非平稳运行时列车轮对轴承道旁声学故障诊断方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以我国现役列车轮对轴承NJ(P)3226X1为研究对象,以道旁声学监测与故障诊断策略为研究内容,重点对道旁信号畸变矫正和基于矫正信号的故障诊断策略进行了深入的探讨。
     第一,通过实验获取了轴承声源直线运动时产生的具有畸变特性的道旁声学信号,分析了其畸变特性,初步探讨了流场畸变的成因和特性。
     第二,以莫尔斯声学理论和插值采样方法为基础,提出了时域插值多普勒矫正方法。该方法既考虑了信号的频域结构矫正,也考虑了信号的时域幅值还原,使得信号得到了最大程度的矫正恢复。
     第三,提出了道旁信号自适应多普勒矫正策略。首先是对Doppler-let原有公式进行了修正,重新定义了约束参数,提出了“时幅映射插值构造法”,实现了离散Doppler-let的构造。其次是以Doppler-let和匹配追踪信号分解方法为基础,通过在参数域优化搜索的方法实现了道旁模型参数的自动识别。有效解决了道旁模型参数自动获取问题,走出了“几何测量代替实际参数”的误区,并且考虑了声源作非匀速运行的工况,使道旁多普勒畸变信号得以更高精度的矫正,尤其适用于地铁列车非匀速运行的工况。
     第四,探讨了基于窄带信号瞬时频率和重采样技术在列车轮对轴承道旁畸变信号矫正中的应用。该方法首先通过带通滤波从道旁信号中提取窄带信号,然后通过Hilbert变换计算窄带信号的瞬时频率,最后以得到的瞬时频率为依据对畸变信号进行重采样矫正,通过对比分析总结了该方法的优缺点。
     第五,在信号得到矫正之后,探讨了基于矫正信号的故障诊断策略。作了两方面的探讨,第一是将EEMD方法用来提取蕴含故障信息的本征模态信号,结合使用共振解调方法进行了特征提取和故障辨识;第二是将瞬态成分分析用于矫正信号的故障辨识,通过参数化周期单边Laplace小波与道旁矫正信号的匹配分析提取了故障特征,实现了故障辨识。
The train bearing with the type of NJ(P)3226X1which is the type employed in our country, is selected to be the research object in our study. The main topic in this paper is the wayside acoustic health monitoring technique, involving two main issues: the distortion removal for the recorded signal and the fault diagnosis strategy for the train bearing.
     The wayside acoustic signal generated by the train bearing is obtained. The reason and characteristics of the "flow field distortion" is studied.
     A time domain interpolation resampling method is proposed based on the Morse acoustic theory and interpolation method. Through this method, the frequency-domain distortion as well as the time domain distortion can be both corrected, such that the distored signal obtains a maximum recovery.
     A data-driven Doppler effect elimination strategy is investigated in this paper. Firstly, the error of the existed formula has been pointed out. Then the construction parameters have been redefined and a "time-amplitude mapping interpolation method" is introduced to construct a Doppler-let. Secondly, based on Doppler-lets and matching pursuit method, the wayside-model parameters are identified by optimizing in the parameters set. Non-uniform operating condition is also considered in this method, so that the Doppler-shifted signal can be corrected much more accurately, especially for subway trains running at non-uniform speed.
     The instantaneous frequency estimation method and the signal resampling method are employed in this paper to correct the Doppler-shifted signal. The narrowband signal is obtained by band-pass filtering, and then the instantaneous frequency of the narrowband signal is calculated by Hilbert transform, and finally the Doppler-shifted signal is resampled according to the obtained instantaneous frequency curve. Both the advantages and disadvantages of this method are analyzed and summarized by comparing with another method.
     Two fault diagnosis strategies based on the corrected signal are introduced in this paper. One strategy is as follows:firstly the EEMD method is employed to extract the Intrinsic Mode Function (IMF) containg the fault information, then, the resonance demodulation method is employed to extract the feature. The other strategy involves the transient model analysis, the feature is extraced by matching the parametric periodic Laplace wavelets with the corrected signal.
引文
[1]钟秉林,黄仁.机械故障诊断学(第3版)[M].第3版.机械工业出版社,2007.
