用户名: 密码: 验证码:
基于多源信息融合的车辆航姿估计技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着道路交通的行驶高速化和车流密集化,车辆的行驶安全问题已成为全球共同关注的焦点。车辆的安全控制系统通过实时获取车体角度信息对发动机及制动系统进行主动干预控制,能有效避免因车辆侧滑、侧翻和侧向碰撞引起的道路交通事故。在该类车辆安全控制系统中,实时准确地获取车辆行驶过程中的航向姿态信息是首要解决的问题。由于车辆环境的各种电磁干扰以及传感器本身的测量误差问题,单独采用某一种传感器难以得到准确的航姿信息。针对上述问题,论文对车辆航姿估计系统中的航姿更新解算、传感器误差建模与信息融合等关键技术进行了深入分析与研究,在统一参考坐标系框架下,采用粒子滤波融合算法对MARG(Magnetic,Angular rate and Gravity)中陀螺、磁强计与加速度计的样本信息进行有效融合,估计并解算出车辆最优航姿信息。论文重点针对粒子滤波融合算法的样本集贫化与粒子退化问题,提出了采样、建议分布与重采样三个阶段的优化策略,以提高粒子滤波的单变量系统模型状态估计精度以及车辆多维航姿系统的估计精度。论文的主要工作有以下4个方面:
     1.研究了一种基于改进入侵式野草优化的粒子滤波采样策略(MIWOSIR)。首先,改进入侵式野草优化算法(MIWO)是通过调整入侵式野草优化算法的种群迭代步长来提高算法的寻优精度与收敛速度。其次,将MIWO融入到粒子滤波采样阶段,使粒子以自身权值在附近搜索空间动态繁衍,优胜劣汰出最优粒子集,指导粒子向后验概率的局部高似然域运动,增加了采样后样本的多样性。论文分析证明了MIWO算法的Markov全局收敛性,并通过Sphere、Rosenbrock、Griewank和Rastrigin四种测试函数的对比实验,验证了MIWO算法相比于入侵式野草优化算法具有更好的寻优速度与寻优精度。最后,通过单变量非静态增长模型与强非线性空间模型进行对比实验,验证了MIWOSIR算法采样后粒子多样性明显提高,相比其他粒子滤波优化算法有效减缓样本集贫化问题,在不影响算法运行效率的同时提高了状态估计精度。
     2.构造了一种基于Fourier-Hermite RTS的粒子滤波建议分布函数。该方法采用一簇Fourier-Hermite RTS平滑算法构造粒子的重要性密度函数,主要适用于系统状态的离线估计。算法通过Fourier-Hermite Kalman前向滤波将系统方程线性化至指定阶Taylor展式,以提高非线性系统模型的数学精度。且在后向平滑递推过程中充分考虑所有量测信息,增加了重要性密度与后验概率密度的重叠度。此外,将随机摄动理论引入重采样,以改善重采样后粒子多样性。通过分时恒定模型与强非线性模型的对比仿真,验证了该算法在长时间不变量与强非线性状态的动态跟踪中具有较强的跟踪能力。
     3.提出了一种基于遗传算法和入侵式野草优化的粒子滤波重采样与采样策略。遗传重采样过程中,根据有效粒子数量选择较优粒子个体,以特定区间随机数做交换率进行样本交叉繁殖,使用马尔可夫链蒙特卡罗移动加高斯白噪声做粒子变异繁殖并使用快速MH(Metropolis-Hastings)抽样算法选取粒子,使粒子有效分布到状态后验概率的局部模式上,维持重采样后粒子的多模式。并将入侵式野草优化应用于采样过程,以保持采样粒子随机性与有效性。通过单变量非静态增长模型与强非线性空间模型的对比仿真,该策略采样后的粒子权值分布明显提高,有效克服了粒子退化问题,具有较高的状态估计精度。
     4.构建了一种基于多源信息融合的车辆航姿估计系统。系统采用MARG传感器测量车辆的旋转运动角速率、直线运动加速度与地磁信息,将地理坐标系作为时空基准坐标系,建立了基于低运算复杂度MRPs(Modified Rodrigues Parameters)参数的车辆运动学模型,并由乘性MRPs误差矢量与角速率误差矢量建立状态误差模型,由加速度误差矢量和地磁误差矢量建立观测误差模型,搭建以改进入侵式野草优化粒子滤波模型为核心的带反馈最优融合估计结构,实现非线性航姿观测信息的实时最优关联。融合过程中,将陀螺的连续测量值作为车辆的短期航姿基准,加速度计和磁强计的测量值作为车辆的长期航姿辅助校正信息,利用改进入侵式野草优化粒子滤波算法计算陀螺漂移估计误差以及航姿估计误差。通过车辆航姿估计的模拟对比实验与实车对比试验,结果表明,相比基于EKF的车辆航姿估计方法和基于SIR的车辆航姿估计方法,论文所提方法具有较高的航姿精度。
     数值仿真实验与车辆航姿估计试验结果表明,论文提出的基于采样、建议分布与重采样优化的粒子滤波算法在克服样本集贫化与粒子退化方面具有显著效果,提高了算法的状态估计精度与车辆航姿估计精度。该研究成果对于基于多源信息融合的车辆航姿估计系统的工程应用与推广具有重要参考价值。
With the development of society economy, the highway traffic tends to drive highspeed and flow intensively, and the vehicle safety issue is focused worldwide. Thevehicle stability control system can effectively avoid accidents caused by vehiclerollover, sideslip and side collision, which actively intervenes and controls the engineand the brake system. However, obtaining the vehicle attitude angle is a key issue todetermine the accuracy and stability of the control system. Due to the environmentnoise and the measurement error, it can not obtain the optimal attitude angle by usingonly a sensor. In allusion to the problems mentioned above, the paper uses themulti-sensor information fusion method to provide the accurate vehicle attitudes. Thekey techniques such as the dynamic attitude solution, the error modeling of sensor andthe information fusion method are discussed in depth. Within the framework of theproposed particle filter, the output information from the gyro, the accelerometer and themagnetometer are fusioned under the unified reference coordinate system. The paperfocuses on the sample dilution and the degeneracy problem of particle filter andproposes the optimized method on the sampling, the proposal distribution and theresampling to improve the estimated accuracy of the state and the vehicle attitude. Maincontributions of the paper are shown as follows:
