而改善波叠加法的声辐射预报精度。并在此基础上,分析了利用该方法预报声场的相关误差因素,指出了一些提高精度的等效源和测点位置选取准则,以期波叠加法能更好地运用于声辐射预报。
     选择波叠加法作为有界空间中声辐射预报主要方法的原因之一是它将结构等效成了一系列的简单源,简单源的格林函数能较方便地根据反射面的类型和位置作出调整,而且有望与现有的声传播算法结合,实现波导中结构的声辐射预报。但格林函数究竟如何调整却没有定论。为此先从存在单个反射面的半空间声场环境出发,针对水下结构的声辐射快速预报问题,提出了采用自由场格林函数来获得等效源强度的半自由场波叠加法,并针对水和结构的耦合特性,分析了反射面与结构之间的互散射对声辐射预报的影响,进而提出了结构表面法向振速的两种处理方法:波叠加反射声振速分离法和忽略反射声对结构法向振速影响的快速法。最后结合有限元法和边界元法分析了半空间中弹性结构的振动声辐射。
     半自由场波叠加法的提出,避开了结构表面三维空间的格林函数求导问题,使得波叠加法能够与波导中的声传播算法结合。因此提出了波动波叠加法和射线波叠加法,它们分别将波叠加法与声传播理论中的简正波法和射线法结合,用于计算结构在平行平面层波导中的辐射声场。进而对这两种方法各自的优势和适用范围进行了分析,指出波叠加法与传播理论结合时需要针对需求选择适宜的传播算法。然后将半空间中弹性结构分析的有限元模型进一步推广用于波导中有限弹性结构的耦合振动及声辐射分析。通过弹性结构的声辐射预报对有限元法、波动波叠加法和射线波叠加法进行了对比,并分析了这些方法各自的适用条件。并指出只要传播算法能给出点源的辐射声场,提出的波叠加法就可以与之结合,实现波导中结构的声辐射预报,因此可以推广到其他类型波导的弹性结构声辐射预报中。
     最后针对前面进行的数值分析进行了实体模型在有界空间中声辐射预报的试验验证。首先在水面未敷设吸声尖劈的消声水池中,对半空间中的带帽圆柱壳进行了声辐射预报研究,进而在水声信道水池中进行了波导中柱壳的声辐射预报试验。
     由于研究的结构为缩比模型,因此本文更多地关注了3kHz以上的频段,并尽量地将声辐射预报算法往高频段扩展。尝试通过对相似模型的仿真和实验研究为实际工程运用提供一些有益的参考。
The prediction of sound radiated by underwater structures is one of the most importantresearches in the field of underwater acoustics. It is regarded as the theoretical foundation andthe important criterion for quantitative acoustic design and vibration-noise control. Practically,the structure is not always located in free-space, which brings problems, such as the coupledvibration, multipath propagation and scattering, etc. Thus investigations are needed for theprediction of sound radiated by elastic structure in underwater bounded space.
     In this dissertation, the methods of acoustic radiation prediction in free-space areinvestigated primarily. Then the methods are expounded and classified according to theirfundamentals. By comparing these methods, the wave superposition method (WSM) is chosenas the main method for acoustic radiation prediction in bounded space. However, the WSM(also known as equivalent source method: ESM) is not perfect, since the optimalconfiguration of the equivalent source and the measuring point has been considering as aproblem. Therefore, an equivalent source configuration method based on the least meansquare is proposed, in which a few reference points of sound pressure should be measuredahead to search the optimal position of equivalent sources. Moreover, the effects of thenumber, position of measuring points and amplitude distribution of vibration were studiednumerically. The principles of how to configurate the equivalent source and measuring pointappropriately are pointed out, in order to improve the accuracy of the WSM and make theWSM more suitable for acoustic radiation prediction.
