数据局部特征驱动的人体运动合成方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人体运动合成技术是计算机动画技术的重要组成部分,可细分为模型驱动和数据驱动两大类方法,基于后者的人体运动合成技术在现阶段更适合于构建自然、真实的人体全身运动动画。目前,在数据驱动人体运动合成的主流方法中,存在着人工定制过多,对样本的依赖性较强等问题。本文从运动的局部特征入手,以人体运动合成中的运动过渡生成、无滑步位移运动生成以及虚拟人的实时控制等运动合成中的关键环节为研究对象,探索了解决前述问题的有效途径与方法。提出了基于拉普拉斯坐标的运动过渡生成算法、基于接触的运动图的虚拟人位移运动生成方法和支持实时交互控制的虚拟人运动合成方法。
     运动过渡生成是数据驱动人体运动合成的基本技术。为了减少人工定制、减轻对样本的依赖,提出基于拉普拉斯坐标的运动过渡生成算法。将人体运动表示为多维向量空间中采用顶点集合定义的曲线段,利用顶点代表运动某一帧中若干个通道的数据,利用顶点间的邻域关系代表这些数据之间的时序关系,进而利用关于顶点的拉普拉斯坐标来表示运动在时间上的局部特征。在尽量保持拉普拉斯坐标不变的情况下将代表两段运动的曲线段进行拼接,生成这两段运动之间的运动过渡。实验结果表明,该方法只需要分别指定两段运动中参与过渡的帧数就可以生成平滑的、同时带有两段输入运动局部特征的运动过渡。由于无需为每个参与过渡的帧分配权值,同时无需通过对样本的学习来生成运动过渡,该方法的人工定制因素更少且样本依赖程度更低。
     滑步现象是数据驱动人体运动合成中常见的失真现象。为了避免对大量样本的搜索和优化,直接生成无滑步的运动,提出基于接触的运动图并将其应用于虚拟人位移运动的生成。利用运动中人体足部与地面接触的局部信息构建基于接触的运动图。结合图上节点和边在改变运动方向上的不同可能性,利用它们蕴含的足部与地面的局部接触信息,通过对图上运动序列进行调整,直接生成沿水平地面上指定路径行进的无滑步位移运动。实验结果表明,利用基于接触的运动图,只需很少的样本就能够直接生成无滑步的虚拟人位移运动,且能够包含双足腾空的运动片段。由于无需通过对大量相关样本进行优化和搜索来去除滑步现象,这种方法对样本的要求大大降低。
     根据用户输入实时生成无滑步的全身运动在现阶段主流应用系统中难以实现。为了使虚拟人能够实时响应用户输入生成无滑步位移运动,提出支持实时交互控制的虚拟人运动合成方法。利用面向基于接触的运动图路径匹配算法中匹配单元的局部性,将不同时刻的待匹配路径看做不同输入,在每个时间片中对当前待匹配路径执行最多一步匹配,实现支持动态路径的在线匹配。通过动态改变待匹配路径,实现对虚拟人位移运动的实时控制。实验结果表明,该方法能够根据用户的输入实时地自动生成符合要求的虚拟人无滑步位移运动。由于在运行过程中无需针对各种特殊情况分别考虑虚拟人的响应策略,该方法所需要的人工定制更少。
     研究显示,利用运动数据的局部特征,能够有效减少人体运动合成中的人工定制,减轻对样本的依赖,提高数据驱动运动合成的自动化程度。
Human motion synthesis is an important part in the area of computer graphics, which can be divided to model-based and data-driven ones. Compared to model-based ones, data-driven methods of human motion synthesis are more suitable for producing nature-looking whole-body human motions currently. Though, there are defects in mainstream data-driven technologies including too much manual customizations and high sample dependence. Considering local features of motions, some key issues in data-driven motion synthesis were explored and researched including motion transition generation, foot-skate free locomotion production and real-time control for virtual characters. In this thesis, we proposed Laplacian coordinates based motion transition generation, contact-based motion graphs and real-time foot-skate free locomotion synthesis supporting interative control.
     Motion transition generation is a basic technology in data-driven human motion synthesis. Laplacian coordinates based motion transition generation was proposed to reduce the manual customization and sample dependence. At first, motions were mapped to a curve segment in a multidimentional vector space, while each vetex represented mult-channel data in a frame and the neighborhood of each vertex represented the temporal relationship of the frames. Then the Laplacian coordinates of each vertex can represent the temporal local features near the time it formed. By connecting two curve segments representing two motions, a motion transition between these two motions can be formed from the result curve segment. Experimental results show that when the numbers of frames used to produce transitions in two input motions are decided, our method can generate smooth motion transitions with local features of both input motions. Without the need of arranging weights for each frames and the process of learning to find rules for generating new motions, this method possessed less manual customization and lower sample dependence.
     Foot-skate is a common kind of error when motions are synthesized from samples. To produce foot-skate free locomotions directly avoiding searching and optimizing on lots of samples, contact-based motion graphs were proposed and applied to generate locomotions for virtual actors. At first, information of the feet contacting with ground was used to build contact-based motion graphs. The nodes and edges in this graph differed in the possibility of changing motion direction while keeping poses and feet unchanged. According to contact information in these elements, new foot-skate free motions along user-defined paths on ground can then be generated directly by adjusting motion sequences exacted from the graph. Experimental results show that with the help of contact-based motion graphs, our method can produce foot-skate free locomotions for virtual actors with little samples, even when flying motion clips are included. Thus, this method can reduce the sample dependence dramatically as foot-skate cleanup based on searching or optimizing on lots of samples are no longer needed.