    [2]高金吉.机器故障诊治与自愈化[M].第1版.高等教育出版社,2012.
    [3]Bednar F H, Ciaramitaro W, Gisoni G A, et al. Smart sensor system for diagnostic monitoring[Z]. Google Patents,1991.
    [4]Bellows J C, Kemper C T, Osborne R L. Diagnostic system and method[Z]. Google Patents, 1985.
    [5]Bently D E, Goldman P, John J Y. Rolling Element Bearing Defect Detection and Diagnostics Using REBAM(?) Probes[J]. Orbit,2001,22(2):12-25.
    [6]Tandon N, Choudhury A. A review of vibration and acoustic measurement methods for the detection of defects in rolling element bearings[J]. Tribology International, 1999,32(8):469-480.
    [7]Kjaer B O. Machine health monitoring using vibration analysis[M]. Bruel & Kj(?)r.
    [8]高克,李敏.设备现场诊断的开展方法[M].机械工业出版社,1985.
    [9]黄文虎.设备故障诊断原理、技术及应用[M].科学出版社,1996.
    [10]孔凡让,刘志刚,王建平,等.图象处理在直流电机换向火花图象监测中的应用[J].中国电机工程学报,2001(06):54-58.
    [11]廖国斌,吴章维,荣希亢,等.穿孔机组在线监测及故障诊断系统[J].宝钢技术,1999(02):47-51.
    [12]刘永斌,严如强,孔凡让,等.基于PC机的连轧机组状态监测系统的研究[J].测控技术,2002(z1):132-135.
    [13]姜长泓.轨道车辆轮轴故障检测系统研究[D].吉林大学,2006.
    [14]佟立本.铁道概论[M].中国铁道出版社,2006.
    [15]王瑶.铁路货运市场现状分析及发展对策[J].铁道货运,2013(05):11-14.
    [16]张静.铁路货运改革的实践与思考[J].铁道货运,2013(11):5-8.
    [17]周荣征.中长期铁路网规划布局及优化方法研究[D].西南交通大学,2011.
    [18]胡飞.列车轴承故障轨边声学检测系统关键技术研究[D].中国科学技术大学,2013.
    [19]He Q, Wang J, Hu F, et al. Wayside acoustic diagnosis of defective train bearings based on signal resampling and information enhancement[J]. Journal of Sound and Vibration, 2013,332(21):5635-5649.
    [20]吴强.基于道旁声学信号的列车滚动轴承故障诊断技术研究[D].中国科学技术大学,2013.
    [21]王健华,刘永斌,张子才,等.直流电动机换向火花在线诊断系统研究[J].现代制造工程,2010(4):150-153.
    [221 王靖.列车轮对故障振动特性及诊断关键技术研究[D].中南大学,2012.
    [23]陈春朝.货车滚动轴承的声发射故障诊断系统研究[D].河南科技大学,2006.
    [24]廖英英,侯丽娴,杨绍普.基于共振解调的铁路货车轴承故障诊断[J].石家庄铁道大学学报(自然科学版),2013(04):47-51.
    [25]张习加,李成群.声发射技术在铁路机车轮对轴承故障诊断中的应用[J].轴承,2007(6):25-27.
    [26]Sneed W H, Smith R L. On-board real-time railroad bearing defect detection and monitoring: Railroad Conference,1998. Proceedings of the 1998 ASME/IEEE Joint,1998[C]. IEEE.
    [27]Cline J E, Bilodeau J R, Smith R L. Acoustic wayside identification of freight car roller bearing defects:Railroad Conference,1998. Proceedings of the 1998 ASME/IEEE Joint, 1998[C]. IEEE.
    [28]FirdausiD· Irani,吴朝院.先进道旁车辆状态监视系统的开发和应用[J].国外铁道车辆,2002,39(2):39-43.
    [29]Choe H C, Wan Y, Chan A K. Neural pattern identification of railroad wheel-bearing faults from audible acoustic signals:comparison of FFT, CWT, and DWT features[Z].1997:3078.
    [30]吴礼本J. Bambara Author美国热轴探测器的发展简况[J].国外铁道车辆,1990(04):45-52.