     1. The MIWOSIR is suggested in this paper. Firstly, the MIWO is presented that isbeneficial to get the optimal value in the global scope by adding an envelope of thestandard deviation for improving the convergence rate of the IWO. Then the MIWOSIRincorporates the MIWO into sampling process of the particle filter, enables the particlesto reproduce dynamically by their own fitness in nearby space and optimize the particlepopulation of optimal weight. Though MIWOSIR, particles are moved towards regionswhere they had larger value of posterior density. The Markov chain is applied forproving the global convergence of the MIWO algorithm and4benchmark functions areused to verify the strong global search ability. Simulation results demonstrate thatMIWOSIR has higher estimation accuracy and operational efficiency than otheroptimized particle filters.
     2. The Fourier-Hermite Rauch-Tung-Striebel based particle filter is proposed. Inthe algorithm, a bank of Fourier-Hermite RTS smoother is employed for generating theimportance density function to impel the probabilities approximating to the true state forobtaining prediction samples with higher precision. Because all observation informationis introduced into the state transition function, consequently the suggested proposaldistribution has much more overlap regions with the real posterior distribution. Besidesthat, the stochastic perturbation re-sampling is introduced that can ameliorate the particle diversity after re-sampling and reduce the computation in a certain extent. Thenew algorithm is tested on three classic non-linear and non-Gaussian models withpromising results compared with existing ones.
     3. The particle filter using genetic algorithm and invasive weed optimization ispresented. In the re-sampling process, the degeneracy problem is relieved by applying aselection operator of genetic algorithm to choose the optimal particles iteratively, andthen the crossover and mutation operation are implemented for the particles which arenot selected so that the diversity of particles is maintained. Meanwhile, IWO makes thenewest observations into sampling process, and optimizes the particle population withthe optimal weight. Simulation results demonstrate that the proposed method has higherestimation accuracy.
     4. The paper proposes the heading and attitude determination of the vehicle usingmulti-source information fusion method. It uses MARG sensor to measure the angularrate, acceleration and geomagnetic information of the vehicle, and regardes the localCartesian coordinate system as the reference coordinate system. The state error model isbuilt with the multiplicative MRPs and the angular rate error vector, the observationerror model is built with the the acceleration vector and geomagnetic vector, and anoptimal estimation fusion structure with feedback by using the improved invasive weedoptimized particle filter is built. The system takes the continuous measurement of thegyro as the attitude reference information of vehicle in short-term, simultaneouslymakes the measurement of the accelerometer and the magnetometer be the attitudecorrection information of the gyro in long term. The improved invasive weed optimizedparticle filter is used for correcting the attitude error and the gyro drift to establish anaccurate model of the attitude determination estimator, which achieve an optimalassociation of the nonlinear attitude observation. By comparing with the traditionalattitude estimation methods in experiment, the proposed method improves the vehicleattitude estimation accuracy.
