多功能助行机器人机构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国除了肢体残疾人中大部分需要使用轮椅代步外,部分老年人也依靠轮椅代步。这些残疾人和老年人由于长期使用轮椅,极容易产生压疮、下肢骨质疏松和肌肉萎缩等并发症,严重的甚至能危及生命。目前在许多养老院、社区、医院等单位建立了辅助残障人和老年人进行康复训练的专用活动场所,但是,这些场所缺乏可以把人从其乘坐的轮椅上转成站立姿态进行站立或者行走训练的设备。因此,急需既具有站立架功能,又能在坐姿、站姿和行走时对下肢进行被动训练的多功能康复装置。助行康复机器人的主要作用是为使用者提供智能的行走辅助,进而维持、甚至强化他们的行走能力,使他们能摆脱正常人的搀扶,安全独立的行走,并不是作为一个代步工具,取代他们的行走功能。助行机器人相较于传统的非智能助行设备来说,功能更为丰富,安全性、舒适性更高。所以,研制能够协助老年人及残疾人进行起坐康复训练、行走康复训练等多方面服务的机器人,对促进我国康复医学的发展,具有重要意义。
     论文是在国家高技术发展计划(863计划)重点项目:多功能助行康复机器人(2008AA040203)的资助下,针对如何利用助行康复机器人,帮助无力自主行走的老年人以及具有下肢行走障碍的残疾人进行起坐训练和助行训练的问题,在助行机器人机构方案和驱动控制方案、助行机构的运动规划、起坐机构分析、辅助行走过程人机系统动力学等方面进行了较深入的理论分析和实验研究。
     综述了国内外助行康复机器人及相关领域的研究现状,对现有助行康复机器人的机构、驱动方式、工作原理进行分析和对比的基础上,依据康复医学理论,提出一种被动式助行机器人的结构方案,阐述机构的特点及其工作原理,设计机器人的驱动控制方案,并研制多功能助行康复机器人样机。
     根据实验测得的人体行走步态信息及助行训练要求,对助行机构进行参数优化。利用D-H法对助行机构进行正、逆运动学分析,建立相应的运动学模型。通过机构仿真工具包SimMechanics中的仿真模块建立助行机构的运动学仿真模型,验证助行机构运动学分析的正确性,得到助行机构的工作空间。并对双侧助行机构进行协调运动规划和仿真分析。
     采用D-H法对人体站立过程进行运动学分析,得到站立过程臀部的运动轨迹。建立基于SimMechanics的起坐机构运动学及动力学仿真模型,分析不同使用情况下弹簧对起坐机构驱动力矩的影响。仿真结果证明起坐机构末端运动规律和正常人站起过程臀部的运动规律基本相符,可以用来模拟正常人的站起运动过程。
     为研究人体下肢和助行机构的力学特性,分别建立人体下肢和助行机构的力学模型,采用虚功原理求解广义力,并利用拉格朗日方法建立人体下肢和助行机构的动力学方程。利用联合约束法建立人机系统动力学模型,分析不同人体重量、不同步幅、不同步态周期使用情况下对系统驱动性能的影响,为助行机构驱动电机的选择及控制策略的研究提供理论依据。
     研制了多功能助行康复机器人实验样机,介绍机器人的研制过程及实际应用情况。利用dSPACE平台进行相关的实验研究,包括电机性能检测、起坐机构和助行机构实验。实验研究证明在多功能助行机器人的协助下,能够实现辅助起坐、辅助行走等康复训练,可以为下肢患者及体弱老年人提供多种康复训练服务。
In China, some parts of the old people rely on wheelchair instead of walking besidesmost people with physical disability. For disabled people and the old people, it is easy toresult in complications, such as pressure sores, lower limbs osteoporosis, muscle atrophy andso on, due to long-term using wheelchair. Even it can be dangerous for living. At present, inmany nursing homes, communities, hospitals and so on, have established specialized activityplaces to do rehabilitation training for the disabled and the elderly. However, there is lack ofequipments to train people standing or walking from their wheelchair to standing posture.Therefore, it is urgent to have multifunctional rehabilitation devices which are of stand framefunction and passive training function for lower limbs under the conditions of sitting position,standing position and walking. The main function of walking assistance rehabilitative robot isto provide intelligent auxiliary walking for users, and to maintain and even strengthen theirability to walk, so that they do not need be supported by others and can walk safety andindependently. So it is not a tool which is instead of their walking. To compare with thetraditional intelligence walking assistance devices, its functions are more plenty, safe andcomfort. So the research of the rehabilitation robot that can help the elderly and the disabledto rehabilitation training, is of great significance to promote the development of rehabilitationmedicine in our country.
