基于矢量声场的水下被动探测与定位技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
复杂海洋环境对声纳性能的限制性影响一直被认为是水声物理和水声工程领域最重要的挑战。随着声隐身技术和远射程对抗武器的发展,研究安静型目标辐射声场特征,探索适用于复杂海洋环境的新型远程被动探测技术势在必行。另一方面,中、近程强机动水下目标被动定位是发展安静型潜艇对抗武器和其它水下航行器的重要保障。本文对水下目标被动探测定位领域最富挑战性的两个课题,即中、远程目标被动探测定位的物理基础和中、近程强机动水下目标的高精度跟踪定位关键技术,展开理论、试验和应用研究。论文的主要研究内容包括:
     一、浅海矢量声场干涉结构研究
     推导了浅海矢量声场的简正波表达式,分析了矢量场的能量关系与特性,并对矢量声场干涉结构特性进行了仿真研究,随后介绍波导不变量的定义,探讨了矢量声场干涉结构的波导不变量表征,对波导不变量特性进行了理论推导和数值计算。最后进行了宽带声源辐射矢量声场干涉特性海上测量试验。实测结果与理论、仿真分析有较好的一致性。
     二、浅海矢量声场干涉结构的时空处理及应用研究
     推导了波导条件下矢量线列阵常规波束形成器波束输出的数学表达式,分析时空采样相干处理对矢量场干涉结构影响机理,对波束域干涉结构特性进行了仿真研究,理论、仿真结果表明波束域输出干涉条纹强度、分布等细节受波束图调制而产生变化,但是条纹斜率的自然不变性保持。随后研究了干涉谱图的映射以及映射域的脊特征,提出了基于矢量声场干涉结构的目标检测预警器,对可行性做了仿真分析,并利用海上实测数据对目标检测预警器进行了原理性验证。研究结果表明,该检测预警器可有效的检测动、静目标,并指示目标运动状态。
     三、分布式矢量阵被动定位关键技术研究
     分析了运动干扰对分布式定位系统的影响,提出了一种适应运动干扰背景的单矢量水听器目标方位估计方法,即导向声强器,对导向声强器的性能进行了仿真研究,进行了海上试验验证和效果评估。研究了基于单矢量水听器的方位估计器的视在方位序列的统计特性,提出了一种基于视在方位序列分析的分布式系统多站被动定位跟踪协同算法,该算法既可减少初始航迹建立过程中产生的大量虚警,又可有效融合多站信息,结合导向声强器,还能提高分布式被动定位系统抗干扰能力,已投入实际应用。
     四、浅海信道有效声速估计方法及应用研究
     提出了基于本征声线视在搜索的浅海信道有效声速估计方法,获取了对三种浅海信道有效声速空间分布的物理图像,提出了有效声速梯度概念,对空变特征进行了分析,开展了浅海信道有效声速测量实验,并探讨了浅海信道有效声速及其估计方法在长基线水声定位阵元位置规划,精确定位模型建立等方面的应用,应用效果良好。
     本文前两方面研究工作成果对有效提高安静型目标检测、识别的稳健性及增加探测距离有重要意义,在远程被动测距、海洋环境监测以及水声通信等方面也有应用价值;后两方面研究工作成果较大的提升了水下机动目标高精度被动定位跟踪性能和能力,在水声测距、分布式主动定位系统与信道匹配等方面也有应用价值。
The restrictive effect of complex environment on sonar performance has been alwaysconsidered as one of the most important challenges in underwater acoustic physics filed andunderwater acoustic engineering filed. With the development of acoustic stealth technologyand long-distance countermeasure weapons, passive sonar meets a new challenge of the lowsignal-to-noise ratio detection. Thus, it is imperative to develop newly technology for thelong-distance passive detection in complex ocean environment by utilizing the characteristicsof target’s radiation acoustic field. On the other hand, the passive tracking of underwatermoving target is an important guarantee for the development of quiet submarine’scountermeasure weapons and other underwater vehicles. Under such circumstance, thetheoretical, experimental and applied research on two aspects of the most challenging subjectsin underwater passive detection and positioning technology were studied in this thesis,including the physical basis of passive detection and localization towards the mid-distance orlong-distance quiet targets and the key technologies of high-accuracy tracking and positioningtowards the underwater moving target. The key contributions are:
     1、Research on the interference structure of shallow water vector acoustic field
     The normal mode expression of the shallow water vector acoustic field was deduced, andthe energy relations and energy characteristics of vector field was analyzed. The interferencestructural properties of vector acoustic field were researched through simulation. Based on thedefinition of waveguide invariant, the interference structure of vector sound field wasdescribed in waveguide invariant, whose characteristics was studied through theoreticalanalysis and numerical computation, and the verification by sea trials was commenced finally.The measurement fits in with the theoretical and simulation results very well.
     2、Space-time processing and applied research on interference structure of the shallowwater vector acoustic field
     Mathematical expression of the conventional beam-forming output of vector line array inwaveguide conditions was deduced, and the impact mechanism of time-space samplingcoherent process on vector field interference structure was analyzed. The characteristics ofinterference structure in beam field were researched through simulation. It is verified that thenatural invariance of stripe slope remain the same, although several aspects of beam domainoutput interference fringe,including intensity, distribution and so on, would change with themodulation of beam map. The mapping method of interference spectrum and the characteristics of the ridge in mapping space were discussed, and the implement of targetdetection and warning, which was based on the interference structure of vector acoustic field,was proposed. The performance of this implement was analyzed through simulation andchecked through the data measured in sea trial. The research results show that this implementcan detect mobile and immobile targets effectively and can indicate the target’s motion state.