     One reason of choosing WSM as the main method for acoustic radiation prediction inbounded space is that WSM simulates structure by an array of simple sources. The simplesources’ Green function can be adjusted conveniently according to the types and positions ofboundary. Furthermore, the existing algorithms of sound propagation in waveguide canhopefully combined with WSM to predict the sound radiated by elastic structure in waveguide.Unfortunately, there are no guildlines about how to reform the Green function in WSM forcombination. Therefore, the environment of half-spaces with a single boundary is investigatedfirstly, and a half-space wave superposition method is proposed for the fast prediction ofacoustic radiation from a complex structure, in which the free-space Green’s function is usedto match the strength of equivalent sources. As the submerged structure is coupled with water,the scattering between reflector and structure is considered. Moreover, two treatments fornormal velocity of a structure are proposed. One is called separation method which separates normal velocity by wave superposition method and the other is called fast method whichneglects the effect of reflection to the structural vibration, which makes the acoustic radiationprediction more efficiency. The finite element method (FEM) and boundary element method(BEM) are also combined with the proposed method to analyze the vibration and acousticradiation of the elastic structure in half-space.
     The proposed half-space wave superposition method avoids the three-dimensionalderivation of Green function on the surface of structure, which makes the possibility ofcombining WSM with the sound propagation algorithms in waveguide. In the dissertation, theWSM is combined with the normal-mode method and the ray method to predict the soundradiated by underwater structures in the plane-parallel waveguide. By analyzing theadvantages and applicability of the two proposed combination methods, it concludes that thecombined propagation algorithm should be chosen appropriately for specific cases. Then theFEM model in half-space is extended to analyze the coupled vibration and acoustic radiationof the elastic structure in waveguide. The applicability of the FEM model is also analyzed andcompared with two proposed combination methods. Actually, the proposed WSM cancombined with any sound propagation algorithm which calculates the sound radiated by amonopole effectively, thus it can combines with more sound propagation algorithms to predictthe sound radiated by elastic structure for cases where more complicated waveguides are to betreated.
     In order to prove the efficiency of the proposed methods and the numerical analysises, anexperiment for predicting sound radiated from a cylindrical shell with hemi-caps has beendone successfully in the half-space anechoic tank, and the experiment in the pool ofunderwater acoustic channel was accomplished afterwards.
     Since the analyzed structure in this dissertation is the scale model, more attentions havebeen paid to the frequency band above3kHz, and the proposed algorithms of the acousticradiation prediction has been extend to higher frequencies as far as possible. The simulationsand experiments on the scale model are greatly expected to provide useful working guidelinesto practical engineering.
引文
[1] Mae L. Seto, Daniel Hutt. Ship signatures management system-towards increasedwarship survivability. Under-water Defence Technology,2004(Hawaii), Session9A2s,355-365P
    [2]刘扬.水下弹性壳体结构声辐射快速预报方法研究.哈尔滨工程大学硕士学位论文,2007.
    [3] Beattie G A, Cotterill P A. The integrated management and assessment of submarineradiated and sonar self noise performance. UDT.1995.
    [4] Cotterill P A, Barzier S P R. The propagation of vibrational energy along an irregularlyreinforced submarine hull. UDT.1995.
    [5] Wittekind D. Practical and theoretical limits in noise reduction of submarines. UDT.1996.
    [6] Giangreco C, Nguyen R. Prediction of self noise on flank array on submarine. UDT.1995.
    [7]周春凯,张均平.潜艇自噪声监测系统.国外舰船工程,2002,1:77-85.
    [8]王斌.基于表面振动监测的大型水下结构辐射噪声预报研究.上海交通大学博士论文,2008.
    [9]赵智伟.有限长圆柱壳声与振动的快速预报方法研究.哈尔滨工程大学硕士学位论文,2007.
    [10]陈心昭.噪声源识别技术的进展.合肥工业大学学报(自然科学版),2009,23(5):609-614页
    [11]金广文,何琳.水下双层圆柱壳体结构辐射噪声实时预报方法研究.声学学报,2010,35(4):427-433页
    [12] Rayleigh Lord. The theory of sound. Dover Publication, New York, Second edition,1945.