     The research work of this dissertation is supported by the major project of national hightechnology development program (863program), whose name is multifunctional walkingassistance rehabilitative robot (2008aa040203). In order to solve some key problems, whichare existed in the standing-up training and walking assistance training, it is need to know howto use walking assistance rehabilitative robot to help the elderly themselves with no ability towalk. So theoretical analysis and experimental study are done deeply in the following aspects.There are mechanism scheme and drive control scheme of walking assistance robot, motionplanning of walking assistance mechanism, analysis of standing-up mechanism, and thedynamics of man-machine system in the process of walking assistance.
     The research present situations of the domestic and foreign walking assistancerehabilitative robot and related fields are summarized. The mechanism, drive mode andworking principle are analyzed and compared. According to the rehabilitation medical theory,the structure option of one kind of passive walking assistance robot is presented. Thecharacteristics of mechanism and its working principle are described. And the drive controlscheme of robot is designed. The prototype of multifunctional walking assistancerehabilitative robot is produced as well.
     According to the experimental measurement of human walking gait information and the training requirement of walking assistance, it is need to optimize the parameters of walkingassistance mechanism. The positive and inverse kinematics of walking assistance mechanismis analyzed and the corresponding kinematics models are established by using D-H method.The kinematics simulation model of walking assistance mechanism is set up by usingsimulation module of the mechanism simulation toolkit SimMechanics. And the validation ofkinematics analysis of walking assistance mechanism is tested and verified. Then the workingspace of walking assistance mechanism is got. And the coordinate motion planning andsimulation analysis of the both sides of the walking assistance mechanism are finished.
     The kinematics analysis of the people’s standing procedure is done by using D-H method.And the motion trail of buttocks in the process of standing is got. Based on SimMechanics,kinematics and dynamics simulation models of standing-up mechanism are set up. And theinfluence of drive torque, which is caused by spring to standing-up mechanism at differentusing conditions, is analyzed. According to the simulation results, it can prove that the motionlaw of the end of sit up mechanism is basically coincided with the motion law of buttocks inthe process of standing. So it can be used to simulate the process of standing about normalpeople.
     In order to study lower limbs and mechanical property of walking assistance mechanism,the model of them are established respectively. The generalized force is solved by usingvirtual work principle. And the dynamics equation of lower limbs and walking assistancemechanism are established by using Lagrange method. The man-machine system dynamicsmodel is set up on the bases of joint constraint method. The influence on drive performance ofsystem is analyzed, which is caused by different weight of people, different steps, anddifferent gait cycle. So, it can provide theoretical basis for the choice of motor and controlstrategy on walking assistance mechanism.
     The prototype of multifunctional walking assistance rehabilitation robot is produced. Themanufacture procedure of robot and its practical application are also introduced. The relatedexperimental research are done by using dSPACE platform, such as motor performanceexperiments, standing-up mechanism experiments and walking assistance mechanismexperiments. Through the results of experiments, it can prove that the rehabilitation trainingof standing-up and walking assistance can be carried out under the auxiliary ofmultifunctional walking assistance robot. So it can give many kinds of rehabilitation trainingservices to lower limbs patients and weak elderly.