     The numerical simulations and the experiments for vehicle heading and attitudeestimation show that the optimized strategies of the paritlce filter in this papereffectively eliminate the particle degeneration and particle impoverishment, whichimproves the estimation accuracy of the vehicle heading and attitude. It has animportant reference for application and popularization of the vehicle heading andattitude determination system using multi-source information fusion.
引文
[1]冯继妙.车辆行驶状态监测与安全报警技术研究[D].浙江工业大学,2011.
    [2]Maeder U., Morari M., Attitude estimation for vehicles with partial inertialmeasurement. IEEE Transaction on Vehicular Technology,2011,60(4):1496-1504.
    [3]Ghulam H. B., Bhanu S. and Uday R. R., Multinomial Logistic Regression Modelfor Single-Vehicle and Multivehicle Collisions on Urban U.S. Highways. J. Transp.Eng.,2012,138(6):786-797.
    [4]Jo K., Chu K., Sunwoo M., Interacting multiple-model filter-based sensor fusion ofGPS with in-vehicle sensors for real-time vehicle positioning. IEEE Transaction onIntelligent Transportation Systems,2012,13(1):329-343.
    [5]Yiguang X. and Benjamin C., Identifying Lane-Change Maneuvers with ProbeVehicle Data and an Observed Asymmetry in DriverAccommodation. J. Transp.Eng.,2013,138(8):1051-1061.
    [6]Solmaz S., Corless M., and Shorten R., A methodology for the design of robustrollover prevention controllers for automotive vehicles with active steering. Int. J.Control,2007,80(11):1763-1779.
    [7]Shim T., Toomey D., Ghike C, and Sardar HM, Vehicle rollover recovery usingactive steering/wheel torque control. International Journal of Vehicle Design,2008,46(1),51-71.
    [8]何锋.车辆平面运动与侧倾运动关系的分析[J].现代机械,2004(2):71-72.
    [9]Rajamani R. Electronic Stability Control [M]. Springer US,2012.
    [10]陈虹,宫洵,胡云峰,刘奇芳,高炳钊,郭洪艳.汽车控制的研究现状与展望[J].自动化学报,2013,4:322-346.
    [11]梁阁亭,惠俊军,李玉平.陀螺仪的发展及应用[J].飞航导弹,2006,04:38-40.
    [12]袁克非.组合导航系统多源信息融合关键技术研究[D].哈尔滨工程大学,2012.
    [13]Sun S L, Deng Z L. Multi-sensor optimal information fusion Kalman filter [J].Automatica,2004,40(6):1017-1023.
    [14]殷勤.智能车辆组合导航中数据融合算法[D].吉林大学,2012
    [15]穆华,任治新,胡小平,马宏绪.船用惯性/地磁导航系统信息融合策略与性能[J].中国惯性技术学报,2007,3:322-326.
    [16]寇艳红,张其善,李先亮.车载GPS/DR组合导航系统的数据融合算法[J].北京航空航天大学学报,2003,3:264-268.
    [17]梁志剑,马铁华,范锦彪,曹咏弘.飞行体姿态惯性测量技术综述[J].探测与控制学报,2010,05:11-15.
    [18]黎娜.水下运载器惯性测量事后状态估计方法研究[D].西北工业大学,2006.
    [19]Vaganay J, Aldon M J, Fournier A. Mobile robot attitude estimation by fusion ofinertial data [C]. Robotics and Automation,1993. Proceedings,1993IEEEInternational Conference on. IEEE,1993:277-282.
    [20]王巍.惯性技术研究现状及发展趋势[J].自动化学报,2013,06:723-729.
    [21]赵小明,翁炬,黄巍,赵云旭.惯性导航技术在国民经济中的应用[A].国防科技工业军民融合发展论坛论文集[C].中国科学技术协会.2013:6.
    [22]吴忠金.基于车联网的城市道路交通状态识别算法研究[D].华南理工大学,2012.
    [23]黄勋.基于车联网的车辆移动状态识别研究[D].华南理工大学,2012.