    [31]Dybala J, Radkowski S. Reduction of Doppler effect for the needs of wayside condition monitoring system of railway vehicles[J]. Mechanical Systems and Signal Processing, 2013,38(1):125-136.
    [32]He Q, Wang J, Hu F, et al. Wayside acoustic diagnosis of defective train bearings based on signal resampling and information enhancement[J]. Journal of Sound and Vibration, 2013,332(21):5635-5649.
    [33]Anderson G B. Acoustic detection of distressed freight car roller bearings:ASME/IEEE 2007 Joint Rail Conference and Internal Combustion Engine Division Spring Technical Conference,2007[C]. American Society of Mechanical Engineers.
    [34]Southern C, Rennison D, Kopke U. RailBAM-an advanced bearing acoustic monitor:initial operational performance results[J]. CORE 2004:New Horizons for Rail,2004:23.
    [35]俞悟周,王晨,毛东兴,等.高速铁路动车组列车的噪声特性[J].环境污染与防治,2009,3 1(1):74-77.
    [36]Liu F, He Q, Kong F, et al. Doppler effect reduction based on time-domain interpolation resampling for wayside acoustic defective bearing detector system[J]. Mechanical Systems and Signal Processing,2014,46(2):253-271.
    [37]宋杰.高速列车过站时的数值模拟及风致振动研究[D].北京交通大学,2012.
    [38]黄艳艺.动车组空气动力噪声数值仿真研究[D].大连交通大学,2012.
    [39]Baker C. The flow around high speed trains[J]. Journal of Wind Engineering and Industrial Aerodynamics,2010,98(6):277-298.
    [40]郗艳红.横风作用下的高速列车气动特性及运行安全性研究[D].北京交通大学,2012.
    [41]杨吉忠.考虑空气动力效应时高速列车运行安全平稳性研究[D].西南交通大学,2010.
    [42]徐锦帆.地铁车辆起动加速度的探讨[J].地铁与轻轨,1992(03):11-14.
    [43]龙胜,冯晓云,曲健伟,等.地铁动车牵引特性设计[J].铁路计算机应用,2010(9):22-25.
    [44]王厚雄,何德昭,徐鹤寿.准高速东风型列车风速度场特性初探[J].中国铁道科学,1993(02):100-110.
    [45]李人宪,赵晶,张曙,等.高速列车风对附近人体的气动作用影响[J].中国铁道科学,2007(05):98-104.
    [46]唐煜.桥梁挡风屏对强侧风条件下列车运营安全性的影响[D].西南交通大学,2010.
    [47]严隽髦,傅茂海.车辆工程[M].北京:中国铁道出版社,1999.
    [48]李人宪,刘应清.高速列车紊态外流场的数值模拟研究[J].应用力学学报,2001(01):6-13.
    [49]李人宪,赵晶,张曙,等.高速列车风对附近人体的气动作用影响[J].中国铁道科学,2007(05):98-104.
    [50]郑拯宇.高速车辆外部气动噪声场数值模拟研究[D].西南交通大学,2012.
    [51]杨忠超.基于EBE策略的列车三维紊态外流场有限元法并行计算研究[D].西南交通大学,2002.
    [52]马大猷.现代声学理论基础[M].科学出版社发行部,2006.
    [53]宋喜报吴卫玲Author多普勒测速雷达测速误差分析[J].计量与测试技术,2000(01):31-32.
    [54]刘俐高峻Author李治安Author.多普勒组织成像探测二尖瓣环e/a比率评价左室舒张功能价值的探讨[J].中国超声医学杂志,2000(11):52-56.
    [55]Bar-Ilan O, Eldar Y C. Sub-Nyquist Radar via Doppler Focusing[J]. Signal Processing, IEEE Transactions on,2014,62(7):1796-1811.
    [56]Sharif B S, Sharif B S, Neasham J, et al. A computationally efficient Doppler compensation system for underwater acoustic communications[J]. IEEE Journal of Oceanic Engineering, 2000,25(1):52-61.
    [57]杨殿阁,罗禹贡,李兵,等.基于时域多普勒修正的运动声全息识别方法[J].物理学报,2010(7):4738-4747.
    [58]杨殿阁,郑四发,李兵,等.基于声全息方法和双目视觉实现运动声源声场可视化[J].声学学报(中文版),2010(01):19-25.