     Real-time controllable foot-skate free whole-body motions are difficult to synthesiz by mainstream applications currently. To make virtual actors can perform foot-skate locomotions according to user input in real-time, the method of motion synthesis supporting interactive control for virtual actors was proposed. At first, online path adaption was implemented based on the localty of adapting unit in path adaptation for contact-based graphs. Unadapted paths at different time were treated as different inputs. When an input was processed, at most one step of adaptation would be performed. By changing paths unadapted dynamically, users can control locomotions of virtual actors in real-time.Experimental results show that our method can make foot-skate free interactively controllable locomotions for virtual actors automatically. The manual customization in our method was reduced because there was no need to define feed-back strategies for virtual actors in many cases.
     As shown in our researches, with the help of local features of motions, the automation of data-driven motion synthesis can be improved for the reduction of manual customization and sample dependence.
引文
[1]TAGA G, YAMAGUCHI Y, SHIMIZU H. Self-orgnized Cotrol of Bipedal Locomotion by Neural Oscillators in Unpredictable Environment[J]. Biological Cybernetics, 1991,65(3):147-159.
    [2]Van de PANNE M, FIUME E. Sensor-actuator networks [C]. Proceedings of the 20th annual conference on Computer graphics and interactive techniques. New York, 1993:335-342.
    [3]VANDEPANNE M, KIM R, FIUME E. Virtual Wind-up Toys for Animation[C]. Proceedings of Graphics Interface'94. Banff, Alberta, Canada,1994:208-215.
    [4]AUSLANDER J, FUKUNAGA A, PARTOVI H, et al. Further experience with controller-based automatic motion synthesis for articulated figures[J]. Acm Transactions On Graphics,1995,14(4):311-336.
    [5]TEDRAKE R, ZHANG T W, SEUNG H S. Stochastic policy gradient reinforcement learning on a simple 3D biped[C]. Intelligent Robots and Systems,2004. (IROS 2004). Proceedings.2004 IEEE/RSJ International Conference on. Sendai, Japan, 2004:2849-2854.
    [6]NAKANISHI J, MORIMOTO J, ENDO G, et al. Learning from demonstration and adaptation of biped locomotion[J]. Robotics and Autonomous Systems, 2004,47(2):79-91.
    [7]MORIMOTO J, CHENG G, ATKESON C G, et. al. A simple reinforcement learning algorithm for biped walking[C]. Robotics and Automation,2004. Proceedings. ICRA'04. 2004 IEEE International Conference on. New Orleans, LA, USA,2004:3030-3035.
    [8]SHARON D, van de PANNE M. Synthesis of controllers for stylized planar bipedal walking[C]. Robotics and Automation,2005. ICRA 2005. Proceedings of the 2005 IEEE International Conference on. Barcelona, Spain,2005:2387-2392.
    [9]ZORDAN V B, MAJKOWSKA A, CHIU B, et al. Dynamic response for motion capture animation[J]. Acm Transactions On Graphics (Tog),2005,24(3):697-701.
    [10]WROTEK P, JENKINS O C, MCGUIRE M. Dynamo:dynamic, data-driven character control with adjustable balance[C]. Proceedings of the 2006 ACM SIGGRAPH symposium on Videogames. Boston, MA, USA,2006:61-70.
    [11]YIN K, LOKEN K, PANNE M V D. SIMBICON:Simple Biped Locomotion Control[J]. Acm Trans. Graph.,2007,26(3):105.
    [12]TSAI Y, LIN W, CHENG K B, et al. Real-Time Physics-Based 3D Biped Character Animation Using an Inverted Pendulum Model[J]. Visualization and Computer Graphics, Ieee Transactions On,2010,16(2):325-337.
    [13]WU J, POPOVIC Z. Terrain-adaptive bipedal locomotion control[J]. Acm Transactions On Graphics,2010,4(29):71-72.
    [14]BASTEN B J H V, PEETERS P W A M, EGGES A. The step space:example-based footprint-driven motion synthesis[J]. Computer Animation and Virtual Worlds, 2010,21(3-4):433-441.
    [15]VAN BASTEN B J H, STUVEL S A, EGGES A. A hybrid interpolation scheme for footprint-driven walking synthesis[C]. Proceedings of Graphics Interface 2011. School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada,2011:9-16.
    [16]HUANG Y, MAHMUDI M, KALLMANN M. Planning humanlike actions in blending spaces[C]. Intelligent Robots and Systems (IROS),2011 IEEE/RSJ International Confe.(?)e on. San Francisco, California,2011:2653-2659.
    [17]CMU. Carnegie Mellon University-CMU Graphics Lab-motion capture library[EB/OL]. (2012-12-30) [2013,06,30]. http://mocap.cs.cmu.edu/.
    [18]XIA S H, WANG Z Q. Recent advances on virtual human synthesis[J]. Science in China(Series F:Information Sciences),2009(05):741-757.
    [19]PERLIN K. Real time responsive animation with personality [J]. Visualization and Computer Graphics, Ieee Transactions On,1995,1(1):5-15.