    [24]李文娟.车联网中车辆定位及其优化技术研究[D].南京邮电大学,2013.
    [25]赵旭.车联网卫星/微惯性组合导航定位系统研究[D].北京信息科技大学,2013.
    [26]富立,刘文丽.无人机捷联航姿系统磁航向误差分析[J].中国惯性技术学报,2007,6:650-652.
    [27]徐博,孙枫,高伟.舰船捷联航姿系统自主粗对准仿真与实验研究[J].兵工学报,2008,12:1467-1473.
    [28]朱少华,汪芳,郭志想,雷宏杰.一种适用于高动态制导飞行的大气航姿系统算法[J].弹箭与制导学报,2011,4:14-16.
    [29]Weinberg M S, Kourepenis A., Error sources in in-plane silicon tuning-fork MEMSgyroscopes [J]. Microelectromechanical Systems, Journal of,2006,15(3):479-491.
    [30]Kourepenis A, Connelly J, Sitomer J., Low cost MEMS inertial measurement unit
    [A]. ION NTM2004[C]. Jan26-28,2004, San Diego, California, USA.
    [31]Anderson R. S., Hanson D. S., Kourepenis A. S., Evolution of low-cost MEMSinertial system technologies [A]. ION GPS2001,11-14September2001, Salt LakeCity, Utah, USA.
    [32]Soga K, Chaiyasarn K, Viola F, et al. Innovation in Monitoring Technologies forUnderground Structures[C]//Information Technology in Geo-Engineering:Proceedings of the1st International Conference Shanghai, Incorporated,2010:3.
    [33]http://www.xbow.com/products/inertial-products/
    [34]Park M., Gao Y., Error analysis of low-cost MEMS-based accelerometers for landvehicle navigation [A]. ION GPS2002[C]. Sep.24-27,2002, Portland, Oregon,USA.
    [35]Hanse J. G., Honeywell MEMS inertial technology&product status [A]. IONNTM2004[C]. Jan26-28,2004, San Diego, California, USA.
    [36]http://www.imar-navigation.de/index.php/zh/products-zh/by-product-names/item/ivru-snc-inertial-measurement-system
    [37]http://www.sagem-ds.com/spip.php?rubrique134&lang=en
    [38]Winkler S., Buschmann M., Kordes T., et al., MEMS-based IMU development,calibration and testing for autonomous MAV navigation [A]. ION59th AnnualMeeting/CIGTF22nd Guidance Test Symposium[C]. Jun.23-25,2003,Albuquerque, New Mexico, USA.
    [39]Beser J., Alexander S., Crane R., et al., A Low-cost Guidance/Navigation UnitIntegrating A SAASM-BASEDGPS and MEMS IMU in A Deeply CoupledMechanization [C], ION GPS2002, Sep.24-27.
    [40]http://www.xsens.com/en/general/mti-g
    [41]Bernstein J., An overview of MEMS inertial sensing technology [J]. Sensors,2003.
    [42]魏萍.基于ARM的嵌入式航向姿态参考系统的研究[D].浙江大学,2006.
    [43]http://www.cntrades.com/b2b/gaogenvsheng/sell/itemid-369148.html
    [44]祝燕华.光纤捷联航姿系统信号处理与姿态算法研究[D].南京航空航天大学,2008.
    [45]崔璐璐.基于MEMS器件的姿态测量系统研究与实现[D].大连理工大学,2009.
    [46]鄢泽洪,任思聪.一种新型航姿系统[J].西安电子科技大学学报,1999,4:114-117.
    [47]李海军,孙秀霞,刘聪.某型飞机航姿检测系统设计[J].计算机测量与控制,2005,11:1240-1242.
    [48]丁衡高,章燕申,马新宇,张斌.微型惯性测量组合的关键技术[J].仪器仪表学报,1996, S1:31-35.
    [49]杨金显.微惯性测量系统关键技术研究[D].哈尔滨工程大学,2008.
    [50]任春华.激光陀螺捷联惯导系统若干关键技术及应用研究[D].重庆大学,2008.
    [51]朱荣,周兆英.基于MEMS的姿态测量系统[J].测控技术,2002,21(10):68.
    [52]冯智勇,曾瀚,张力,赵亦欣,黄伟.基于陀螺仪及加速度计信号融合的姿态角度测量[J].西南师范大学学报(自然科学版),2011,4:137-141.
    [53]李海涛.加速度计/磁强计捷联惯导系统姿态解算方法研究[D].中北大学,2007.