    [13]中国科学院力学研究所固体力学研究室板壳组.加肋圆柱曲板与圆柱壳.科学出版社,1983.
    [14]商德江.复杂弹性壳体水下结构振动和声场特性研究.哈尔滨工程大学博士学位论文,2000.
    [15]王勖成.有限元法.清华大学出版社,2003.
    [16]杨德全,赵忠生.边界元理论及应用.北京理工大学出版社,2002.
    [17] Morse PM, Feshbach H. Methods of theoretical physics. McGraw-Hill, New York,1953.
    [18] Hunt JT. Finite Element Approch to Acoustic Radiation from Elastic Structure. Journalof the Acoustical Society of America,1974,55(2):296-280P
    [19] Wbhlever J, Bemhard RJ. Meehanieal energy flow models of rods and beams. Journalof sound and vibration,1992,153(1):1-19P
    [20] Weiping Wang, et.al. A boundary integral approach for acoustic radiation ofaxisymmetric bodies with arbitrary boundary conditions valid for all wave numbers.Journal of the Acoustical Society of America,1997,101(3):1468-1478P
    [21]张胜勇,陈心昭,王有成.分布源边界点法及其在振动体声辐射计算中的应用.声学学报,1999,24(2):149-154页
    [22]毕传兴,陈剑,陈心昭等.分布源边界点法在声场全息重建和预测中的应用.机械工程学报,2003,39(8):81-85页
    [23]毕传兴,陈剑,陈心昭.基于分布源边界点法的多源声场全息重建和预测理论研究.中国科学E,2004,34(1):111-120页
    [24]毕传兴,袁艳,贺春东,徐亮.基于分布源边界点法的局部近场声全息技术.物理学报,2010,59(12):8646-8654页
    [25]王有成,刘钊,吴约.边界元技术中的全特解场方法.力学学报,1996,27(4):451-458页
    [26]刘钊,陈心昭.结构声辐射分析的全特解场边界元法.振动工程学报,1996,9(4):341-347页
    [27]张胜勇,陈心昭.利用边界元法中的全特解场方法计算结构振动声辐射.噪声与振动控制,1997,13(6):8-10页
    [28]徐玉秀,钟建军,原培新.全特解场边界元方法在声辐射逆问题中的应用研究.噪声与振动控制,2001,15(4):15-19页
    [29]张胜勇,陈心昭.体积源边界点法及其在声辐射计算中的应用.振动工程学报,1998,11(4):395-401页
    [30] Zhang SY, Chen XZ. The boundary point method for the ealeulation of exterior acousticradiation Problem. Journal of Sound and Vibration,1999;228(4):761-772P
    [31]王秀峰,陈心昭,王有成.声辐射计算的改进体积源边界点法.声学学报,2002,27(4):35-40页
    [32] Machens KU. Approximate solutions for acoustic radiation problems: a criticalappraisal of the method of comparative sources. Acustica,1999,85,764-779P
    [33]于飞,陈心昭,李卫兵,陈剑.空间声场全息重建的波叠加方法研究.物理学报,2004,53(8):2608-2613页
    [34]李兵,杨殿阁,郑四发等.基于声源预估的波叠加组合全息声源识别方法.声学学报,2010,35(6):646-652页
    [35] Bi CX, Chen XZ, Chen J. Sound field separation technique based on equivalent sourcemethod and its application in nearfield acoustic holography. Journal of the AcousticalSociety of America,2008,123(3),1472-1478P
    [36] Gary H. Koopmann, Limi Song, and John B. Fahnline. A method for computingacoustic fields based on the principle of wave superposition. Journal of the AcousticalSociety of America,1989,86(6):2433-2438P
    [37] Thorsson PJ. Optimisation of low-height noise barriers using the equivalent sourcemethod. Acustica,2000,86:811-820P
    [38]熊济时,吴崇健,曾革委等.波叠加法的应用现状及其展望.第十二届船舶水下噪声学术讨论会论文集,2009,10:8-13页
    [39] Limin Song, Gary H. Koopmann, and John B. Fahnline. Numerical errors accociatedwith the method of superposition for computing acoustic fields. Journal of theAcoustical Society of America,1991,89(6):2625-2633P
    [40] John B. Fahnline and Gary H. Koopmann. A numerical solution for the general radiationproblem based on the combined methods of superposition and singular-valuedecomposition. Journal of the Acoustical Society of America,1991,90(5):2808-2819P
    [41] R. Jeans and I. C. Mathews. The wave superposition method as a robust technique forcomputing acoustic fields. Journal of the Acoustical Society of America,1992,92(2):1156-1166P
    [42] Y. I. Bobrovnitskii, T. M. Tomilina. General properties and fundamental errors of themethod of equivalent sources. Acoustical Physics,1995,41(5):649-660P