    [20]LAMOURET A, van de PANNE M. Motion Synthesis By Example[C]. In EGCAS'96: Seventh International Workshop on Computer Animation and Simulation, Eurographics . Poitiers, France,1996:199-212.
    [21]ROSE C, GUENTER B, BODENHEIMER B, et al. Efficient generation of motion transitions using spacetime constraints[C]. International Conference on Computer Graphics and Interactive Techniques:Proceedings of the 23 rd annual conference on Computer graphics and interactive techniques. New Orleans. LA, USA,1996:147-154.
    [22]LEE J, CHAI J, REITSMA P S A, et al. Interactive control of avatars animated with human motion data[J]. Acm Transactions On Graphics (Tog),2002,21 (3):491-500.
    [23]ARIKAN O, FORSYTH D A. Interactive motion generation from examples[J]. Acm Transactions On Graphics (Tog),2002,21 (3):483-490.
    [24]PULLEN K, BREGLER C. Motion capture assisted animation:Texturing and synthesis[J]. Acm Transactions On Graphics (Tog),2002.21(3):501-508.
    [25]MIZUGUCHI M, BUCHANAN J. CALVERT T. Data driven motion transitions for interactive games[C]. Eurographics 2001 Short Presentations. Manchester, England, 2001:6.
    [26]KOVAR L, GLEICHER M, PIGHIN F. Motion graphs[C]. SIGGRAPH'02 Proceedings of the 29th annual conference on Computer graphics and interactive techniques. San Antonio, Texas,2002:473-482.
    [27]POPOVI C J, SEITZ S M, ERDMANN M, et al. Interactive manipulation of rigid body simulations[C]. Proceedings of the 27th annual conference on Computer graphics and interactive techniques. New Orleans, LA, USA,2000:209-217.
    [28]WANG J, BODENHEIMER B. Synthesis and evaluation of linear motion transitions [J]. Acm Trans. Graph.,2008,27(1):1.
    [29]ROSE C, COHEN M F, BODENHEIMER B. Verbs and adverbs:Multidimensional motion interpolation[J]. Computer Graphics and Applications, Ieee,1998,18(5):32-40.
    [30]ARIKAN O, FORSYTH D A, O'BRIEN J F. Motion synthesis from annotations[J]. Acm Transactions On Graphics,2003,22(3):402-408.
    [31]KOVAR L, GLEICHER M. Flexible automatic motion blending with registration curves[C]. Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on Computer animation. New York, NY, USA,2003:214-224.
    [32]ARIKAN O, FORSYTH D. Interactive motion generation from examples[J]. Acm Transactions On Graphics,2002,21(3):483-490.
    [33]PARK S I, SHIN H J, SHIN S Y. On-line locomotion generation based on motion blending[C]. Proceedings of the 2002 ACM SIGGRAPH/Eurographics symposium on Computer animation. New York, NY, USA,2002:105-111.
    [34]LEE J, CHAI J, REITSMA P S A, et al. Interactive control of avatars animated with human motion data[J]. Acm Transactions On Graphics,2002,21(3):491-500.
    [35]PARK S I, SHIN H J, KIM T H, et al. On-line motion blending for real-time locomotion generation[J]. Computer Animation and Virtual Worlds,2004,15(3-4):125-138.
    [36]KWON T, SHIN S Y. Motion modeling for on-line locomotion synthesis[C]. Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation. New York, NY, USA,2005:29-38.
    [37]ZHAO L, SAFONOVA A. Achieving good connectivity in motion graphs[J]. Graphical Models,2009,71(4):139-152.
    [38]LIU C K, POPOVI C Z. Synthesis of complex dynamic character motion from simple animations[J]. Acm Transactions On Graphics,2002,21(3):408-416.
    [39]ARIKAN O, FORSYTH D A, O'BRIEN J F. Motion synthesis from annotations [J]. Acm Transactions On Graphics,2003,22(3):402-408.
    [40]FANG A C, POLLARD N S. Efficient synthesis of physically valid human motion[J]. Acm Transactions On Graphics,2003,22(3):417-426.
    [41]KIM T, PARK S I, SHIN S Y. Rhythmic-motion synthesis based on motion-beat analysis[J]. Acm Transactions On Graphics,2003,22(3):392-401.
    [42]SAFONOVA A, HODGINS J K, POLLARD N S. Synthesizing physically realistic human motion in low-dimensional, behavior-specific spaces[J]. Acm Transactions On Graphics,2004,23(3):514-521.
    [43]SAFONOVA A, HODGINS J K. Construction and optimal search of interpolated motion graphs[J]. Acm Transactions On Graphics,2007,26(3):106.
    [44]IKEMOTO L, ARIKAN O, FORSYTH D. Quick transitions with cached multi-way blends[C]. Proceedings of the 2007 symposium on Interactive 3D graphics and games. NY, USA,2007:145-151.
    [45]PERLIN K, GOLDBERG A. Improv:A system for scripting interactive actors in virtual worlds[C]. Proceedings of the 23rd annual conference on Computer graphics and interactive techniques. N(?) Orleans, LA, USA,1996:205-216.
    [46]FALOUTSOS P, Van De PANNE M, TERZOPOULOS D. Composable controllers for physics-based character animation[C]. Proceedings of the 28th annual conference on Computer graphics and interactive techniques. Los Angeles, CA, USA,2001:251-260.