    [59]吴强,孔凡让,何清波,等.基于重采样技术的声学信号多普勒畸变校正[J].信号处理,2012,28(9):1308-1313.
    [60]Hu F, Shen C Q, Liu F, et al. Doppler Shift Elimination Method Based on Instantaneous Frequency Estimation for the Wayside Acoustic Signal[J]. Applied Mechanics and Materials, 2013,333:510-515.
    [61]刘战存.多普勒和多普勒效应的起源[J].物理,2003(07):488-491.
    [62]杨森轲.基于空子载波的OFDM多普勒补偿技术在水声通信中的应用[D].哈尔滨工程大学,2013.
    [63]Stojanovic M, Catipovic J A, Proakis J G. Phase-coherent digital communications for underwater acoustic channels[J]. Oceanic Engineering, IEEE Journal of, 1994,19(1):100-111.
    [64]Yang D, Wang Z, Li B, et al. Quantitative measurement of pass-by noise radiated by vehicles running at high speeds[J]. Journal of Sound and Vibration,2011,330(7):1352-1364.
    [65]李岳生.样条与插值[M].1983.
    [66]H Mathews. John, D Fink. Kurtis数值方法(MATLAB版·第4版)[M].周璐,陈渝,钱方,等,译.第4版.电子工业出版社,2010.
    [67]Morse P M, Ingard K U. Theoretical Acoustics[M]. Princeton University Press,1986.
    [68]张贤达.现代信号处理[M].第2版.清华大学出版社,2002.
    [69]莫尔斯,英格特.理论声学[M].科学出版社,1986.
    [70]邹红星,周小波,李衍达.采用Dopplerlet基函数的时频信号表示[J].清华大学学报(自然科学版),2000(03):55-58.
    [71]邹红星,戴琼海,周小波,等Dopplerlet变换及其匹配收敛性分析[J].电子与信息学报,2001,23(5):417-424.
    [72]Zou H, Chen Y, Qiao L, et al. Acceleration-based Dopplerlet transform-Part II: Implementations and applications to passive motion parameter estimation of moving sound source[J]. Signal Processing,2008,88(4):952-971.
    [73]Zou H, Song S, Liu Z, et al. Acceleration-based Dopplerlet transform-Part I:Theory[J]. Signal Processing,2008,88(4):934-951.
    [74]何正嘉,訾艳阳,孟庆丰,等.机械设备非平稳信号的故障诊断原理及应用[M].高等教育出版社,2001.
    [75]Mallat S G, Zhang Z. Matching pursuits with time-frequency dictionaries[J]. Signal Processing, IEEE Transactions on,1993,41(12):3397-3415.
    [76]Choy R, Edelman A. Parallel MATLAB:Doing it right[J]. Proceedings of the IEEE, 2005,93(2):331-341.
    [77]冯志华.时频分析的优化及其在设备状态监测中的应用[D].中国科学技术大学精密机械及仪器,2005.
    [78]Huang N E, Shen Z, Long S R, et al. The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis[J]. Proceedings: Mathematical, Physical and Engineering Sciences,1998,454(1971):903-995.
    [79]Bruns A. Fourier-, Hilbert- and wavelet-based signal analysis:are they really different approaches?[J]. J Neurosci Methods,2004,137(2):321-332.
    [80]褚福磊,彭志科,冯志鹏,等.机械故障诊断中的现代信号处理方法[精装][M].第1版.科学出版社,2009.
    [81]张亢.局部均值分解方法及其在旋转机械故障诊断中的应用研究[D].湖南大学,2012.
    [82]陈於学.基于接触力学的圆柱滚子轴承振动研究[D].华中科技大学,2005.
    [83]Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London. Series A:Mathematical, Physical and Engineering Sciences, 1998,454(1971):903-995.
    [84]Huang N E, Wu Z. A review on Hilbert-Huang transform:Method and its applications to geophysical studies[J]. Reviews of Geophysics,2008,46(2).
    [85]雷亚国,何正嘉,訾艳阳.基于混合智能新模型的故障诊断[J].机械工程学报,2008(07):112-117.