    [43] Kropp W, Svensson PU. Application of the time domain formulation of the method ofequivalent sources to radiation and scattering problems. Acustica,1995,81:528-543P
    [44] Holste F. An equivalent source method for calculation of the sound radiation fromaircraft engines. Joumal of sound Vibration,1997,203(4):667-695P
    [45]高煜.基于波叠加方法的声辐射与声学灵敏度算法的若干关键问题研究.合肥工业大学博士学位论文,2009.
    [46]李加庆,陈进,杨超等.基于波束形成和波叠加法的复合声全息技术.声学学报,2008,33(2):152-158页
    [47]杨殿阁,李兵,王子腾,连小珉.运动声源识别的动态波叠加方法研究.物理学报,2011,61(5):2608-2613页
    [48]程广利,张明敏.水下目标低频散射特性的波叠加解法.武汉理工大学学报,2010,34(2):250-253页
    [49]李加庆,陈进,杨超等.波叠加声场重构精度的影响因素分析.物理学报,2008,57(07):4258-4264页
    [50]熊济时,吴崇健,曾革委等.基于波叠加法的圆柱壳声辐射计算.舰船科学技术,2011,33(1):54-58页
    [51]李冰茹,王宣银,葛辉良.圆柱壳体近场辐射噪声预报与实验研究.浙江大学学报,2010,44(3):563-568页
    [52] M. Ochmann. Source simulation technique for acoustic radiation problems. Acustica,1995;81:512-527P
    [53] D. W. Herrin, T. W. Wu, and A. F. Seybert. The energy source simulation method. J.Sound Vib.,2004,278:135-153P
    [54] A. Karageorghis, G. Fairweather. The method of fundamental solutions foraxisymmetric acoustic scattering and radiation problems. Journal of the AcousticalSociety of America,1998,104(6):3212-3218P
    [55] G. Pavic. A technique for the computation of sound radiation by vibrating bodies usingmultipole substitute sources. Acustica United with Acta Acustica,2006,92:112-126P
    [56] M. Ochmann. The full-field equation for acoustic radiation and scattering. Journal of theAcoustical Society of America,1999,105(5):2574-2584P
    [57] Y. J. R. Gounot, R. E. Musafir. On appropriate equivalent monopole sets for rigid bodyscattering problems. Journal of the Acoustical Society of America,2007,122(6):3195-3205P
    [58]. Y. J. R. Gounot, R. E. Musafir. Genetic Algorithms: a global search tool to find optimalequivalent source sets. J. Sound Vib.,2009,322:282-298P
    [59] Mingsian R. Bai and Ching-cheng Chen. On optimal retreat distance for the equivalentsource method-based nearfield acoustical holography. Journal of the Acoustical Societyof America,2011,129(3):1407-1416P
    [60] G. Pavic. An Engineering Technique for the Computation of Sound Radiation byVibrating Bodies Using Substitute Sources. Acta Acustica United with Acustica,2005,91:1-16P
    [61] Y. J. R. Gounot, R. E. Musafir, J. G. Slama. A comparative Study of Two Variants of theEquivalent Sources Method in Scattering Problems, Acta Acustica United with Acustica,2005,91:860-872P
    [62] Y. J. R. Gounot, R. E. Musafir. Simulation of scattered field: Some guidelines for theequivalent source method. Journal of Sound and Vibration,2011,330:3698-3709P
    [63] David E Montgomery, Robert L West and Ricardo A Burdisso. Acoustic RadiationPrediction of Compressor Housing from Three-Dimensional Experimental SpatialDynamics Modeling. Applied Acoustics.1996,47(8):165-185P
    [64] Junhua Zheng, Frank J Fahy, David Anderton. Application of a vibro-acousticreciprocity technique to the prediction of sound radiated by a motored IC engine.Applied Acoustics.1994,42(4):333-346P
    [65] E Dokumaci. Prediction of the effects of entropy fluctuations on sound radiation fromvibrating bodies using an integral equation approach. Journal of Sound and Vibration,1995,186(5):805-819P
    [66] P Di Francescantonio. A new boundary integral formulation for the prediction of soundradiation. Journal of Sound and Vibration,1997,202(4):491-509P