    [47]LI Y, WANG T, SHUM H Y. Motion texture:a two-level statistical model for character motion synthesis[J]. Acm Transactions On Graphics,2002,21 (3):465-472.
    [48]KWON T, SHIN S Y. Motion modeling for on-line locomotion synthesis[C]. Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation. New York, NY, USA,2005:29-38.
    [49]SHIN H J, OH H S. Fat graphs:constructing an interactive character with continuous controls[C]. SCA'06 Proceedings of the 2006 ACM SIGGRAPH/Eurographics symposium on Computer animation. Switzerland, Switzerland,2006:291-298.
    [50]HECK R, GLEICHER M. Parametric motion graphs[C]. Proceedings of Symposium on Interactive 3D Graphics and Games 2007. NY, USA,2007:136.
    [51]TREUILLE A, LEE Y, POPOVI C Z. Near-optimal character animation with continuous control [J]. Acm Transactions On Graphics (Tog)-Proceedings of Acm Siggraph,2007,26(3):7.
    [52]BEAUDOIN P, COROS S, van de PANNE M, et al. Motion-motif graphs[C]. SCA'08 Proceedings of the 2008 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Aire-la-Ville, Switzerland, Switzerland,2008:117-126.
    [53]李锦丹,毛天露,王兆其,等.基于参数化运动合成的运动图构建及其应用[J].计算机仿真,2009(03):208-212.
    [54]宗丹,李淳芃,夏时洪,等.基于关键姿态分析的运动图自动构建[J].计算机研究与发展,2010(08):1321-1328.
    [55]ZHAO L, NORMOYLE A, KHANNA S, et al. Automatic construction of a minimum size motion graph[C]. Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation . New Orleans, LA, USA,2009:27-35.
    [56]REN C, ZHAO L, SAFONOVA A. Human Motion Synthesis with Optimization-based Graphs [J]. Computer Graphics Forum,2010,29(2):545-554.
    [57]ZHANG M, LI L, PAN Z. Rhythmic motion synthesis using motion thread networks[C]. Proceedings of the 10th International Conference on Virtual Reality Continuum and Its Applications in Industry. New York, NY, USA,2011:327-334.
    [58]UKITA N, KANADE T. Gaussian process motion graph models for smooth transitions among multiple actions [J]. Computer Vision and Image Understanding, 2012,116(4):500-509.
    [59]MIN J, CHAI J. Motion graphs++:a compact generative model for semantic motion analysis and synthesis[J].{Acm} Trans. Graph.,2012,31(6):151-153.
    [60]HERTZMANN A. Machine learning for computer graphics:A manifesto and tutorial[C]. Computer Graphics and Applications,2003. Proceedings.11th Pacific Conference on. anmore, Alberta, Canada,2003:22-36.
    [61]DINERSTEIN J, EGBERT P K, CLINE D. Enhancing computer graphics through machine learning:a survey[J]. The Visual Computer,2007,23(1):25-43.
    [62]刘更代,潘志庚,程熙,等.人体运动合成中的机器学习技术综述[J].计算机辅助设计与图形学学报,2010(9):1619-1627.
    [63]ROSE III C F, SLOAN P J, COHEN M F. Artist-Directed Inverse-Kinematics Using Radial Basis Function Interpolation[J]. Computer Graphics Forum,2001,20(3):239-250.
    [64]TORRESANI L, HACKNEY P, BREGLER C. Learning motion style synthesis from perceptual observations [J]. Advances in Neural Information Processing Systems, 2007,19:1393.
    [65]WANG Y, LIU Z, ZHOU L. Key-styling:learning motion style for real-time synthesis of 3D animation[J]. Computer Animation and Virtual Worlds,2006,17(3-4):229-237.
    [66]MUKAI T, KURIYAMA S. Geostatistical motion interpolation[J]. Acm Transactions On Graphics (Tog),2005,24(3):1062-1070.
    [67]LIU C K, HERTZMANN A, POPOVIC Z. Learning physics-based motion style with nonlinear inverse optimization[C]. SIGGRAPH'05 ACM SIGGRAPH 2005. Los Angeles, California,2005:1071-1081.
    [68]COOPER S, HERTZMANN A, POPOVI C Z. Active learning for real-time motion controllers[J]. Acm Transactions On Graphics (Tog),2007,26(3):5.
    [69]IKEMOTO L, ARIKAN O, FORSYTH D. Generalizing motion edits with gaussian processes[J]. Acm Transactions On Graphics (Tog),2009,28(1):1.
    [70]BRAND M, HERTZMANN A. Style machines[C]. Proceedings of the 27th annual conference on Computer graphics and interactive techniques. New Orleans, LA, USA, 2000:183-192.
    [71]HSU E, PULLI K, POPOVI C J. Style translation for human motion[J]. Acm Transactions On Graphics (Tog),2005,24(3):1082-1089.
    [72]CHAI J, HODGINS J K. Constraint-based motion optimization using a statistical dynamic model[J]. Acm Transactions On Graphics (Tog),2007,26(3):8.
    [73]WANG J M, FLEET D J, HERTZMANN A:Gaussian process dynamical models for human motion[J]. Pattern Analysis and Machine Intelligence, Ieee Transactions On, 2008,30(2):283-298.