    [86]于德介,程军圣,杨宇.基于EMD和AR模型的滚动轴承故障诊断方法[J].振动工程学报,2004(03):84-87.
    [87]杨宇,于德介,程军圣.基于EMD的奇异值分解技术在滚动轴承故障诊断中的应用[J].振动与冲击,2005(02):12-15.
    [88]罗忠辉,薛晓宁,王筱珍,等.小波变换及经验模式分解方法在电机轴承早期故障诊断中的应用[J].中国电机工程学报,2005(14):125-129.
    [89]王太勇,何慧龙,王国锋,等.基于经验模式分解和最小二乘支持矢量机的滚动轴承故障诊断[J].机械工程学报,2007(04):88-92.
    [90]李辉,郑海起,杨绍普.基于EMD和Teager能量算子的轴承故障诊断研究[J].振动与冲击,2008(10):15-17.
    [91]张琳,黄敏.基于EMD与切片双谱的轴承故障诊断方法[J].北京航空航天大学学报,2010(03):287-290.
    [92]王婷.EMD算法研究及其在信号去噪中的应用[D].哈尔滨工程大学,2010.
    [93]谭善文.多分辨希尔伯特—黄(Hilbert-Huang)变换方法的研究[D].重庆大学,2001.
    [94]杨宇.基于EMD和支持向量机的旋转机械故障诊断方法研究[D].湖南大学,2005.
    [95]胡劲松.面向旋转机械故障诊断的经验模态分解时频分析方法及实验研究[D].浙江大学,2003.
    [96]黄诚惕.希尔伯特—黄变换及其应用研究[D].西南交通大学,2006.
    [97]钟佑明.希尔伯特—黄变换局瞬信号分析理论的研究[D].重庆大学,2002.
    [98]陈略,訾艳阳,何正嘉,等.总体平均经验模式分解与1.5维谱方法的研究[J].西安交通大学学报,2009(05):94-98.
    [99]郑旭,郝志勇,卢兆刚,等.基于MEEMD的内燃机机体活塞敲击激励与燃烧爆发激励分离研究[J].振动与冲击,2012(06):109-113.
    [100]曹冲锋,杨世锡,杨将新.大型旋转机械非平稳振动信号的EEMD降噪方法[J].振动与冲击,2009(09):33-38.
    [101]Lei Y, He Z, Zi Y. Application of the EEMD method to rotor fault diagnosis of rotating machinery[J]. Mechanical Systems and Signal Processing,2009,23(4):1327-1338.
    [102]蔡艳平,李艾华,徐斌,等.集成经验模态分解中加入白噪声的自适应准则[J].振动.测试与诊断,201 1(06):709-714.
    [103]王晓冬,何正嘉,訾艳阳.滚动轴承故障诊断的多小波谱峭度方法[J].西安交通大学学报,2010(03):77-81.
    [104]黄伟国.基于振动信号特征提取与表达的旋转机械状态监测与故障诊断研究[D].中国科学技术大学,2010.
    [105]Strang G, Nguyen T. Wavelets and filter banks[M]. SIAM,1996.
    [106]Wang S, Huang W, Zhu Z K. Transient modeling and parameter identification based on wavelet and correlation filtering for rotating machine fault diagnosis[J]. Mechanical Systems and Signal Processing,2011,25(4):1299-1320.
    [107]王诗彬,朱忠奎,王安柱.基于瞬态冲击响应参数辨识的轴承故障特征检测[J].振动工程学报,2010,23(4):445-449.
    [108]于江林.滚动轴承故障的非接触声学检测信号特性及重构技术研究[D].大庆石油学院,2009.
    [109]黄琪.基于声发射检测的滑动轴承故障诊断方法研究[D].长沙理工大学,2008.
    [110]杨黎明.声发射技术用于段修货车轴承故障诊断研究[D].西南交通大学,2003.
    [111]张新明.声发射技术在滚动轴承故障诊断中的应用[D].清华大学,2006.
    [112]印欣运.声发射技术在旋转机械碰摩故障诊断中的应用[D].清华大学,2005.
    [113]赵吉文,谢芳,刘永斌,等.600kW风力机塔架结构参数粒子群优化设计[J].中国机械工程,2007,18(15):1776-1779.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700