引文
[1]张娇娇,胡秀枋,徐秀林.下肢康复训练机器人研究进展.中国康复理论与实践.2012,18(8):728-730页
    [2]李红.康复护理教育现状及对策探略.江汉大学学报(自然科学版).2012,40(5):102-104页
    [3]巩海伟,张建国,刘合荣等.下肢残障人多功能器械的机构设计与分析.机械设计与制造.2012,11:58-60页
    [4]张济川.康复工程和辅助技术的发展历程、内涵和理论基础.中国康复理论与实践.2011,17(6):581-582页
    [5]邓志东,程振波.我国助老助残机器人产业与技术发展现状调研.机器人技术与应用.2009,2:20-24页
    [6]李建军.中国康复医学发展的回顾与展望.中国康复理论与实践.2011,17(1):1-4页
    [7]徐国政,宋爱国,李会军.康复机器人系统结构及控制技术.中国组织工程研究与临床康复.2009,13(4):717-720页
    [8]柯显信,陈玉亮,唐文彬.人体下肢外骨骼机器人的发展及关键技术分析.机器人技术与应用.2009,6:28-32页
    [9]张晓玉.智能辅具与机器人技术.机器人技术与应用.2011,5:6-13页
    [10]郑洁皎,俞卓伟,梁贞文等.人口老龄化给康复医学带来的挑战.中国实用内科杂志.2012,32(9):653-655页
    [11]张西正,侍才洪,李瑞欣等.医疗机器人的研究与进展.中国医学装备.2009,6(1):7-12页
    [12]沈晓军,张晓玉.我国康复辅具发展概况.中国医疗设备.2009,24(12):1-4页
    [13] Peshkin Michael, Brown David A, Santos-Munné Julio J, et al. KineAssist: A roboticoverground gait and balance training device. Proceedings of the2005IEEEInternational Conference on Rehabilitation Robotics, Chicago, IL, USA,2005:241-246P
    [14] Burgess Jamie K, Weibel Gwendolyn, Brown David A. Increases in Overground GaitSpeed With Body Weight Support in People Post-Stroke.2009IEEE InternationalConference on Rehabilitation Robotics, Kyoto, Japan,2009:401-406P
    [15] Fattah Abbas, Agrawal Sunil K, Catlin Glenn, Hamnett John. Design of a PassiveGravity-Balanced Assistive Device for Sit-to-Stand Tasks. Journal of MechanicalDesign.2006,128(5):1122-1129P
    [16] Artemiadis Panagiotis K, Krebs Hermano Igo. On the Potential Field-based Control ofthe MIT-Skywalker.2011IEEE International Conference on Robotics and Automation,Shanghai, China,2011:1427-1432P
    [17] Artemiadis Panagiotis K, Krebs Hermano Igo. On the Control of the MIT-Skywalker.2010Annual International Conference of the IEEE Engineering in Medicine andBiology Society, Buenos Aires, Argentina,2010:1287-1291P
    [18] Artemiadis Panagiotis K, Krebs Hermano Igo. Impedance-based control of theMIT-Skywalker. ASME Dynamic Systems and Control Conference, Cambridge,Massachusetts, USA,2010:389-396P
    [19] Hidler Joseph M, Wall Anji E. Alterations in muscle activation patterns duringrobotic-assisted walking. Clinical Biomechanics.2005,20(2):184-193P
    [20] Mirbagheri Mehdi M, Niu Xun, Kindig Matt, Varoqui Deborah. The Effects ofLocomotor Training with a Robotic-Gait Orthosis (Lokomat) on NeuromuscularProperties in Persons with Chronic SCI.2012Annual International Conference of theIEEE Engineering in Medicine and Biology Society, San Diego, CA, United states,2012:3854-3857P
    [21] Koenig Alexander, Keller Urs, Pfluger Kim, et al. PASCAL: Pediatric Arm SupportRobot for Combined Arm and Leg Training.20124th IEEE RAS and EMBSInternational Conference on Biomedical Robotics and Biomechatronics, Rome, Italy,2012:1862-1868P