    [74]LAU M, BAR-JOSEPH Z, KUFFNER J. Modeling spatial and temporal variation in motion data[J]. Acm Trans. Graph.,2009,28(5):1-10.
    [75]SILVA M D, ABE Y, POPOVIC J. Interactive simulation of stylized human locomotion[J]. Acm Trans. Graph.,2008,27(3):1-10.
    [76]REN L, PATRICK A, EFROS A A, et al. A data-driven approach to quantifying natural human motion[J]. Acm Transactions On Graphics (Tog),2005,24(3):1090-1097.
    [77]GLARDON P, BOULIC R, THALMANN D. PCA-based walking engine using motion capture data[C]. Computer Graphics International,2004. Proceedings. Crete, Greece, 2004:292-298.
    [78]URTASUN R, GLARDON P, BOULIC R, et al. Style-Based Motion Synthesis[J]. Computer Graphics Forum,2004,23(4):799-812.
    [79]李淳芃,王兆其,夏时洪.人体运动的函数数据分析与合成[J].软件学报,2009(6):1664-1672.
    [80]MORI H, HOSHINO J. ICA-based interpolation of human motion[C]. Computational Intelligence in Robotics and Automation,2003. Proceedings.2003 IEEE International Symposium on. Los Alamitos,2003:453-458.
    [81]SHAPIRO A, CAO Y. FALOUTSOS P. Style components[C]. Proceedings of Graphics Interface 2006. Ont., Canada, Canada,2006:33-39.
    [82]LIU G, PAN Z, LIN Z. Style subspaces for character animation[J]. Computer Animation and Virtual Worlds,2008,19(3-4):199-209.
    [83]SHIN H J, LEE J. Motion synthesis and editing in low-dimensional spaces [J]. Computer Animation and Virtual Worlds,2006,17(3-4):219-227.
    [84]TANG N C, HSU C, LIN T, et al. Example-based human motion extrapolation based on manifold learning[C]. Proceedings of the 19th ACM international conference on Multimedia. New York, NY, USA,2011:1305-1308.
    [85]CARVALHO S R, BOULIC R, VIDAL C A, et al. Latent motion spaces for full-body motion editing[J]. The Visual Computer,2013,29(3):171-188.
    [86]GROCHOW K, MARTIN S L, HERTZMANN A, et al. Style-based inverse kinematics[J]. Acm Trans. Graph.,2004,23(3):522-531.
    [87]李淳芃,王兆其,夏时洪,等.基于局部支撑姿态的逆运动学求解[J].计算机学报,2007(11):1982-1987.
    [88]TOURNIER M, WU X, COURTY N, et al. Motion Compression using Principal Geodesics Analysis.[J]. Computer Graphics Forum,2009,28(2):355-364.
    [89]CARVALHO S R, BOULIC R, THALMANN D. Interactive low-dimensional human motion synthesis by combining motion models and PIK[J]. Computer Animation and Virtual Worlds,2007,18(4-5):493-503.
    [90]RAUNHARDT D, BOULIC R. Motion constraint[J]. The Visual Computer, 2009,25(5):509-518.
    [91]LIU G, PAN Z, LI L. Motion synthesis using style-editable inverse kinematics[C]. IVA '09 Proceedings of the 9th International Conference on Intelligent Virtual Agents. Amsterdam, The Netherlands,2009:118-124.
    [92]YE Y, LIU C K. Animating responsive characters with dynamic constraints in near-unactuated coordinates[J]. Acm Transactions On Graphics,2008,27(5):112.
    [93]朱登明,王兆其.基于运动序列分割的运动捕获数据关键帧提取[J].计算机辅助设计与图形学学报,2008(6):787-792.
    [94]ASSA J, CASPI Y, COHEN-OR D. Action synopsis:pose selection and illustration[J]. Acm Transactions On Graphics (Tog),2005,24(3):667-676.
    [95]潘志庚,程熙,唐冰.一种实时虚拟人反应式动画生成算法[J].计算机研究与发展,2009(1):151-158.
    [96]TANG B, PAN Z, ZHENG L, et al. Interactive generation of falling motions[J]. Computer Animation and Virtual Worlds,2006,17(3-4):271-279.
    [97]SOK K W, KIM M, LEE J. Simulating biped behaviors from human motion data[J]. Acm Transactions On Graphics (Tog),2007,26(3):107.
    [98]LIANG Z, XIAO J, ZHUANG Y, et al. Competitive motion synthesis based on hybrid control[J]. Computer Animation and Virtual Worlds,2009,20(2-3):225-235.
    [99]PENG J, LIN I, CHAO J, et al. Interactive and flexible motion transition[J]. Computer Animation and Virtual Worlds,2007,18(4-5):549-558.
    [100]TANG J K, LEUNG H, KOMURA T, et al. Emulating human perception of motion similarity[J]. Computer Animation and Virtual Worlds,2008,19(3-4):211-221.
    [101]MACQUEEN J, OTHERS. Some methods for classification and analysis of multivariate observations[C]. Proceedings of the fifth Berkeley symposium on mathematical statistics and probability. California, USA,1967:281-297.
    [102]ONG E, HILTON A. Learnt inverse kinematics for animation synthesis[J]. Graphical Models,2006,68(5):472-483.
    [103]BARBI V C J, SAFONOVA A, PAN J, et al. Segmenting motion capture data into distinct behaviors[C]. Proceedings of Graphics Interface 2014. London, Ontario, Canada.,2004:185-194.