    [54]渠晋,宋艳君,臧洁,程洪炳.加速度计/磁强计无陀螺捷联惯导姿态解算研究[J].电光与控制,2012,2:40-43.
    [55]罗武胜,徐涛,杜列波.基于加速度计和磁强计的定向钻进姿态测量及方位校正[J].国防科技大学学报,2007,1:106-110.
    [56]Bachmann E. R., I. Duman, U. Y. Usta., Orientation Tracking for Humans andRobots Using Inertial Sensors [J]. International Symposium on ComputationalIntelligence in Robotics&Automation (CIRA99),1999.
    [57]Marins J. L., Yun X., Bachmann E. R., et al., An extended Kalman filter forquaternion-based orientation estimation using MARG sensors [C]. IntelligentRobots and Systems,2001. Proceedings.2001IEEE/RSJ International Conferenceon. IEEE,2001,4:2003-2011.
    [58]Yun X., Lizarraga M., Bachmann E. R., et al., An improved quaternion-basedKalman filter for real-time tracking of rigid body orientation [C]. Intelligent Robotsand Systems,2003. Proceedings.2003IEEE/RSJ International Conference on.IEEE,2003,2:1074-1079.
    [59]任大海,顾启泰,毛刚.微型惯性测量组合标定技术[J].清华大学学报(自然科学版),2001,41(8):2124.
    [60]Xiaoping Y., Bachmann E. R., McGhee R. B., A simplified quaternion-basedalgorithm for orientation estimation from earth gravity and magnetic fieldmeasurements [J]. Instrumentation and Measurement, IEEE Transactions on,2008,57(3):638-650.
    [61]Peng H. M., Chiang Y. T., Chang F. R., Maximum-likelihood base filtering forattitude determination via GPS carrier phase [C]. Proceedings of the IEEE Posit ion,Location, and Navigation Symposium. San Diego, Canada,2000:480-487.
    [62]田湘. GPS多基线姿态系统研究与实现[D].南京航空航天大学,2007.
    [63]刘若普. GPS三维姿态测量技术研究[D].上海交通大学,2008.
    [64]Ettinger S. M., Nechyba M. C., Vision-guided flight stability and control for microair vehicles [C]. Proceedings of the IEEE/RSJ International Conference onIntelligent Robot s and System. Lausanne, Switzerland,2002:2134-2140.
    [65]阮小东,李世伦,用立体视觉测量多自由度机械装置姿态的研究[J].中国机械工程.2000,11(5):571-573.
    [66]杨志菊,袁刚,徐新林.飞行器姿态解算方法及仿真研究[J].辽宁工业大学学报(自然科学版),2010,5:306-309.
    [67]周江华,苗育红,王明海.姿态运动的Rodrigues参数描述[J].宇航学报,2004,5:514-519.
    [68]刘兴川,张盛,李丽哲,林孝康.基于四元数的MARG传感器姿态测量算法[J].清华大学学报(自然科学版),2012,5:627-631.
    [69]陈志明,王惠南,刘海颖.基于四元数的UKF多传感器卫星姿态确定[J].上海航天,2012,2:13-17.
    [70]Wen J. T., Delgado K. K., The Attitude Control Problem. IEEE Trans on AutomaticControl,1991,36(10):1148-1162.
    [71]Shuster M. D., A survey of attitude representations [J]. J Astronautical Sci,1993,41(4):439-517.
    [72]Ronen M., Oshman Y., Third-order minimal-parammeter solution of the orthogonalmatrix differential equation [J]. Journal of Guidance, Control and Dynamics,1997,20(3):516-521
    [73]Oshman Y., Markley F. L., Sequential attitude and attitude rate estimation usingintegrated-rate parammeters [J]. Journal of Guidance, Control and Dynamics,1999,22(3):385-394.
    [74]Oshman Y., Markley F. L., Sequential gyro less attitude and attitude-rate estimationfrom vector observations [J]. Acta Astronautica,2000,46(7):449-463.
    [75]Oshman Y, M arkley F L. Spacecraft attitude/rate estimation using vector-aidedGPS observations [J]. IEEE Transactions on Aerospace and Electronic Systems,1999,35(3):1019-1032.
    [76]Idan M., Estimation of Rodrigues parameters from vector observations. IEEETransactions on Aerospace and Electronic Systems,1996:32(2):578-586.