     3、Research on the key technologies of distributed vector array passive positioning
     The impact of motion interference on Distributed Positioning System was analyzed, anda new method of direction estimation based on single vector hydrophone in motioninterference background was put forward, named oriented intensity implement. Theperformance of this implement was analyzed through simulation, and sea trials verify andeffects assessments were done. The statistical properties of pseudo sequence in the directionestimator based on single vector hydrophone was studied, and a multi-station cooperatingmethod based on pseudo sequence analysis in passive locating and tracking distributedsystems was proposed, whose application on track establishment and multi-stationcooperation was discussed.The method can reduce lots of false alarms effectively during theprocess of setting up initial path, and can fuse multi-station information very well. Combinedwith oriented intensity implement, it can also improve the anti-interference capability ofdistributed passive positioning system. The method has been put into practical application.
     4、Research on the estimation method of effective sound velocity in shallow water and itsapplication
     A new estimation method of effective sound velocity in shallow water based onEigen-rays pseudo searching was put forward, and the physical images of the spacedistribution of effective velocity in three kinds of shallow water channel were acquired.According to the concept of effective velocity gradient, the space variable characteristics wereanalyzed. The experiment about effective sound velocity measurement was carried out inshallow water, and the application of effective sound velocity and its estimation method wasdiscussed, such as the forecast of system range, the planning of array position in long baselineacoustic positioning system, the establishment of high-accuracy positioning model, and so on.The application results showed its effectiveness.
     The forward two aspects of these research results above not only have great significancein improving the robustness of the detection and the recognition toward the quiet targets, butalso have many practical applications in remote passive ranging, underwater environmentalmonitoring and underwater acoustic communication. The backward two aspects can enhancethe performance and capacity of underwater maneuvering target high-accuracy passive location and is useful in underwater acoustic ranging, distributed active positioning systemand channel matching.
引文
[1] William A. Kuperman, James F. Lynch. Shallow water acoustics. Physical Today,2004:55-61.
    [2] B G Katsnelson, V G Petnikov. Shallow water acoustics. Springer Praxis publishing,2002.
    [3] L. Brekhovskikh and Y. Lysanov, Fundamentals of ocean acoustics,3rd ed. SpringerVerlag,2003.
    [4] F B Jensen, W A Kuperman, et al. Computational Ocean Acoustics. Springer-Verlag,2000.
    [5]汪德昭,尚尔昌.水声学.科学出版社.1981:20-60页
    [6]杨士莪.水声传播原理.哈尔滨工程大学出版社.1994:1-5页
    [7] Miasnikov, V The Future of Russia's Strategic Nuclear Forces Discussions andArguments. Moscow,1995
    [8] W. Frederick Zimmerman. Ssn-23Jimmy Carter, U.s. Navy Submarine (seawolfClass). Nimble Books,2008
    [9] Renhe Zhang, Zhenglin Li, Zhaohui Peng, and Fenghua Li. Overview of shallowwater acoustics in the State Key Laboratory of Acoustics, Advances in OceanAcoustics, AIP Conference Proceedings, vol.1495, pp.16–35,2012.
    [10]李启虎.水声信号处理处理领域新进展.应用声学.2012,31(1):1-9页
    [11]李启虎.进入21世纪的声纳技术.信号处理.2012,28(1):1-11页
    [12] Qihu Li. Thirty years of underwater acoustic signal processing in China, Advances inOcean Acoustics, AIP Conference Proceedings, vol.1495, pp.83–93,2012.
    [13]阎福旺等.现代声纳技术.北京:海洋出版社,1998
    [14]李启虎.声纳信号处理引论.北京:海洋出版社,1985
    [15] W. A. Kuperman and H. C. Song. Integrating ocean acoustics and signal processing,Advances in Ocean Acoustics, AIP Conference Proceedings, vol.1495, pp.69–82,2012.
    [16]张仁和.水声物理、信号处理与海洋环境紧密结合是水声技术发展的趋势.应用声学.2006,25(6):325-327页
    [17]惠俊英,生雪莉.水下声信道(第二版).北京:国防工业出版社.2007:32-40,63-67页
    [18] I. B. Esipov, B. G. Katsnelson, A. I. Khilko, V. G. Petnikov, and A. N. Rutenko.Thirtyyears of progress in shallow water acoustics in Russia, Advances in Ocean Acoustics,AIP Conference Proceedings, vol.1495, pp.36–55,2012.
    [19] V. A. Shchurov. Vector acoustics of the ocean. vladivostok: Dalhauka,2003
    [20] M.J.Berliner and J.F.Lindberg, Acoustic particle velocity sensor: design, performanceand applications, Woodbury, NY: AIP Press,1996. AIP Conference Proceedings368
    [21] B.A.Cray, Directional point receivers: the sound and the theory, IEEE Oceans2002proceedings:29-31
    [22] J. A.Mc Connell et al., Development of a high frequency underwater acoustic intensityprobe, IEEE Oceans2002proceedings:1924-1929.