    [67] Louise Wright, Stephen P Robinson, Victor F. Humphrey. Prediction of acousticradiation from axisymmetric surfaces with arbitrary boundary conditions using theboundary element method on a distributed computing system. Journal of the AcousticalSociety of America,2009,125(3):1374–1383P
    [68] Sean F Wu and Qiang Hua. An alternative formulation for predicting sound radiationfrom a vibrating object. Journal of the Acoustical Society of America,1998,103(4):1763-1774P
    [69] Z Ni and S F Wu. Alternate integral-formulation method for predicting acousticradiation. J. Comput. Acoust.,2007,15,81–93P
    [70] Zhi Ni and Sean F Wu. Experimental validation of alternate integral-formulationmethod for predicting acoustic radiation based on particle velocity measurements.Journal of the Acoustical Society of America,2010,128(3):1056-1062P
    [71] JH Wu and HL Chen. A method to predict acoustic radiation from an enclosedmulticavity structure. Journal of Sound and Vibration,2002,249(3),417-427P
    [72] Utschig M, Achenhach JD and Lgusa T. Reduction to parts: A semianalytical approachto the structural acoustics of a cylindrical shell with hemispherical endcaps. Journal ofthe Acoustical Society of America,1996,100(2):871-881P
    [73] Favre CM, Hamzaoui N, Boisson C. An approach for prediction of acoustic radiationfrom a structure with construction of the in situ vibroacoustic transfer function. ActaAcustica united with Acustica,2001,88:93-103P
    [74]黎胜,赵德有.半空间内结构声辐射研究.船舶力学,2004,8(1):106-112页
    [75] Abdullah. An efficient sound source determination process based on half-spaceboundary element method. Int J Mech Mater Des,2010,6:17-25P
    [76] O Skidant, J M Klosner and M L Baron. Sound radiation from a cylinder immersed inan acoustic fluid bounded by an elastic half-space. Journal of the Acoustical Society ofAmerica,1974,56(2):427-439P
    [77] Seyyed M. Hasheminejad and Mahdi Azarpeyvand. Acoustic radiation from a pulsatingspherical cap set on a spherical baffle near a hard/soft flat surface. Journal of oceanicengineering,2004,29(1):110-117P
    [78] A F Seybert and B Soenarko. Radiation and Scattering of Acoustic Waves from Bodiesof Arbitrary Shape in a Three-Dimensional Half Space. Journal of Sound and Vibration,1988,110(1):112-117P
    [79] Hasheminejad S M. Modal acoustic force on a spherical radiator in an acoustichalfspace with locally reacting boundary. Acta Acustica united with Acustica,2001,87(4):443-453P
    [80] Seyyed M. Hasheminejad. Modal acoustic impedance force on a spherical source near arigid interface. Acta Mechanica Sinica,2003,19(1):33-39P
    [81]商德江,何祚镛.加肋双层圆柱壳振动声辐射数值计算分析.声学学报,2001,26(3):193-201页
    [82]何祚镛.水下噪声及其控制技术进展和展望.应用声学,2002,21(1):26-34页
    [83]邹元杰,赵德有.结构在浅水中的振动和声辐射特性研究.振动工程学报,2004,17(3):269-274页
    [84] S. M. Hasheminejad and M. Azarpeyvand. Radiation Impedance Loading of a SphericalSource in a Two-Dimensional Perfect Acoustic Waveguide. Acoustical Physics,2006,52(1):104–115P
    [85] T W Wu. On computational aspects of the boundary element method for acousticradiation and scattering in a perfect waveguide. Journal of the Acoustical Society ofAmerica,1994,96(6):3733-3743P
    [86]范威,范军,陈燕.浅海波导中目标散射的边界元方法.声学学报,2012,37(2):132-142页
    [87]彭朝晖.基于WKBZ理论的耦合简正波-抛物方程理论及应用研究.中国科学院声学研究所博士后研究工作报告,2000.