    [104]SAKAMOTO Y, KURIYAMA S, KANEKO T. Motion map:image-based retrieval and segmentation of motion data[C]. Proceedings of the 2004 ACM SIGGRAPH/Eurographics symposium on Computer animation. Grenoble, France, 2004:259-266.
    [105]WU S, XIA S, WANG Z, et al. Efficient motion data indexing and retrieval with local similarity measure of motion strings[J]. The Visual Computer,2009,25(5-7):499-508.
    [106]PETERS J, VIJAYAKUMAR S, SCHAAL S. Reinforcement learning for humanoid robotics[C]. Proceedings of the third IEEE-RAS international conference on humanoid robots. Karlsruhe, Germany,2003:1-20.
    [107]LEE J, LEE K H. Precomputing avatar behavior from human motion data[J]. Graphical Models,2006,68(2):158-174.
    [108]MCCANN J, POLLARD N. Responsive characters from motion fragments[J]. Acm Transactions On Graphics,2007,26(3):6.
    [109]LO W, ZWICKER M. Real-time planning for parameterized human motion[C]. Proceedings of the 2008 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Dublin, Ireland,2008:29-38.
    [110]LEE Y, LEE S J, POPOVI C Z. Compact character controllers[J]. Acm Transactions On Graphics,2009,28(5):169.
    [111]NOONAN D P, MOUNTNEY P. ELSON D S, et al. A stereoscopic fibroscope for camera motion and 3D depth recovery during minimally invasive surgery[C]. Robotics and Automation,2009. ICRA'09. IEEE International Conference on. Kobe, Japan, 2009:4463-4468.
    [112]MALONEY R. Raptor-12 Digital RealTime System[EB/OL]. (2012-12-30) [2013,06,20]. http://www.motionanalysis.com/html/movement/raptorl2.html.
    [113]VICON. Vicon| Systems [EB/OL]. (2012-12-30) [2013,06,30]. http://www.vicon.com/System/TSeries.
    [114]PHASESPACE. PhaseSpace Motion Capture| Products:Impulse X2 Motion Capture Solution[EB/OL]. (2012-12-30) [2013,06,30]. http://www.phasespace.com/impulse_motion_capture.html.
    [115]XSENS. Xsens MVN:Inertial Motion Capture-Xsens[EB/OL]. (2012-12-30) [2013,06,30]. http://www.xsens.com/en/general/mvn.
    [116]ANIMAZOO. Animazoo-The IGS-180 Motion Capture system [EB/OL]. (2012-12-30) [2013,06,30]. http://www.animazoo.com/products/igs-180-range.
    [117]ASCENSION.3D Guidance trakSTAR-Ascension Technology Corporation[EB/OL]. (2012-12-30) [2013,06,30]. http://www.ascension-tech.com/medical/trakSTAR.php.
    [118]POLHEMUS. Polhemus:G4-True 6 DOF Wireless Precision Motion Tracker[EB/OL]. (2012-12-30) [2013,06,30]. http://www.polhemus.com/?page=Motion_G4.
    [119]BIOVISION. BioVision-Life Science Source| 800-891-9699[EB/OL]. (2012-12-30) [2013,06,30]. http://www.biovision.com/.
    [120]AUTODESK. Alias| Industrial Design Software| Autodesk<[EB/OL]. (2012-12-30) [2013,06,30]. http://www.autodesk.com/products/autodesk-alias-products/overview.
    [121]ESLING P, AGON C. Time-series data mining[J]. Acm Comput. Surv., 2012,45(1):11-12.
    [122]KEOGH E, LONARDI S, RATANAMAHATANA C A. Towards parameter-free data mining[C]. KDD'04,Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining. New York, NY, USA,2004:206-215.
    [123]AGRAWAL R, FALOUTSOS C, SWAMI A N. Efficient Similarity Search In Sequence Databases[C]. FODO'93Proceedings of the 4th International Conference on Foundations of Data Organization and Algorithms. London, UK, UK,1993:69-84.
    [124]FALOUTSOS C, RANGANATHAN M, MANOLOPOULOS Y. Fast subsequence matching in time-series databases[J]. Sigmod Rec.,1994,23(2):419-429.
    [125]CHAN K, FU A W C. Efficient Time Series Matching by Wavelets[C]. Proceedings of the 15th International Conference on Data Engineering, (ICDE'99). Washington, DC, USA,1999:126-133.
    [126]POPIVANOV I, MILLER R J. Similarity search over time-series data using wavelets[C]. Data Engineering,2002. Proceedings.18th International Conference on. San Jose, California, USA,2002:212-221.
    [127]CHAN F, FU A, YU C. Haar wavelets for efficient similarity search of time-series:with and without time warping[J]. Knowledge and Data Engineering, Ieee Transactions On, 2003,15(3):686-705.
    [128]KORN F, JAGADISH H V, FALOUTSOS C. Efficiently supporting ad hoc queries in large datasets of time sequences[J]. Acm Sigmod Record,1997,26(2):289-300.
    [129]KEOGH E, CHAKRABARTI K, PAZZANI M, et al. Dimensionality reduction for fast similarity search in large time series databases[J]. Knowledge and Information Systems, 2001,3(3):263-286.