    [23]孙贵青,李启虎,杨庭秀,孙长瑜.第五讲新型光纤水听器和矢量水听器.物理.2006,35(8):645-653页
    [24]惠俊英,惠娟.矢量声信号处理基础.北京:国防工业出版社.2009
    [25]杨德森,洪连进.矢量水听器原理及应用引论.科学出版社,2009
    [26]贾志富.全面感知水声信息的新传感器技术-矢量水听器及其应用.物理.2009,38(3):157-168页
    [27] V.A. Shchurov著,贾志富译,孙贵青校.海洋矢量声学.北京:国防工业出版社.2011(中文版内容较英文版有增减)
    [28]凌育进.我国鱼雷水声跟踪系统综述.鱼雷靶场.1993(4):9-13页
    [29]郑兆宁,向大威.水声信号被动检测与参数估计理论.北京:科学出版社.1983
    [30]周宏仁,敬忠良,王培德.机动目标跟踪.北京:国防工业出版社.1991
    [31]田坦.水下定位与导航技术.北京:国防工业出版社.2007
    [32] Hassab, J. Contact localization and motion analysis in the ocean environment: Aperspective. IEEE J. Ocean. Eng.1983,8(3):136-147P
    [33]岳剑平.水下动目标被动跟踪研究.哈尔滨工程大学博士学位论文.2004
    [34]王燕.非合作目标精确定位技术.哈尔滨工程大学博士学位论文.2006
    [35]杨娟.水下动目标被动跟踪关键技术研究.哈尔滨工程大学博士学位论文.2007
    [36]徐玉如,庞永杰,甘永,孙玉山.智能水下机器人技术展望.智能系统学报.2006,1(1):9-16页
    [37] Renhe Zhang and Qin Wang. Range and depth-averaged fields in ocean soundchannels. JASA,1990,87(2):633-638
    [38] S.D.Chuprov. Interference structure of a Sound Field in a Layered Ocean. in OceanAcoustics. Current State, Edited by L.M.Brekhovskih and LB. Andreevoi, Moscow,1982:71-91P
    [39] G.L.D’Spain and W.A.Kuperman. Application of waveguide invariants to analysis ofspectrograms from shallow water environments that vary in range and azimuth. J.Acoust.Soc. Am.,1999,106(5):2454-2468P
    [40]苏晓星.浅海声场的水平纵向相关与波导不变性研究.中国科学院声学研究所博士学位论文.2006
    [41] Q. Y. Ren, J.-P. Hermand, and S. C. Piao, Space-Frequency Distributionof the VectorField of Broad-Band Sound in Shallow Water,In OCEANS10MTS/IEEE SeattleConference-Innerspace: A Global Responsibility,2010.
    [42]孙国仓.浅海矢量声场及其信号处理.哈尔滨工程大学博士学位论文.2008
    [43] Wangsheng Lin, Guolong Liang, Yan Wang and Yilin Wang. ExperimentalInvestigation of the Interference Structure in a Shallow-Water Vector Acoustic Field,Advances in Ocean Acoustics, AIP Conference Proceedings, vol.1495, pp.587–594,2012.
    [44]余赟.浅海低频声场干涉结构及其应用.哈尔滨工程大学博士学位论文.2011
    [45] D. E. Weston. A moire fringe analog of sound propagation in shallow water. J.Acoust.Soc. Am.,1960,32(6):647-654P
    [46] D. E. Weston. Sound focusing and beaming in the interference field due to severalshallow-water modes, J. Acoust. Soc. Am.,1968,44(6):1706-1712P
    [47] A. B. Wood. Model experiments on sound propagation in shallow seas. J. Acoust.Soc.Am.,1959,31(9):1213-1235P
    [48] A. N. Guthrie, R. N. Fitzgerald, D. A. Nutile, and J. D. Shaffer. Long-rangelow-frequency CW propagation in the deep ocean: Antigua-Newfoundland. J.Acoust.Soc. Am.,1974,56(1):58-69P
    [49] D. E. Weston and K. J. Stevens.Interference of wide-band sound in shallow water.J.Sound and Vibr,1972,21(1):59-64P
    [50] S. G Gershman and Yu. I. Tuzhilkin. Interference of wide-band noise signals. Sov.Phys.Acoust.,1965,1:34-41P
    [51] R. T. Bachman and G T. Kay. Broadband interference patterns in shallow water,J.Acoust. Soc. Am.,1983,74,576-580P
    [52] V A. Zverev and E. F. Orlov, eds. Interference of Broadband Sound in Ocean (IPF ANSSSR, Gorky).1984
    [53] V N. Golubev, V I. Il'ichev, E. R Orlov, I. Rakov, A. D. Sokolov,GA. Sharonov, and VP. Shevtsov. Experimental Investigation of Broadband Sound in a Subsurface OceanicWaveguide. in Acoustic Waves in Ocean, edited by L. M. Brekhovskikh and I.B.Andreeva (Nauka, Moscow),1987,100-111P
    [54] E. F. Orlov, V N. Fokin, and G. A. Sharonov. Parameters of interference modulation ofwideband sound in the deep ocean. Sov. Phys. Acoust.,1988,34:520-523P
    [55] E. F. Orlov and Cx A. Sharonov. Interference of Sound Waves in Ocean (Dal'nauka,Vladivostok).1998
    [56] C A. Grachev. Theory of acoustic field invariants in layered waveguides, Acoust.Phys,1993,39:33-35P
    [57] V.M.Kuz’kin. Frequency shifts of the sound field interference pattern in a shallow sea.Acoust. Phys.,1999,45:224-229P
    [58] V. G. Petnikov and V. M. Kuz’kin, Shallow water variability and its manifestation inthe interference pattern of sound fields, Ocean acoustic interference phenomena andsignal processing,AIP Conference Proceedings, vol.621, pp.207–217,2002.
    [59] S. V. Burenkov. Distinctive features of the interference structure of a sound field in atwo-dimensionally inhomogeneous waveguide. Soviet Physical Acoustics,35(5):465-467,1989.
    [60] V A. Lazarev and V N. Lobanov. Account of statistical distribution of the sea surfaceelevations using the wide band acoustic sounding. Izvestiya Akademii Nauk SSSR,Fizika Atmosfery Okeana (Izvestiya Academy of Sciences USSR, Atmospheric andOceanic Physics),1993,29:719-721P
    [61] E.L.Borodina and Yu.V.Petukhov. Restoration of the bottom characteristics by theinterference structure of the wide-band sound. Acoustics Letters,1996;19:159-162
    [62] Daniel Rouseff. Effect of shallow water internal waves on ocean acoustic striationpattern. Waves in Random and Complex Media,11:377-393,2001.
    [63] Daniel Rouseff and Robert C. Spindel. Modeling the waveguide invariant as adistribution. AIP Conference Proceedings.2002,621(1):137-148P
    [64] Arthur B. Baggeroer. Estimation of the distribution of the interference invariant withseismic streamers. AIP Conference Proceedings.2002,621(1):151-167P
    [65] Laura Brooks, M.R.F. Kidner, Anthony C. Zander, Colin H. Hansen, and Z. YongZhang.Techniques for extraction of the waveguide invariant from interference patternsin spectrograms.2006.