    [22] Pennycott A, Hunt K.J, Jack L.P, et al. Estimation and volitional feedback control ofactive work rate during robot-assisted gait. Control Engineering Practice.2009,17(2):322-328P
    [23]马志飞.辅助起立康复机器人控制系统的仿真与实验研究.哈尔滨工业大学硕士学位论文.2011:4页
    [24] Allemand Yves, Stauffer Yves, Clavel Reymond, Brodard Roland. Design of a newlower extremity orthosis for overground gait training with the WalkTrainer.2009IEEEInternational Conference on Rehabilitation Robotics, Kyoto, Japan,2009:550-555P
    [25] Stauffer Yves, Reynard Fabienne, Allemand Yves, et al. Pelvic motion implementationon the WalkTrainer.2007IEEE International Conference on Robotics and Biomimetics,Sanya, China,2008:133-138P
    [26] Ward Jeffrey A, Balasubramanian Sivakumar, Sugar Thomas. Robotic gait trainerreliability and stroke patient case study.2007IEEE International Conference onRehabilitation Robotics, Noordwijk, Netherlands,2007:554-561P
    [27] Hussein Sami, Schmidt Henning, Krüger J rg. Adaptive control of an end-effectorbased electromechanical gait rehabilitation device.2009IEEE International Conferenceon Rehabilitation Robotics, Kyoto, Japan,2009:366-371P
    [28] Hesse Stefan, Werner Cordula. Connecting research to the needs of patients andclinicians. Brain Research Bulletin.2009,78(1):26-34P
    [29] Schmidt Henning, Piorko Frank, Bernhardt Rolf, et al. Synthesis of Perturbations forGait Rehabilitation Robots.2005IEEE International Conference on RehabilitationRobotics, Chicago, IL, United states,2005:74-77P
    [30] Hesse Stefan, Schmidt Henning, Werner Cordula. Machines to support motorrehabilitation after stroke:10years of experience in Berlin. Journal of RehabilitationResearch and Development.2006,43(5):671-678P
    [31] Hussein Sami, Schmidt Henning, Hesse Stefan, Krüger J rg. Effect of different trainingmodes on ground reaction forces during robot assisted floor walking and stair climbing.2009IEEE International Conference on Rehabilitation Robotics, Kyoto, Japan,2009:845-850P
    [32] http://blog.sina.com.cn/s/blog_4eb3dcf301000cax.html
    [33] Hayashi Tomohiro, Kawamoto Hiroaki, Sankai Yoshiyuki. Control method of robot suitHAL working as Operator’s muscle using biological and dynamical information.IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton, AB,Canada,2005:3455-3460P
    [34] Tsukahara Atsushi, Hasegawa Yasuhisa, Sankai Yoshiyuki. Standing-Up MotionSupport for Paraplegic Patient with Robot Suit HAL.2009IEEE InternationalConference on Rehabilitation Robotics, Kyoto, Japan,2009:211-217P
    [35] Lee S, Sankai Y. Power assist control for leg with HAL-3based on virtual torque andimpedance adjustment.2002IEEE International Conference on Systems, Man andCybernetics, Yasmine Hammamet, Tunisia,2002:453-458P