    [77]林玉荣,邓正隆.基于Gibbs矢量估计卫星轨道姿态的滤波算法研究.中国惯性技术学报.2004,12(3):1-6.
    [78]Mortari D. MFL, Junkins J. L., Optimal Linear attitude estimator. Journal ofGuidance, Control, and Dynamics.2007,30(6):1619-27.
    [79]程杨,杨涤,崔祜涛.利用修正罗德里格参数进行飞行器姿态估计.飞行力学.2002,20(4):18-21.
    [80]Jiang X.Y., Spacecraft attitude estimation form vector measurment using particlefilter. Proceedings of the Fourth Guangzhou, Guangzhou, IEEE,2005:.682-700.
    [81]何友,彭应宁.多级式多传感器信息融合中的状态估计[J].电子学报,1999,8:61-64.
    [82]王耀南,李树涛.多传感器信息融合及其应用综述[J].控制与决策,2001,5:518-522.
    [83]丁希仑,解玉文,战强.基于多传感器信息融合的物体位姿检测方法[J].航空学报,2002,5:483-486.
    [84]Hide C., Moore T., Smith M., Adaptive Kalman filtering for low cost NS/GPS[A].ION GPS2002[C]. Sep.24-27,2002, Portland, Oregon, USA.
    [85]Yun X.P. BER., Design, implementation, and experimental results of aquaternion-based Kalman filter for human body motion tracking. IEEE Transactionon Robotics.2006,22(6):1219-27.
    [86]Park M., Gao Y., Error analysis of low-cost MEMS-based accelerometers for landvehicle navigation[A]. ION GPS2002[C].2002, Sep.24-27.
    [87]朱利锋,鲍其莲,张炎华.捷联惯导系统初始对准的H_∞滤波及卡尔曼滤波比较研究[J].中国惯性技术学报,2005,03:4-9.
    [88]李庆华. H_∞滤波理论在多传感器信息融合状态估计中的应用研究[D].山东大学,2009.
    [89]赵伟,袁信,林雪原.基于H_∞滤波技术的GPS/INS全组合导航系统研究[J].宇航学报,2002,3:39-43.
    [90]陈雨,赵剡,李群生.一种混合H2-H_∞滤波的传递对准算法[J].系统工程与电子技术,2013,8:51-56.
    [91]Julier S. J., Uhlmann J. K., Durrant-Whyte H. F., A new approach for filteringnonlinear system, Proc. Am. Control conference Seattle, WA,1995.
    [92]付旭,周兆英,熊沈蜀,王劲东.基于EKF的多MEMS传感器姿态测量系统[J].清华大学学报(自然科学版),2006,11:1857-1859.
    [93]Wenzel T.A., Burnham K.J., Blundell M.V., Dual extend Kalman filter for vehiclestate and parameter estimation. Vehicle System Dynamics,2006:44(2):153-171.
    [94]Wang J.H. GY., Multi-sensor data fusion for land vehicle attitude estimation usinga fuzzy expert system. Data Science Journal.2005,4(6):127-39.
    [95]刘国海,施维,李康吉.插值改进EKF算法在组合导航中的应用[J].仪器仪表学报,2007,10:1897-1901.
    [96]乔相伟,周卫东,吉宇人.用四元数状态切换无迹卡尔曼曼滤滤波器估计的飞行器姿态[J].控制理论与应用,2012,01:97-103.
    [97]陈志明,王惠南,刘海颖.基于四元数的UKF多传感器卫星姿态确定[J].上海航天,2012,02:13-17.
    [98]Wan E., Merwe vander, The Sequared-Root unscented Kalman filter for state andparameter estimation. Proc of IEEE Symposium2000, Lake Louise, AlbertaCanada, Oct.2000.
    [99]Simon J., Durrant-Whyte H. F., Navigation and parameter estimation of high speedroad vehicles. In Robotics and automation conference,101-105,1995.
    [100]胡士强,敬忠良.粒子滤波算法综述[J].控制与决策,2005,4:361-365.
    [101]杨小军,潘泉,王睿,张洪才.粒子滤波进展与展望[J].控制理论与应用,2006,2:261-267
    [102]Ning Y., Wei F. T., Zhi H. J., Chuan B. Z., Particle filter for sensor fusion in aland vehicle navigation system [J]. Measurement Science and Technology,2005,16:677-681.
    [103]Karlesson R., Gustafesson F., Karlesson T., Particle filter and Cramer-Rao Lowerbound for underwater navigation [C]. IEEE conference on Acoustics, Speech andSignal Processing, HongKong, Apr,2003.