    [130]BARTOLINI I, CIACCIA P, PATELLA M. Warp:Accurate retrieval of shapes using phase of fourier descriptors and time warping distance[J]. Pattern Analysis and Machine Intelligence, Ieee Transactions On,2005,27(1):142-147.
    [131]AALG J, KRIEGEL H, KR O GER P, et al. Similarity search in multimedia time series data using amplitude-level features[C]. Proceedings of the 14th international conference on Advances in multimedia modeling. Kyoto, Japan,2008:123-133.
    [132]DING H, TRAJCEVSKI G, SCHEUERMANN P, et al. Querying and mining of time series data:experimental comparison of representations and distance measures[J]. Proceedings of the Vldb Endowment,2008,1 (2):1542-1552.
    [133]INDYK P, KOUDAS N. MUTHUKRISHNAN S. Identifying Representative Trends in Massive Time Series Data Sets Using Sketches[C]. Proceedings of the 26th International Conference on Very Large Data Bases, (VLDB'00). San Francisco, CA, USA,2000:363-372.
    [134]REEVES G, LIU J, NATH S, et al. Managing massive time series streams with multi-scale compressed trickles[J]. Proc. Vldb Endow.,2009,2(1):97-108.
    [135]VLACHOS M, GUNOPULOS D, DAS G. Indexing time-series under conditions of noise[J]. Data Mining in Time Series Databases,2004,1(1):67-100.
    [136]STRUZIK Z R, SIEBES A. Measuring Time Series' Similarity through Large Singular Features Revealed with Wavelet Transformation[C]. Proceedings of the 10th International Workshop on Database & Expert Systems Applications, (DEXA'99). Washington, DC, USA,1999:162-166.
    [137]MEGALOOIKONOMOU V, LI G, WANG Q. A dimensionality reduction technique for efficient similarity analysis of time series databases[C]. Proceedings of the thirteenth ACM international conference on Information and knowledge management, (CIKM'04). New York, NY, USA,2004:160-161.
    [138]MEGALOOIKONOMOU V, WANG Q, LI G, et al. A Multiresolution Symbolic Representation of Time Series[C]. Proceedings of the 21st International Conference on Data Engineering, (ICDE'05). Washington, DC, USA,2005:668-679.
    [139]STIEFMEIER T, ROGGEN D, TR O STER G. Gestures are strings:efficient online gesture spotting and classification using string matching[C]. Proceedings of the ICST 2nd international conference on Body area networks, (BodyNets'07). ICST, Brussels, Belgium, Belgium,2007:11-16.
    [140]RAVI KANTH K V, AGRAWAL D, SINGH A. Dimensionality reduction for similarity searching in dynamic databases[J]. Sigmod Rec.,1998,27(2):166-176.
    [141]PAPADIMITRIOU S, YU P. Optimal multi-scale patterns in time series streams[C]. Proceedings of the 2006 ACM SIGMOD international conference on Management of data, (SIGMOD'06). New York, NY, USA,2006:647-658.
    [142]SHATKAY H, ZDONIK S B. Approximate queries and representations for large data sequences [C]. Data Engineering,1996. Proceedings of the Twelfth International Conference on. New Orleans, Louisiana,1996:536-545.
    [143]KEOGH E J, PAZZANI M J. An Enhanced Representation of Time Series Which Allows Fast and Accurate Classification, Clustering and Relevance Feedback. [C]. The Fourth International Conference on Knowledge Discovery and Data Mining. New York, New York, USA,1998:239-243.
    [144]HUANG Y, YU P S. Adaptive query processing for time-series data[C]. Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery and data mining, (KDD'99). New York, NY, USA,1999:282-286.
    [145]PERNG C S, WANG H, ZHANG S R, et al. Landmarks:a new model for similarity-based pattern querying in time series databases[C]. Data Engineering,2000. Proceedings.16th International Conference on. San Diego, CA,2000:33-42.
    [146]KEOGH E, CHAKRABARTI K, PAZZANI M, et al. Locally adaptive dimensionality reduction for indexing large time series databases[J]. Sigmod Rec.,2001,30(2):151-162.
    [147]CHEN Q, CHEN L, LIAN X, et al. Indexable PLA for efficient similarity search[C]. Proceedings of the 33rd international conference on Very large data bases, (VLDB'07). Vienna, Austria,2007:435-446.
    [148]PALP ANAS T, VLACHOS M, KEOGH E, et al. Online Amnesic Approximation of Streaming Time Series[C]. Proceedings of the 20th International Conference on Data Engineering, (ICDE'04). Washington, DC, USA,2004:339-349.
    [149]XIE J, YAN W Y. Pattern-based characterization of time series[J]. International Journal of Information and Systems Science,2007,3(3):479-491.
    [150]ZHAN Y, CHEN X, XU R. Outlier detection algorithm based on pattern representation of time series[J]. Jisuanji Yingyong Yanjiu/Application Research of Computers, 2007,24(11):96-99.
    [151]GULLO F, PONTI G, TAGARELLI A, et al. A time series representation model for accurate and fast similarity detection[J]. Pattern Recognition,2009,42(11):2998-3014.
    [152]FUCHS E, GRUBER T, PREE H, et al. Temporal data mining using shape space representations of time series[J]. Neurocomputing,2010,74(1):379-393.