    [66] Kevin L. Cockrell and Henrik Schmidt. A modal Wentzel-Kramers-Brillouin approachto calculating the waveguide invariant for non-ideal waveguides. J. Acoust. Soc.Am.,2011,130(1):72-83P
    [67] E. C. Shang, J. R. Wu, and Z. D. Zhao. Relating waveguide invariant and bottomreflection phase-shift parameter P in a Pekeris waveguide. J. Acoust. Soc.Am.,2012,131(5):3691-3697P
    [68] Jorge E. Quijano, Lisa M. Zurk. Daniel Rouseff. Demonstration of the invarianceprinciple for active sonar. J.Acoust. Soc. Am.,2008,123(3):1329-1337P
    [69] Li F, Jin G, Zhang R, et al. An oscillation phenomenon of reverberation in shallowwater with a thermocline. J Sound Vib,2002,252:457-468
    [70]李风华,刘建军,李整林,等.浅海低频混响的振荡现象及其物理解释.中国科学:物理学力学天文学,2005,35:140-148
    [71]李风华,张燕君,张仁和,等.浅海混响时间-频率干涉特性研究.中国科学:物理学力学天文学2010,40(7):838~841页
    [72]苏晓星,张仁和,李风华.利用波导不变性提高声场的水平纵向相关.声学学报.2006,31(4):305-309页
    [73] LI Qian-Qian, LI Zheng-Lin, ZHANG Ren-He. Applications of Waveguide InvariantTheory to the Analysis of Interference Phenomena in Deep Wate. CHIN. PHYS. LETT.2011,28(3),034303-1-3
    [74]李启虎,王磊,卫翀华,李疑,等.浅海波导中水下目标辐射噪声干涉条纹的理论分析和试验结果.声学学报.2011,36(5):253-257页
    [75]王宁,高大治,王好忠.频散、声场干涉结构、波导不变量与消频散变换.哈尔滨工程大学学报.2010,31(7):825-831页
    [76] L. An, Z.Q. Wang, J.R. Lu, Calculating the waveguide invariant by passive sonarlofargram image, in Mechatronics and Machine Vision in Practice,14th InternationalConference on Signal and Image Processing.M2VIP2007.
    [77]安良,王志强,陆佶人.利用LOFAR谱图的二维傅里叶变换脊计算波导不变量.电子与信息学报.2008,30(12):2930-2933页
    [78]祝献,赵航芳,葛辉良.浅海波导不变量的数值计算及提取技术研究.声学与电子工程.2008,增刊,126-129页
    [79]田玲爱,刘福臣,周士弘.利用Hough变换提取波导不变量.声学与电子工程.2009,4:22-24页
    [80]刘坤,周士弘.声速起伏海洋环境下声场统计建模及距离-频率干涉条纹特性仿真分析.仪器仪表.2006,增刊,20-25页
    [81] G.L. D’Spain, D. P. Williams, W.A. Kuperman, and the SWARM95Team, EnergyFlow in Interference Fields, AIP Conference Proceedings, vol.621, pp.171–203,2002.
    [82] David R. Dall’Osto, Peter H.Dahl, and Jee Woong Chol, Properties of the acousticintensity vector field in shallow water waveguide, J. Acoust. Soc. Am.,127(1),2012,pp.2023–2035.
    [83]杨娟,惠俊英,王德俊,李妹.低频矢量声场及其应用研究.声学技术.2006,25(1):16-21页
    [84]惠俊英,孙国仓,赵安邦.Pekeris波导中简正波声强流及其互谱信号处理.声学学报.2008,33(4):300-304页
    [85]余赟,惠俊英,赵安邦,孙国仓,滕超.Pekeris波导中简正波的复声强及其应用.物理学报.2008,57(9):5742-5748页
    [86]余赟,惠俊英,赵安邦,林芳.波导不变量及双阵元被动测距.兵工学报.2011,21(3):274-280页
    [87] S. C. Piao and Q. Y. Ren, Investigation of Interference Phenomena of BroadbandAcoustic Vector Signals in Shallow Water, Proceedings of2nd InternationalConference on Shallow-water Acoustics, AIP Conference Proceedings, vol.1272, pp.69–79,2010.
    [88] Q. Y. Ren, J.P. Hermand, and S. C. Piao, Space-Frequency Distribution of the VectorField of Broad-Band Sound in Shallow Water, in OCEANS '10MTS/IEEE SeattleConference-Innerspace: A Global Responsibility,2010.
    [89] W. A. Kuperman, G. L.D’Spain, Peter Gerstoft, W. S. Hodgkiss, H. C. Song, and A. M.Thode. An overview of the waveguide invariant and some of its applications to signalprocessing. J. Acoust. Soc. Am., Vol.125, No.4, Pt.2, April2009,2703P
    [90] A. M. Thode, W. A. Kuperman, G. L. D'Spain, W S Hodgkiss. Localization usingBartlett matched-field processor sidelobes. J.Acoust. Soc. Am.,2000,107(1):278-286P
    [91] Kuperman, W A., D'Spain, G. L., and Heaney, K. D. Long range source localizationfrom single hydrophone spectrograms, J.Acoust. Soc. Am.2001:109(5) pt.1,1935-1943.
    [92] D'Spain, G. L., Kuperman, W. A., and Murray, J. J. Matchless field processing inshallow water, invited paper, Oceans2000MTS/IEEE Conf. Proc., vol.1,653-660.
    [93] D'Spain, G. L., Rovner, G. L., Gerstoft, P, Kuperman, W. A., and Hodgkiss, W. S.Determination of the waveguide invariant in general environments, U.S. Navy J.Underwater Acoust.2002:51(1),123-142.