    [104]Musso C., Oudjane N., Particle methods for multimodal filtering application toterrain navigation [C]. IEEE, Savory Place, London,1999.
    [105]马忠孝,陈明,刘宗玉.激光捷联惯导系统/地形辅助导航系统中卡尔曼/粒子组合滤波算法设计及仿真[J].中国惯性技术学报,2006,1(1):41-46.
    [106]王晨,房建成.基于Unscented四元数粒子滤波的微小卫星姿态估计[J].北京航空航天大学学报,2007,5:552-556.
    [107]赵梅.改进的粒子滤波在组合导航中的应用研究[D].北京交通大学硕士学位论文,2006.
    [108]向礼,刘雨,苏宝库.新得非线性滤波算法在GPS/DR组合导航中的应用[J].东南大学学报(自然科学版),2008,38(2):27-31.
    [109]Markley F.L., Attitude estimation or quaternion estimation. Journal of theAstronautical Sciences,2004:52(1):221-238.
    [110]赵健,以光衢.捷联惯导中的等效旋转矢量算法及其仿真研究[J].中国惯性技术学报,1996,4:3-8.
    [111]Suh Y.S., Orientation estimation using a quaternion-based indirect Kalman filterwith adaptive estimation of external acceleration. IEEE Transaction onInstrumentation and Measurement,2010:59(12):3296-3305.
    [112]Schaub H., Junkins J.L., Stereographic orientation parameters for attitudedynamics: A generalization of the rodrigues parameters. The Journal of theAstronautical Sciences,1996:44(1):1-19.
    [113]Doucet, A., Godsill, S., Andrieu, On sequential Monte Carlo sampling methods forBayesian filtering. Statistics and Computing.2000,10,197-208.
    [114]Arulampalam M.S., Maskell S., Gordon N., Clapp T., A tutorial on particle filtersfor online nonlinear/non-Gaussian Bayesian tracking [J]. IEEE Trans. SignalProcess.2002,50:174-188.
    [115]Gordon N. J., Salmond D. J., Smith F. M., Novel approach to nonlinear/non-Gaussian Bayesian state estimation[C]. IEE Proceedings F (Radar and SignalProcessing). IET Digital Library,1993,140(2):107-113.
    [116]Arulampalam M. S., Maskell S., Gordon N., et al., A tutorial on particle filters foronline nonlinear/non-Gaussian Bayesian tracking [J]. Signal Processing, IEEETransactions on,2002,50(2):174-188.
    [117]Godsill S., Clapp T., Improvement Strategies for Monte Carlo Particle Filter,Cambridge. UK: University of Cambridge,1998.
    [118]Georges O., Aanne P., Jean D. R., The particle filters and their applications [J].Chemometrics and Intelligent Laboratory Systems,2008(91):87-93.
    [119]Doucet A., Gordon N. J., Krishnamurthy V., Particle filters for state estimation ofjumping Markov linear systems. IEEE Transaction on Signal Processing,2001,49,613-624.
    [120]S rkk S., Vehtari A., Lampinen J., Rao-Blackwellized particle filter for multipletarget tracking. Information Fusion.2007,20,346-352.
    [121]Merwe V. D., Doucet R., The unscented particle filter. Advances in NeuralInformation Processing Systems.2001,584-590.
    [122]Petar M. Djurivc, Jayesh H. Kotecha, Zhang J.Q., et al., Particle filtering [J]. IEEESignal Processing Magazine,2003,20(5):19238.
    [123]Zhan R., Xin Q., Wang J., Modified unscented particle filter for nonlinearBayesian tracking, Journal of Systems Engineering and Electronics,2008,19,7-14.
    [124]Wang Y., Sun F., Zhang Y., Liu H., Central difference particle filter applied totransfer alignment for SINS on missiles, IEEE Transactions on Aerospace andElectronic Systems.2012,48,375-387.
    [125]Wu C., Han C., Quadrature Kalman particle filter, Journal of Systems Engineeringand Electronics.2010,21,175-179.
    [126]Clapp T. C., Statistical methods for the processing of communication data [D].Cambridge: University of Cambridge,2000:31-46.
    [127]Chen Z., Haykin S., On different facets of regularization theory [J]. NeuralComput,2002,14(12):2791-2846.