    [153]BANDERA J P, MARFIL R, BANDERA A, et al. Fast gesture recognition based on a two-level representation[J]. Pattern Recognition Letters,2009,30(13):1181-1189.
    [154]BAKSHI B R, STEPHANOPOULOS G. Reasoning in time:Modeling, analysis, and pattern recognition of temporal process trends[J]. Advances in Chemical Engineering, 1995,22:485-548.
    [155]LIN J, KEOGH E, LONARDI S, et al. A symbolic representation of time series, with implications for streaming algorithms[C]. Proceedings of the 8th ACM SIGMOL workshop on Research issues in data mining and knowledge discovery, (DMKD'03). New York, NY, USA,2003:2-11.
    [156]SHIEH J, KEOGH E. iSAX:indexing and mining terabyte sized time series[C]. Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining, (KDD'08). New York, NY, USA,2008:623-631.
    [157]LIU J, CHEUNG Y, YIN H. Grid-Based Indexing for Large Time Series Databases[C]. The 4th International Conference on Intelligent Data Engineering and Automated Learning. (IDEAL 2003). Hong Kong, China,2003:614-621.
    [158]RATANAMAHATANA C, KEOGH E, BAGNALL A J, et al. A novel bit level time series representation with implication of similarity search and clustering[C]. Proceedings of the 9th Pacific-Asia conference on Advances in Knowledge Discovery and Data Mining, (PAKDD'05). Berlin, Heidelberg,2005:771-777.
    [159]BAGNALL A, RATANAMAHATANA C A, KEOGH E, et al. A Bit Level Representation for Time Series Data Mining with Shape Based Similarity[J]. Data Min. Knowl. Discov.,2006,13(1):11-40.
    [160]YE L, WANG X, KEOGH E J, et al. Autocannibalistic and Anyspace Indexing Algorithms with Application to Sensor Data Mining.[C]. In Proceedings of the SIAM International Conference on Data Mining (SDM 09). Newport Beach. CA,2009:85-96.
    [161]NANOPOULOS A, ALCOCK R, MANOLOPOULOS Y. Feature-based classification of time-series data[J]. Information Processing and Technology,2001:49-61.
    [162]KALPAKIS K, GADA D, PUTTAGUNTA V. Distance measures for effective clustering of ARIMA time-series[C]. Data Mining,2001. ICDM 2001, Proceedings IEEE International Conference on. San Jose, California, USA.,2001:273-280.
    [163]SEBASTIANI P, RAMONI M, COHEN P R, et al. Discovering Dynamics Using Bayesian Clustering[C]. IDA'99, Proceedings of the Third International Symposium on Advances in Intelligent Data Analysis. London, UK, UK,1999:199-210.
    [164]PANUCCIO A, BICEGO M, MURINO V. A Hidden Markov Model-Based Approach to Sequential Data Clustering[C]. Proceedings of the Joint IAPR International Workshop on Structural, Syntactic, and Statistical Pattern Recognition. London, UK, UK,2002:734-742.
    [165]KUMAR N, LOLLA N, KEOGH E, et al. Time-series bitmaps:a practical visualization tool for working with large time series databases[C]. SIAM 2005 Data Mining Conference. Newport Beach, CA,2005:531-535.
    [166]SORKINE O, COHEN-OR D, LIPMAN Y, et al. Laplacian surface editing[C]. Proceedings of the 2004 Eurographics/ACM SIGGRAPH symposium on Geometry processing. Nice, France.,2004:175-184.
    [167]FU H, TAI C, AU O K. Morphing with laplacian coordinates and spatial-temporal texture[C]. Proceedings of Pacific Graphics,2005. Macao, China,2005:100-102.
    [168]KWON T, LEE K H, LEE J, et al. Group motion editing[J]. Acm Transactions On Graphics,2008,27(3):80.
    [169]JEFF. Acclaim ASF/AMC[EB/OL]. (1999-12-30) [2009,06,07]. http://research.cs.wisc.edu/graphics/Courses/cs-838-1999/Jeff/ASF-AMC.html.
    [170]LV F. Amc2Bvh:An ASF/AMC to BVH motion conversion tool[EB/OL]. (2006-12-30) [2009,06,08]. http://vipbase.net/amc2bvh/.
    [171]JEFF. Biovision BVH[EB/OL]. (1999-12-30) [2009,06,10]. http://research.cs.wisc.edu/graphics/Courses/cs-838-1999/Jeff/BVH.html.
    [172]FSF. GSL-GNU Scientific Library-GNU Project-Free Software Foundation (FSF)[EB/OL]. (2011-05-30) [2011,06,10]. http://www.gnu.org/software/gsl/.
    [173]PUC. Lua[EB/OL]. http://www.lua.org/.
    [174]TARJAN R. Depth-first search and linear graph algorithms [J]. Siam Journal On Computing,1972,1(2):146-160.
    [175]FLOYD R W. Algorithm 97:Shortest path[J]. Communications of the Acm, 1962,5(6):345.
    [176]YIN. SIMBICON:Simple Biped Locomotion Control [EB/OL]. (2007-12-30) [2009,06,20]. http://www.cs.ubc.ca/~van/papers/Simbicon.htm.
    [177]DORRIGIV R, L O PEZ-ORTIZ A. A survey of performance measures for on-line algorithms[J]. Sigact News,2005,36(3):67-81.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700