    [94] D'Spain, G. L., Kuperman, W. A., and Murray, J. J. Source localization using thewaveguide invariant approach and conventional plane wave beamforming withvertical hydrophone array data, J. Acoust.Soc. Am.2000:108(5),2646.
    [95] H C Song, W A Kuperman, W S Hodgkiss. A time-reversal mirror with variable rangefocusing. J. Acoust. Soc. Am.,1998,103(6):3234-3240P
    [96] H. C. Song, W A Kuperman, W S Hodgkiss, et al. Iterative time reversal in the ocean.J.Acoust. Soc. Am.,1999,105(6):3176-3184P
    [97] H. C. Song, W A Kuperman, W S Hodgkiss, et al. Demonstration of a high-frequencyacoustic barrier with a time-reversal mirror. IEEE J. Oceanic Eng,2003,28(2):246-249P
    [98] Kuperman W A, Hodgkiss W S, Hee Chun Song, et al. Phase conjugation in the ocean:Experimental demonstration of an acoustic time-reversal mirror. J. Acoust. Soc.Am.,1998,103(1):25-40P
    [99] W S Hodgkiss, H C Song, W A Kuperman. A long-range and variable focusphase-conjugation experiment in shallow water. J. Acoust. Soc. Am.,1999,105(3):1597-1604P
    [100] Seongi Kim, G. F Edelmann, W A Kuperman, et al. Spatial resolution of time-reversalarrays in shallow water. J. Acoust. Soc. Am.,2001,110(2):820-829P
    [101] Seongil Kim, W A Kuperman, W S Hodgkiss, et al. Robust time reversal focusing inthe ocean. J. Acoust. Soc. Am.,2003,114(1):145一157P
    [102] J.S. Kim, W.S. Hodgkiss, W.A. Kuperman. Null-broadening in a waveguide. J. Acoust.Soc. Am.,2002,112(1):189-197P
    [103] A. M. Thode. Source ranging with minimal environmental information using a virtualreceiver and waveguide invariant theory. J. Acoust. Soc. Am.,2000,108(4):1582-1594P
    [104] T.C.Yang. Beam intensity striations and applications. J.Acoust. Soc. Am.,2003,113(3):1342-1352P
    [105] T.C.Yang.Motion compensation for adaptive horizontal line array processing. J.Acoust.Soc. Am.,2003,113(1):245-260P
    [106] Daniel Rousff and Charlotte V. Leigh. Using the waveguide invariant to analyzelofargrams. IEEE Oceans2002proceedings:2239-2
    [107] A. Turgut, M. Orr, and D. Rouseff,Broadband source localization using horizontal-beam acoustic intensity striations, J. Acoust. Soc. Am.,127(1),2010, pp.73–83.
    [108] Kevin D. Heaney., Rapid geoacoustic characterization using a surface ship ofopportunity, IEEE J. Ocean. Eng,29(1),2004, pp.88–99.
    [109] Kevin D. Heaney. Rapid Geoacoustic Characterization Applied to Range-DependentEnvironments. IEEE Journal of Oceanic Engineering,2004,29(1):43-50P
    [110] Kevin D. Heaney, Daniel D. Sternlicht, Arthur M. Teranishi, et al. Active RapidGeoacoustic Characterization Using a Seismic Survey Source. IEEE Journal ofOceanic Engineering,2004,29(1):100-109P
    [111] Knut A. S strand. Range localization of10-100km explosions by means of an endfilearray and a waveguide invariant. IEEE Journal of Oceanic Engineering.2005,30(1):207-212P
    [112] Sunwoong Lee, Nicholas C. Makrisb,The array invariant,J. Acoust. Soc. Am.119(1), January2006,336-351
    [113] S. Lee and N. C. Makris,A new invariant method for instantaneous ource rangeestimation in an ocean waveguide from passive beam-timeintensity data, J. Acoust.Soc. Am.116(4),2646(2004).
    [114] S. Lee and N. C. Makris, Range estimation of broadband noise sources in an oceanwaveguide using the array invariant, J. Acoust. Soc. Am.117(4),2577(2005).
    [115] Se-Young Kim, Seung-Yong Chun, Min-Hyuk Kim, Ki-Man Kim.UnderwaterBroadband Target Localization using the Interference Pattern of SpectrogramEstimated by Three Sensors[C]. OCEANS2007
    [116] H.L Tao and J.Krolik, Single hydrophone passive location of transting acousticsources, in Proceedings of IEEE Oceans2007, pp1-3,Aberdeen,Scotland, June2007.
    [117] H.L Tao.Waveguide invariant focusing and field directionality focusing and fielddirectionalty mapping with a passive acoustic array. Dissertation Doctor of Philosophyof Duke Universtiy,2008.
    [118]鹿力成.海底变化环境下目标距离定位.声学技术.2007,26(1):65-68页
    [119]鹿力成,郭圣明,马力.海深变化环境下目标距离定位.声学技术.2009,28(5):586-591页
    [120]赵振东,高大治,王好忠,王宁.波导不变量原理在目标测距中的应用.声学技术.2009,28(2):45-46页
    [121]徐海生.利用波导不变性概念实现声源定位的实验研究.声学技术.2004年增刊:197-203页
    [122] Wang F.P, Pan Y, Real time target localization using waveguide invariant in shallowWater. IEEE International Conference on ICSPCC,2011,1-4P.
    [123] Wang F.P, Pan Y, Waveguide invariant measurement using towed line array. IEEEInternational Conference on ICSPCC,2011,5-8P.