    [36] Kawamoto H, Sankai Y. Comfortable power assist control method for walking aid byHAL-3.2002IEEE International Conference on Systems, Man and Cybernetics,Yasmine Hammamet, Tunisia,2002:447-452P
    [37] Chugo Daisuke, Matsuoka Wataru, Jia Songmin, Takase Kunikatsu. Rehabilitationwalker system with standing assistance device.2007IEEE International Conference onMechatronics and Automation, Harbin, China,2007:2177-2182P
    [38] Iwata H, Yano H, Nakaizumi F. Gait Master: A Versatile Locomotion Interface forUneven Virtual Terrain. IEEE Virtual Reality2001, Yokohama, Japan,2001:131-137P
    [39] http://www.rtage.com/market/live/2009/0831/71.html
    [40] http://big5.nikkeibp.com.cn/news/mech/6761-200808060115.html
    [41] Kong Kyoungchul, Jeon Doyoung. Fuzzy Control of a New Tendon-Driven ExoskeletalPower Assistive Device.2005IEEE/ASME International Conference on AdvancedIntelligent Mechatronics, Monterey, CA, United states,2005:146-151P
    [42] Hwang Beomsoo, Moon Hyosang, Jeon Doyoung. Monitoring Method of InteractiveTorque between Human and Robot in Exoskeleton Systems.2009IEEE InternationalConference on Rehabilitation Robotics, Kyoto, Japan,2009:283-288P
    [43] Kong Kyoungchul, Tomizuka Masayoshi, Moon Hyosang, et al. Mechanical Design andImpedance Compensation of SUBAR (Sogang University’s Biomedical Assist Robot).2008IEEE/ASME International Conference on Advanced Intelligent Mechatronics,Xi'an, China,2008:377-382P
    [44] Novandy Bondhan, Yoon Jungwon, Manurung Auralius. Interaction Control of aProgrammable Footpad Type Gait Rehabilitation Robot for Active Walking on VariousTerrains.2009IEEE International Conference on Rehabilitation Robotics, Kyoto, Japan,2009:372-377P
    [45] Yoon Jungwon, Novandy Bondhan, Yoon Chul-Ho, et al. A6-DOF Gait RehabilitationRobot With Upper and Lower Limb Connections That Allows Walking VelocityUpdates on Various Terrains. IEEE/ASME Transactions on Mechatronics.2010,15(2):201-215P
    [46] Kamnik Roman, Bajd Tadej. Human voluntary activity integration in the control of astanding-up rehabilitation robot: A simulation study. Medical Engineering&Physics.2007,29(9):1019-1029P
    [47] Music Josip, Kamnik Roman, Munih Marko. Model based inertial sensing of humanbody motion kinematics in sit-to-stand movement. Simulation Modelling Practice andTheory.2008,16(8):933-944P
    [48] Kamnik Roman, Bajd Tadej. Standing-uP robot: an assistive rehabilitative deviee forTraining and assessment. Joumal of Medical Engineering&Teehnology.2004,2(28):74-80P
    [49] Cullell A, Moreno J.C, Rocon E, et al. Biologically based design of an actuator systemfor a knee-ankle-foot orthosis. Mechanism and Machine Theory.2009,44(4):860-872P