    [128]Kwok N.M., Fang G., Zhou W., Evolutionary particle filter: re-sampling from thegenetic algorithm perspective. Proc. of IEEE/RSJ Intelligent Robots andSystems.2005,2-6Aug,:1053-1058.
    [129]方正,佟国峰,徐心和.粒子群优化粒子滤波方法[J].控制与决策,2007,22(3):273-277
    [130]Peter T., Csaba S., LS-N-IPS: An improvement of particle filters by means oflocal search[C]. Proc Nonlinear Control Systems. Petersburg,2001:715-719.
    [131]Yu Y.H., Zhang X.Y., Particle filter with ant colony optimization for frequencyoffset estimation in OFDM systems with unknown noise distribution. SignalProcessing,2011,91(5):1339-1342.
    [132]张琪,王鑫,胡昌华,蔡曦.人工免疫粒子滤波算法的研究[J].控制与决策,2008,3:293-296.
    [133]莫以为,萧德云.进化粒子滤波算法及其应用[J].控制理论与应用,2005,2:269-272.
    [134]Pitt M., Shephard N., Filtering via simulation: Auxiliary particle filters [J]. J AmerStatistAssoc,1999,94(446):590-599.
    [135]卢锦,苏洪涛,水鹏朗.采用代价参考粒子滤波器估计天波雷达目标状态[J].西安电子科技大学学报,2013,5:24-31.
    [136]傅惠民,吴云章,娄泰山.自适应增量粒子滤波方法[J].航空动力学报,2013,8:1764-1768.
    [137]Mehrabian A. R., Lucas C., A novel numerical optimization algorithm inspiredfrom weed colonization [J]. Ecological Informatics,2006,1(3):355-366.
    [138]苏守宝,汪继文,张玲,等.一种约束工程设计问题的入侵性杂草优化算法[J].中国科学技术大学学报,2009,39(8):885-893.
    [139]Karimkashi S., Kishk A. A., Invasive weed optimization and its features inelectromagnetic [J]. Antennas and Propagation, IEEE Transactions on,2010,58(4):1269-1278.
    [140]Zhao J., Li Z., Particle filter based on particle swarm optimization resampling forvision tracking [J]. Expert Systems withApplications,2010,37(12):8910-8914.
    [141]张勋才.自主装DNA计算模型的研究及应用[D].武汉:华中科技大学,2009:95-98.
    [142]Sedighy S. H., Mallahzadeh A. R., Soleimani M., et al., Optimization of printedYagi antenna using invasive weed optimization (IWO)[J]. Antennas and WirelessPropagation Letters, IEEE,2010,9:1275-1278.
    [143]Zhang X., Wang Y., Cui G., et al., Application of a novel IWO to the design ofencoding sequences for DNA computing [J]. Computers and Mathematics withApplications,2009,57(2):2001-2008.
    [144]Maryam and Mahdi, Solving Quadratic Assignment Problem (QAP) UsingInvasive Weed Optimization Algorithm [J]. Journal of Industrial Engineering.2011:113-125.
    [145]Deb K., Pratap A., Agarwal S., et al., A fast and elitist multiobjective geneticalgorithm: NSGA-II [J]. Evolutionary Computation, IEEE Transactions on,2002,6(2):182-197.
    [146]Rauch H. E., Striebel C. T., Tung F., Maximum likelihood estimates of lineardynamic systems [J].AIAAjournal,1965,3(8):1445-1450.
    [147]Xuan L., Jing Y., Application of RTS optimal smoothing algorithm in satelliteattitude determination[C]. Intelligent Control and Information Processing (ICICIP),20112nd International Conference on. IEEE,2011,2:978-982.
    [148]Simon D., Optimal state estimation [M]. New Jersey: John Wiley&Sons, Inc.,2005.
    [149]S rkk, S. Unscented Rauch-Tung-Striebel smoother. IEEE Transactions onAutomatic Control.53,845-849(2008).
    [150]Sarmavuori J., S rkk S. Fourier-Hermite Rauch-Tung-Striebel Smoother.Proceedings of EUSIPCO,2012:2109-2113.
    [151]Hirmai T., Bugallo M. F., Miguez J., Djuric P. M., A sequential Monte Carlomethod for adaptive blind timing estimation and data detection. IEEE Transactionson Signal Processing.2005,53,2855-2865.
    [152]Zuo L., Niu R., Varshney P. K., Conditional posterior Cramer-Rao lower boundsfor nonlinear sequential Bayesian estimation. IEEE Transactions on SignalProcessing.2011,59,1-14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700