    [88] Porter MB. The KRAKEN normal mode program. NRL/MR/5120-92-6920, WashingtonD.C.: Naval Research Laboratory,1992.
    [89] Nagl A, Uberall H, Haug AJ and Zarur GL. Adiabatic mode theory of underwater soundpropagation in a range-dependent environment. Journal of the Acoustical Society ofAmerica,1978,63(1):739-749P
    [90] Porter MB and Bucker HP. Gaussian beam tracing for computing ocean acoustic fields.Journal of the Acoustical Society of America,1987,82(4):1349-1359P
    [91] Evans RB. A coupled mode solution for acoustic propagation in a waveguide withstepwise depth variations of a penetrable bottom. Journal of the Acoustical Society ofAmerica,1986,80(5):1414-1418P
    [92] Lee D and Pierce AD. Parabolic equation development in recent decade. J. comp.Acoust.,1995,3(2):95-173P
    [93] Ishihara T and Felsen LB. Hybrid (ray)-(parabolic equation) analysis of propagation inocean acoustic guiding environments. Journal of the Acoustical Society of America,1988,83(3):950-960P
    [94] Deane GB and Buckingham MJ. An analysis of the three-dimensional sound field in apenetrable wedge with a stratified fluid or elastic basement. Journal of the AcousticalSociety of America,1992,93(3):1319-1328P
    [95] Min HQ, Chen WS, Qiu XJ. Single frequency sound propagation in flat waveguideswith locally reactive impedance boundaries. Journal of the Acoustical Society ofAmerica,2011,130(2):772-782P
    [96] Adrien Pelat, Simon Felix, and Vincent Pagneux. A coupled modal-finite elementmethod for the wave propagation modeling in irregular open waveguides. Journal of theAcoustical Society of America,2011,129(3):1240-1249P
    [97]俞孟萨,史小军,吴勇.弹性结构振动和声辐射的相似性分析.船舶力学,1998,2(1):55-61页
    [98]俞孟萨,吴永兴,吕世金.加肋圆柱壳声学相似性试验.中国造船,2002,43(2):50-57页
    [99]王三德.水下复杂弹性壳体的相似性研究.哈尔滨工程大学博士学位论文,2005.
    [100] Craggs A. A Finite Element Model for Acoustically Lined Small Rooms. Journal ofSound and Vibration,1987,108(2):327-337P
    [101]王斌,汤渭霖,范军.一种辐射声场近似计算方法——单元辐射叠加法.声学学报,2008,33(3):226-430页
    [102] Lee J, Seo I. Radiation impedance computations of a square piston in a rigid infinitebaffle. Journal of Sound and Vibration,1996,198(3):299-312P
    [103] Shenman C H. Mutual radiation impedance of sources on a sphere. Journal of theAcoustical Society of America,1959,31(7):947-952P
    [104] Greenspon J E, Sherman C H. Mutual-radiation impedance and near field pressure forpistons on a cylinder. Journal of the Acoustical Society of America.1964,36(1):149-153P
    [105]于飞,基于波叠加方法的声全息技术与声学灵敏度分析.合肥工业大学博士学位论文,2005,94-95页
    [106]薛玮飞,陈进,杨超等.混合波叠加法识别噪声源的理论与试验研究.振动、测试与诊断,2007,27(1):5-8页
    [107] Filippi P J T. Layer potentials and acoustic diffraction. J. Sound Vib,1977,54:473-500.