    [50] Hamzaid Nur Azah, Fornusek Che, Ruys Andrew J, Davis Glen M. Development of anisokinetic FES leg stepping trainer (iFES-LST) for individuals with neurologicaldisability.2009IEEE International Conference on Rehabilitation Robotics, Kyoto,Japan,2009:480-485P
    [51] Beyl P, Van Damme M, Cherelle P, Lefeber D. Safe and compliant guidance inrobot-assisted gait rehabilitation using proxy-based sliding mode control.2009IEEEInternational Conference on Rehabilitation Robotics, Kyoto, Japan,2009:277-282P
    [52] Beyl P, Naudet J, Van Ham R, Lefeber D. Mechanical design of an active knee orthosisfor gait rehabilitation.2007IEEE International Conference on Rehabilitation Robotics,Noordwijk, Netherlands,2007:100-105P
    [53] Beyl P, Van Damme M, Van Ham R, et al. An exoskeleton for gait rehabilitation:prototype design and control principle.2008IEEE International Conference onRobotics and Automation, Pasadena, CA, United states,2008:2037-2042P
    [54] Van Asseldonk Edwin H. F, Koopman Bram, Buurke Jaap H, et al. Selective andadaptive robotic support of foot clearance for training stroke survivors with stiff kneegait.2009IEEE International Conference on Rehabilitation Robotics, Kyoto, Japan,2009:602-607P
    [55] Jan F. Veneman, Rik Kruidhof, Edsko E. G. Hekman, et al. Design and Evaluation ofthe LOPES Exoskeleton Robot for Interactive Gait Rehabilitation. IEEE Transactionson Neural Systems and Rehabilitation Engineering.2007,15(3):379-386P
    [56] Veneman J.F, Ekkelenkamp R, Kruidhof R, et al. Design of a Series Elastic andBowdencable based actuation system for use as torque actuator in exoskeleton typetraining.2005IEEE International Conference on Rehabilitation Robotics, Chicago, IL,USA,2005:496-499P
    [57] http://www.sciam.com.cn/html/remenkeji/jiqirenji/2010/1207/14370.html
    [58] http://www.bdza.cn/BDZAPortal/Middle.do?act=show&cid=4&mid=183&id=00008722
    [59]刘晓丹,严隽陶,胡军.当代康复学科科研发展趋势分析.中国康复理论与实践.2012,18(10):969-971页
    [60]程方,王人成,贾晓红等.减重步行康复训练机器人研究进展.康复医学工程.2008,23(4):366-368页
    [61]吕超,阮峰,董万福.基于变曲柄机构的下肢康复机设计.机械工程与自动化.2008,3:107-108页
    [62]冯治国.步态康复训练助行腿机器人系统.上海大学博士学位论文.2009:18-19页
    [63]曹辰,钱晋武,冯治国等.下肢步态矫形器的机构设计.机械制造.2008,46(8):32-35页
    [64]冯治国,钱晋武,王企远等.下肢外骨骼矫形器的协同仿真研究.系统仿真学报.2009,21(19):6114-6117页
    [65]余伟正,钱晋武,冯治国等.下肢外骨骼矫形器运动学分析.上海大学学报.2010,16(2):130-134页
    [66]王企远,钱晋武,冯治国等.下肢步态矫形器的生理学步态规划与试验.中国机械工程.2009,20(8):928-932页
    [67]陈峰.可穿戴型助力机器人技术研究.中国科学技术大学博士学位论文.2007:19-23页
    [68] http://www.iim.ac.cn/news/newske52.asp
    [69]张佳帆.基于柔性外骨骼人机智能系统基础理论及应用技术研究.浙江大学博士学位论文.2009:39-42,46-47页
    [70] Zhang Jia-fan, Dong Yi-ming, Yang Can-jun, et al.5-Link model based gait trajectoryadaption control strategies of the gait rehabilitation exoskeleton for post-stroke patients.Mechatronics.2010,20(3):368-376P