    [124]余赟,惠俊英,赵智勇,王鲁军.基于声场干涉结构的双水平阵(元)被动测距.声学学报.2012,37(4):440-447页
    [125]李秀林.浅海声场的水平纵向相干特性及其应用研究.中国科学院研究生院博士学位论文,2004
    [126]黄晓砥.海洋波导中水平阵列和垂直阵列抑干扰研究.中国科学院研究生院博士学位论文,2004
    [127] Shihong Zhou, Fuchen Liu. Array gain compensation of large-aperture horizontal linearray in oceanic waveguide. The10th Western Pacific Acoustics conference.Beijing.China,2009
    [128]王宁,张海青,高大治,王好忠,高伟,刘进忠.2005黄海声学实验2声传播起伏.中国海洋大学学报.200939(5):1029-1036页
    [129]高大治,王宁,王好忠,等.声强干涉结构监测浅海温跃层深度起伏.中国科学:物理学力学天文学,2012,42(2):107–115页
    [130]杨娟,惠俊英等.利用低频声压干涉谱进行目标运动参数估计.哈尔滨工业大学学报.2008,40(3):471-474页
    [131]杨娟,惠俊英等.基于STFT-Hough变换的目标运动分析.哈尔滨工程大学学报.2007,28(2):137-142页
    [132]江磊,惠俊英,蔡平,杨娟.干涉谱法测量水下竖直运动目标轨迹.海洋工程.2006,24(4):38-42页
    [133] Jorge E. Quijano, Lisa M. Zurk. Use of the invariance principle for target tracking inactive sonar geometries. OCEANS'06Boston MTS/IEEE Conference,2006,18-21P
    [134] J. S. Rogers, J. L. Krolik. A study of active sonar reverberation using ultra-sonic experiments in a shallow-water tank. OCEANS'07Aberdeen Scotland MTS/IEEE Conference,2007,18-21P
    [135] Ryan Goldhahn, Granger Hickman, Jeffrey Krolikc. Waveguide invariant broadbandtarget detection and reverberation estimation. J.Acoust. Soc. Am.,2008,124(5):2841-2851P
    [136] R.Goldhahn, G.Hickman, J.L. Krolik. Waveguide invariant reverberation mitigationfor active sonar. IEEE International Conferece on Acoustic, Speech and SignalProcessing. Honolulu, HI,2007
    [137] Hailiang Tao and Jeffrey L. Krolik. Waveguide invariant focusing for broadbandbeamforming in an oceanic waveguide. J.Acoust. Soc. Am.,2008,123(3):1338-1346P
    [138]郭国强,杨益新,孙超,李博.浅海低频本地海底混响的波导不变性结构及抑制方法研究.声学学报.2009,34(6):506-514页
    [139]郭国强,杨益新,孙超.利用波导不变性实现时反海底混响零点展宽.声学技术.2007,26(5):1-4页
    [140]李嶷,王磊,陈新华.浅海运动目标波导条纹特性初探.声学技术.2011,30(3),pt2:1-4页
    [141] Jian Li, Guiqing Sun, Qingbang Han, and Chunhua Zhang.Acoustics vector sensorlinear array passive ranging based on waveguide invariant, Advances in OceanAcoustics, AIP Conference Proceedings, vol.1495, pp.576–586,2012.
    [142]毛卫宁.水下被动定位方法回顾和展望.东南大学学报.2001,31(6):129-132页
    [143]宋新见.数字式噪声目标被动测距声纳研究.哈尔滨工程大学博士论文.2003
    [144] Arthur B. Baggeroer, W. A. Kuperman, and P. N. Mikhalevsky, An overview ofmatched field methods in ocean acoustics, IEEE J. Ocean. Eng.,1993,18(4):401-424P
    [145]杨坤德.水声信号的匹配场处理技术研究.西北工业大学博士学位论文,2003
    [146]马敬广.时间反转镜被动定位技术研究.哈尔滨工程大学博士论文.2007
    [147] Nardone S C, Lindgren A G, Gong K F. Fundamental properties and performance ofconventional bearings-only target motion analysis. IEEE Transactions on AutomaticControl,1984,29(9):775-787P
    [148] Jauffret C,Pillon D. Observalility in passive target motion analysis. IEEE Transactionon Aerospace and Electronic Systems.1996,32(4):1290-1300P
    [149]杜选民.水面舰鱼雷报警声纳技术研究.哈尔滨工程大学博士论文,1999
    [150] Chan Y T, Rudnicki S W. Bearing-only and Doppler-bearing tracking usinginstrumental variables. IEEE Transactions on Acoustics, Speech and Signal Processing,1992,28(4):1076-1082P
    [151] Becker K. A general approach to TMA observability from angle and frequentcymeasurements. IEEE Transactions on Acoustics, Speech and Signal Processing,1996,32(1):487-496P
    [152] Marandda B H, Fawcett J A. Detection and localization of weak targets by space-timeintegration. IEEE Journal of Oceanic Engineering,1991,16(2):189-194P
    [153] Tremois,Le Cadre J P. Target motion analysis with multiple arrays: performanceanalysis. Ieee Transactions on Aerospace and Electronic Systems,1996,32(3):1030-1045P
    [154]杜选民,姚蓝.多基阵联合的无源纯方位目标运动分析研究.声学学报.1999,24(6):604-610页
    [155] Tremois O, Le Cadre J P. Target motion analysis with multiple arrays: performanceanalysis. IEEE Transactions on Aerospace and Electronics Systems,1996,32(3):1030-1045P
    [156]王燕,岳剑平,冯海泓.双基阵纯方位目标运动分析研究.声学学报.2001,26(5):405-409页
    [157] C B Leslie. Hydrophone for measuring particle velocity. J. Acoust. Soc. Am.,1956,28(4):711-715P
    [158] http://www.sparton.com/
    [159] G.L.G'Spain et al. Simultaneous measurement of infrasonic acoustic particle velocityand acoustic pressure in the ocean by freely drifting Swallow floats. IEEE J. OceanicEng.1991,16(2):195-207
    [160] G.L.G'Spain et al. Energetics of the deep ocean's infrasonic sound field. J. Acoust. Soc.Am.1991,89(3):1134-1157
    [161] G.L.D'Spain et al. Initial analysis of the data from the vertical DIFAR array. Proc.Oceans'92. Newport Rhode Island.1992,346-351
    [162] J Adin Mann III, Jiri Tichy, Anthony J Romano. Instantaneous and Time-averagedEnergy Transfer in Acoustic Fields [J]. Journal of the Acoustical Society of America,1987,82(1):17~30.