    [108] Sayhi M N, Ousset Y,Verchery G. Solution of radiation problems by collocation ofintegral formulations in terms of single and double layer potentials. Journal of Soundand Vibration,1981,74:187-204P
    [109] Wilton D. T., I. C. Mathews and R.A.Jeans. A clarifieation of nonexistence Problemswith superposition method. Journal of the Acoustical Society of America,1993,94(3):1676-1680P
    [110]向宇,黄玉盈.基于复数矢径的波叠加法解声辐射问题.固体力学学报,2004,25(1):35-40页
    [111] Xiang Y, YY. Huang, X.Q.Ma. Wave superposition method on virtual source boundarywith complex radius veetor for solving acoustic radiation Problem. Acta MeehanicaSolida Sinica,2004,17(1):12-19P
    [112] Y Xiang, J Lu, Y Y Huang. A fast wave superposition spectral method with complexradius vector combined with two-dimensional fast Fourier transform algorithm foracoustic radiation of axisymmetric bodies. Journal of Sound and Vibration,2012,331:1441-1454P
    [113] Leblanc Alexandre, Ing RosKiri, Lavie Antoine. A wave superposition method based onmonopole sources with unique solution for all wave numbers. Acustica United withActa Acustica,2010;96:125-130P
    [114]陈剑,高煜,许滨,程昊,毕传兴.用于高频声辐射计算的能量源波叠加方法.应用科学学报,2008,26(6):613-617页
    [115] HERRINDW, WU Tingwen, SEYBERT A F. The energy source simulation method.Journal of Sound and Vibration,2004,278(1/2):135-153P
    [116] Le BOTA. A vibro-acoustic model for high frequency analysis. Journal of Sound andVibration,1998,211(4):537-554P
    [117] Chao Y C. An implicit least-square method for the inverse problem of acoustic radiation.Journal of the Acoustical Society of America,1987,81(5):1288-1292P
    [118] Wang Z, Wu S F. Helmholtz equation-least method for reconstructing the acousticpressure field. Journal of the Acoustical Society of America,1997,102(4):2020-2032P
    [119] Wu S F, Yu J. Reconstructing interior acoustic pressure fields via HelmholtzEquation-least Square method. Journal of the Acoustical Society of America,1998,104(4):2054-2060P
    [120] Sean F Wu. On reconstruction of acoustic pressure fields using the Helmholtz equationleast squares method. Journal of the Acoustical Society of America,2000,107(5):2511-2522P
    [121] Rayess N E, Wu S F. Experimental validations of the HELS method for reconstructingacoustic radiation from a complex vibrating structure. Journal of the Acoustical Societyof America,2000,107(6):2955-2964P
    [122] Sean F Wu, Nassif Rayess, and Xiang Zhao. Visualization of acoustic radiation from avibrating bowling ball. Journal of the Acoustical Society of America,2001,109(6):2771-2779P
    [123] Wu S F, Rayess N E, Shiau N M. Visualizing sound radiation from a vehicle front endusing the HELS method. Journal of Sound and Vibration,2001,248(5):963-974P
    [124] Victor Isakov and Sean F Wu. On theory and application of the Helmholtz equationleast squares method in inverse acoustics, Institute of Physics Publishing,2002,18:1147–1159P
    [125] Huancai Lu, Sean F Wu. Reconstruction of vibroacoustic responses of a highlynonspherical structure using Helmholtz equation least-squares method. J. Acoust. Soc.Am.,2009,125(3):1538-1548P
    [126]何元安.大型水下结构近场声全息的理论与实验研究.哈尔滨工程大学博士学位论文,2000.