    [71]陈云菲.基于FES的起立功能康复机器人设计及相关技术研究.哈尔滨工业大学硕士学位论文.2008:10-12页
    [72]马志飞.辅助起立康复机器人控制系统的仿真与实验研究.哈尔滨工业大学硕士学位论文.2011:19-20页
    [73]姜洪源,马长波,李姗姗.一种新型辅助起立康复机器人的设计及逆运动学分析.康复医学工程.2009,24(2):162-164页
    [74]姜洪源,王志强,马长波.辅助站立装置及人体站立数学模型分析.第七届全国康复医学工程和康复工程学术研讨会.2009:121-124页
    [75]关浩,崔亚菲,刘国华等.新型多功能助行器设计.大连大学学报.2008,29(6):67-70页
    [76] Sun Hongying, Zhang Lixun, Li Changsheng. Dynamic Analysis of Horizontal LowerLimbs Rehabilitative Robot.2009IEEE11th International Conference on IntelligentComputing and Intelligent Systems, Shanghai, China,2009:656-660P
    [77]李长胜,刘富强,张立勋.一种新型下肢康复训练机器人.第七届全国康复医学工程与康复工程学术研讨会论文集.2010:85-88页
    [78]张立勋,夏振涛,刘富强等.助行训练机器人骨盆位姿控制机构研究.机械设计.2009,26(5):42-45页
    [79]刘富强,张立勋,董玉红等.助行训练机器人骨盆位姿控制机构动力学研究.哈尔滨工程大学学报.2009,30(10):1152-1158页
    [80]万大千,徐义明,白跃宏.下肢外骨骼康复机器人的研究与进展.中国组织工程研究与临床康复.2011,15(52):9855-9858页
    [81]柯显信,陈玉亮,唐文彬.人体下肢外骨骼机器人的发展及关键技术分析.机器人技术与应用.2009,6:28-32页
    [82]韩亚丽,王兴松.行走助力机器人研究综述.机床与液压.2008,36(2):165-169页
    [83]戴士杰,栗少云,周国香等.移动机器人能源自治研究与进展.河北工业大学学报.2007,36(1):7-12页
    [84]谢欲晓,白伟,张羽.下肢康复训练机器人的研究现状与趋势.中国医疗器械信息.2010,16(2):5-8,56页
    [85]平伟,顿向明,陈卫东.助行机器人研究发展和展望.机器人技术与应用.2009,1:31-34页
    [86]高渤.偏瘫患者主动型辅助康复设备设计.南开大学硕士学位论文.2010:7,17-19页
    [87]方芳.助行机器人运动控制系统设计.浙江大学硕士学位论文.2010:1-2页
    [88] http://www.360doc.com/content/11/0404/18/5131191_107175776.shtml
    [89]程秋菊.基于ADAMS的人体下肢运动仿真.哈尔滨工程大学硕士学位论文.2008:12-13页
    [90]马志飞.辅助起立康复机器人控制系统的仿真与实验研究.哈尔滨工业大学硕士学位论文.2011:9-10页
    [91]周倩.协助站起机器人的数据采集及协助力分析.山东大学硕士学位论文.2008:4-5页
    [92]李佳,陶大锦.一种助立椅的研究.按摩与康复医学.2012,3(2):6-7页
    [93]王建光.老年人辅助站立座椅设计研究.浙江大学硕士学位论文.2008:21-22页
    [94]孙嘉利,王桂清.步态分析.中国疗养医学.2010,19(5):427-430页
    [95]王静,吴效明,谭润初.基于足底动力学测试的步态分析.中国医学物理学杂志.2012,29(1):3194-3198页
    [96]王岚,王婷,王劲松,张今瑜.人体步态规律测量分析与研究.哈尔滨工程大学学报.2008,29(6):589-593页
    [97]钱竞光,宋雅伟,叶强等.步行动作的生物力学原理及其步态分析.南京体育学院学报(自然科学版).2006,5(4):1-7,39页
    [98] Bereket S. Effects of anthropometric parameters and stride frequency on estimation ofenergy cost of walking. J Sports Med Phys Fitness.2005,45(2):152-161P
    [99] Wade Chip, Redfern Mark S. Ground reaction forces during human locomotion onrailroad ballast. J Appl Biomech.2007,23(4):322-329P
    [100]励建安,孟殿怀.步态分析的临床应用.中华物理学与康复杂志.2006,28(7):500-503页
    [101]孙嘉利,王桂清.步态分析.中国疗养医学.2010,19(5):427-430页
    [102]刘元标,励建安.老年人跌倒与平衡及步态异常.中国康复理论与实践.2012,18(1):5-8页
    [103]熊有伦.机器人技术基础.武汉:华中科技大学出版社,2004:12页
    [104] http://www.lihongcn.com/news44.html
    [105] http://www.china-safety.org.cn/aqbz_view.asp?D_id=254&keyword=E010
    [106]伊蕾.助行康复机器人控制策略研究.哈尔滨工程大学博士学位论文.2012:35-39页
    [107]孙洪颖.卧式下肢康复机器人研究.哈尔滨工程大学博士学位论文.2011:24页
    [108]刘攀.绳索牵引机器人及虚拟重力系统研究.哈尔滨工程大学博士学位论文.2010:102页
    [109]夏振涛.助行训练机器人系统设计及步态控制实验研究.哈尔滨工程大学硕士学位论文.2009:54页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700