    [163] J Adin Mann III, Jiri Tichy. Acoustic intensity analysis: Distinguishing energypropagation and wave-front propagation [J]. Journal of the Acoustical Society ofAmerica,1991,90(1):20~25.
    [164] F. Jacobscn. Active reactive, coherent and incoherent sound field. Journal of Soundand Vibration,1989,:493-507p.
    [165] F. Jacobsen. A note on instantaneous and time-averaged active and reactive soundintensity. Journal of Sound and Vibration.1991,147(3):489-496
    [166] Edmond Y. Lo and Miguel C. Junger. Signal-to noise enhancement by underwaterintensity measurements. J. Acoust. Soc. Am.1987,82(4):1450-1454
    [167] Shchurov V.A..The properties of the vertical and horizontal power flows of theunderwater ambient, J. Acoust. Soc. Am., vol.90, No.2,1992,1002-1004
    [168] Shchurov V.A..Coherent and diffusive fields of underwater acoustic ambient noise, J.Acoust. Soc. Am, vol.90, No.2,1991,991-1001
    [169] Benjamin A.Cray and Albert H.Nutrall, Directivity Factors for Linear Arrays ofVelocity Sensors, J. Acoust. Soc. Am. July2001,110(1):324-331p
    [170] Benjamin F. Cron and Charles H. Sherman. Spatial-correlation functions for variousnoise models. J.Acoust.Soc.Am.1961,34(11):1732-1736p
    [171] G L D’Spain, J C Luby, G R Wilson et al. Vector sensors and vector sensor line arrays:Comments on optimal array gain and detection. J. Acoust. Soc. Am.,2006,120(1):171-185P
    [172] A. Nehorai and E. Paldi, Acoustic Vector-Sensor Array Processing, IEEE Trans. OnSignal Processing,1994,42(9):2481-2491.
    [173] M.Hawkes and A.Nehorai, Bearing estimation with acoustic vector-sensor arrays, inAcoustic Particle Velocity Sensors: Design, Performance, and Applications, Eds M.J.Berliner and J.F. Lindberg, Woodbury, NY: AIP Press,1996.
    [174] M Hawkes. Issues in acoustic vector sensor processing:[Dissertation]. Yale University,2000
    [175] B. Hochwald and A. Nehorai, Identifiability in array processing models with vector-sensor applications, IEEE Trans. On Signal Processing,1996,44(1):83-95.
    [176] K T Wong. Novel techniques of polarization diversity&extended aperture spatialdiversity for sensor-array direction fingding in radar, sonar,&wirelesscommunications:[Dissertation]. Purdue University,1996
    [177]孙贵青.矢量水听器检测技术研究,哈尔滨工程大学博士学位论文,2001
    [178]孙贵青,杨德森等.基于矢量水听器的最大似然比检测和最大似然方位估计.声学学报.2003,28(1):66-72页
    [179]时胜国,杨德森.矢量水听器的源定向理论及其定向误差分析,哈尔滨工程大学学报,2003,24(2):132-135页
    [180]时胜国.矢量水听器及其在平台上的应用研究,哈尔滨工程大学博士学位论文,2006
    [181]惠俊英,刘宏,余华兵,范敏毅.声压振速联合信息处理及其物理基础初探.声学学报,2000,25(4):303-307页
    [182]惠俊英,李春旭,梁国龙,刘宏.声压和振速联合信号处理抗相干干扰.声学学报,2000,25(5):389-394页
    [183]冯海泓,梁国龙,惠俊英.目标方位的声压、振速联合估计.声学学报,2000,25(6):516-520页
    [184]王德俊,惠俊英等.Pekeris波导中侧面波矢量场.哈尔滨工程大学学报,2006,27(2):252-257页
    [185]王德俊,惠俊英,杨春,蔡平.Pekeris波导中近程声场数值算法.哈尔滨工程大学学报,2005,25(1):38-42页
    [186]余华兵等.小尺度传感器的指向性锐化技术研究.声学学报.2000,25(4):319-322页
    [187]惠俊英等.声压和振速联合处理抗相干干扰,声学学报.2000,25(5):389-394页
    [188]李春旭.声压、振速联合信息处理.哈尔滨工程大学工学博士学位论文,2000
    [189]陈新华.矢量阵信号处理技术研究,哈尔滨工程大学博士学位论文,2004年
    [190]王德俊.矢量声场与矢量信号处理理论研究.哈尔滨工程大学工学博士学位论文,2004
    [191]郭龙祥.主动式系统中的矢量传感器信号处理方法研究.哈尔滨工程大学博士学位论文,2006
    [192]姚直象.单矢量传感器及矢量阵信号处理研究.哈尔滨工程大学博士学位论文,2006
    [193]姚直象,惠俊英.基于单矢量水听器四种方位估计方法.海洋工程.2006,24(1):122-128页
    [194]陈新华等.声矢量阵指向性.声学学报.2003,28(2):141-144页
    [195]杨士莪.单矢量传感器多目标分辨的一种方法.哈尔滨工程大学学报.2003,24(6):591-595页
    [196]周士弘.分层介质波导中的声矢量场传播.哈尔滨工程大学学报.2005,25(3):342-348页
    [197]方世良,魏占海,徐步安,毛卫宁.声矢量传感器目标方位估计.东南大学学报.2002,32(5):688-691页
    [198]杨秀庭,孙贵青,陈新华,李启虎.一种改进的WSF算法在单矢量水听器多目标方位估计中的应用.声学技术.2007,26(2):165-168页
    [199]王德俊,李风华.基于单个矢量水听器和子空间旋转的宽容宽带双目标分辨与跟踪方法.声学学报.2007,32(5):404-410页
    [200]彭汉书.浅海矢量声场特性及应用研究.中国科学院声学研究所博士学位论文,2007
    [201]孙贵青,李启虎.声矢量传感器研究进展.声学学报.2004,29(6):481-490页
    [202]孙贵青,李启虎.声矢量传感器信号处理.声学学报.2004,29(6):491-498页
    [203]宋新见等.基于矢量信号处理的水声定位系统.海洋工程,2003.21(3):110-114页
    [204]岳剑平等.水下动目标纯方位被动跟踪仿真研究.哈尔滨工程大学学报.2003,24(5):500-504页
    [205] M.Hawkes and A.Nehorai, Wideband Source Localization Using a DistributedAcoustic Vector-Sensor Array, IEEE Trans. On Signal Processing,2003,51(6):1479-1491.