    [127] Corrected and Enlarged Edition. Table of integrals, series, and products. Academic Press.Inc.(London) LTD.1980:162-165P
    [128] P Moon and D E Spencer. Field Theory Handbook. Springer-Verlay.1961.
    [129] P Moon and D E Spencer. Field Theory in Engineers. Princeton NJ: Van Nostrand co.1961.
    [130] Wu S F, Zhao X. Combined Helmholtz equation-least method for reconstructing theacoustic radiation from arbitrarily shaped objects. Journal of the Acoustical Society ofAmerica,2002,112(1):179-188P
    [131] Wu S F, Zhao X. Combined Helmholtz equation-least method for reconstructing theacoustic radiation from arbitrarily shaped objects. Journal of the Acoustical Society ofAmerica,2002,112(1):179-188P
    [132] Jeon IY and Jeong-Guon Ih. On the holographic reconstruction of vibroacoustic fieldsusing equivalent sources and inverse boundary element method. Journal of theAcoustical Society of America,2005,118(6):3473-3482P
    [133]孟春霞,杨士莪,李桂娟.一种简化的船舶辐射噪声源模型.振动与冲击,2008,27(10):95-97页
    [134]郭娜.水下弹性目标振动声辐射问题的等效方法研究.哈尔滨工程大学硕士学位论文,2011,21-36页
    [135]陶建成,邱小军,葛辉良.矩形板声辐射预测中速度采样问题的研究.声学学报,2008,33(1):69-75页
    [136] Philippe F D, Prada C, Rosny J D, Clorennec D, Minonzio J G, Fink M.Characterization of an elastic target in a shallow water waveguide by decomposition ofthe time-reversal operator. Journal of the Acoustical Society of America,2008,124(2):779-787P
    [137]汤渭霖,范军.水中弹性结构声散射和声辐射机理——结构和水的声-振耦合作用.声学学报,2004,29(5):385-392页
    [138] Levinson SJ, Westwood EK, Koch RA. An efficient and robust metbod for underwateracoustic normal-mode computations. Journal of the Acoustical Society of America,1995,97(3):1576-1585P
    [139] Henrik Sehmidt, Finn B Jensen. A full wave solution for Propagation in multilayeredviscoelastic media with application to Gaussian beam reflection at fluid-solid interfaces.Journal of the Acoustical Society of America,1985,77(3):813-825P
    [140] Westwood EK. Ray Model Solutions to the Bench markWedge Problems. Journal of theAcoustical Society of America,1990,87(4):1539-1545P
    [141] Westwood EK. Broadband Modeling of the three-dimensional Penetrable Wedge.Journal of the Acoustical Society of America,1992,92(4):2212-2222P
    [142] Paul CE. Underwater acoustic modeling, principles, techniques and applications.Elsevier science publisher LTD,1991.
    [143] Pelat A, Felix S, and Pagneux V. A coupled modal-finite element method for the wavepropagation modeling in irregular open waveguides. Journal of the Acoustical Societyof America,2011,129(3):1240-1249P
    [144] Marcia J Isaksona and Nicholas P Chotiros. Finite element modeling of reverberationand transmission loss in shallow water waveguides with rough boundaries. Journal ofthe Acoustical Society of America,2011,129(3):1273–1279P
    [145]惠俊英,生雪莉.水下声信道.国防工业出版社,2007.
    [146]何祚镛.实船设备结构振动和水声声强测试分析及噪声源的识别.中国造船,2003,44(2):50-58页
    [147]骆东平,谢官模,谭林森.环肋柱壳在流场中的声辐射性能实验报告.武汉造船.1997,(5):43-49页
    [148]曾革委,吴崇健.加肋圆柱壳舱段水下声辐射试验研究.中国舰船研究.2006,1(1):13-16页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700