    [206]李敏,孙贵青,李启虎.分布式浮标阵水下高速运动声源三维被动定位.声学学报.2009,34(4):289-295页
    [207] R.J.尤立克著.洪申译.水声原理.第三版.哈尔滨船舶工程学院出版社,1990:258-276页
    [208] P C Etter. Underwater acoustic modeling and simulation. Spon Press,2003.
    [209]李迎春吴德明.短基线平面阵形双曲面定位系统的声线修正.声学学报.1992,17(5):340-343页
    [210]吴德明.一种用于声线修正的迭代法.声学学报.1992,17(2):104-110页
    [211]王恕铨.求三维本征声线的一新方法.声学学报.1992,17(2):155-157页
    [212]孙枕戈.基于声线理论的水声被动定位原理.声学学报.1996,21(5):824-831页
    [213]王燕,梁国龙.一种适用于长基线水声定位系统的声线修正方法.哈尔滨工程大学学报.2002,23(5):32-34页
    [214]林旺生.水声信道仿真与声线修正技术.哈尔滨工程大学硕士学位论文.2009
    [215]邢志刚,封金星,刘伯胜.水声测距数学模型研究.哈尔滨工程大学学报.2000,21(3):24-28.
    [216] Dinn D F, B D Loncarevic, G Costello. The Effect of Sound Velocity Errors onMulti-beam Sonar Depth Accuracy. IEEE OCEANS'95.1995(2):1001-1010P
    [217] Beaudoin J D, Hughes Clarke J E Bartlett J E. Application of Surface Sound SpeedMeasurements in Post-Processing for Multi-Sector Multibeam EchosoundersInternational Hydrographic Review,2004,5(3):17-32P
    [218]魏玉阔.多波束测深假象消除与动态空间归位技术.哈尔滨工程大学博士学位论文.2011
    [219] Tan H P,Diamant R, Seah W K G, Waldmeyer M. A survey of techniques andchallenges in underwater localization, Ocean Engineering,2011,38:1663-1676.
    [220] Isik, M.T., Akan, O.B. A three dimensional localization algorithm for underwateracoustic sensor networks. IEEE Trans. Wireless Commun.2009,8,4457–4463.
    [221] Caiti A, Garulli A, Livide F, Prattichizzo D.Localization of autonomous underwatervehicles by floating acoustic buoys: a setmembership theoretic approach. IEEE JOceanic Eng,2005,30(1):140–152
    [222] Kussat N H, Chadwell C D, Zimmerman R. Absolute positioning of an autonomousunderwater vehicle. IEEE J Oceanic Eng2005,30(1):153–164
    [223] Vincent,H.T.,Models, algorithms and measurement for underwater acousticpositioning. University of Rhode Island Doctor Degree Dissertation.2001
    [224] Vincent,H.T. and Hu,S.L.J., Geodetic position estimation of underwater acousticsensors, J.Acoust.Soc.Am.1997,102(l):87-94P.
    [225] Vincent,H.T. and Hu,S.L.J., Method and system for determining underwater effectivesound velocity, United States patent application, October2000. U.S. navy casenumber78160.
    [226] Vincent,H.T. and Hu,S.L.J., Methods of determining underwater effective soundvelocity, Technical memorandum, Naval undersea warfare center division newport,newport,RI,preparation2001
    [227] Yang Fanlin,Lu Xiushan,Li Jiabiao, et al, Precise positioning of underwater staticobjects without sound speed Profile. Marine Geodesy2011,34:2,138-151.
    [228]孙万卿.浅海水声定位技术及应用研究.中国海洋大学博士学位论文.2007
    [229] Spiesberger J L. Geometry of locating sounds from differences in travel time:isodiachrons. J.Acoust.Soc.Am,2004,116(5):3168-3177.
    [230] Spiesberger J L. Probability distributions for locations of calling animals, receivers,sound speeds, winds, and data from travel time differences.J.Acoust.Soc.Am,2005,118(3):1790-1800.
    [231] L M Brekhovskikh. Waves in layered media. New York: Academic,1960
    [232]姜哲,郭骅.声强的有旋性与表面声强.声学学报.1991,16(5):330-337页
    [233]梁国龙.回波信号瞬时参数序列分析及其应用研究.哈尔滨工程大学博士学位论文.1997
    [234]范敏毅.水下声信道的仿真与应用研究.哈尔滨工程大学博士学位论文.2000
    [235]梁国龙,林旺生,王燕,付进,等.基于本征声线视在搜索的有效声速估计方法.中国发明专利,专利号:ZL201010101259.7
    [236]梁国龙,林旺生,王燕.水声信道有效声速估计方法及空间特征分析.哈尔滨工程大学学报.2010,31(12):1587-1592页
    [237]梁国龙,林旺生,王燕.浅海信道有效声速估计及其在水声定位中的应用.声学技术,2012,31(1):42-47页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700