基于低维特征的虚拟人运动及位姿生成
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
运动捕获设备的广泛使用,产生了大量的人体运动数据,为人体运动生成提供便利的同时,也带来了分类、标记、检索等多方面的问题。此外,人体拓扑结构复杂且关节数量多,直接利用高维变量来生成人体运动非常困难。针对这些问题,本文以运动数据的组织、降维和查找为主线,在构造对应低维特征空间的基础上,对真实感触碰运动及基于草绘的人体位姿生成方法进行了深入研究。
     针对现有触碰运动合成算法在灵活性和真实感等方面的不足,本文提出了一种基于生物力学的真实感触碰控制器(BLRC)。BLRC从生物力学研究领域引入了多个不同的触碰策略,并利用手臂触碰工作区来指导数据采样。为不同的触碰策略构造对应的低维空间,使得BLRC可以在低维空间中快速进行最优化求解。
     为了进一步提高触碰运动的真实感,本文提出了基于组合控制器的触碰运动生成框架。利用低维人体运动特征,我们构造了四个生成具体触碰运动的静态控制器和三个连接静态控制器的过渡控制器。实验表明,包含这些控制器的算法框架能够有效展现出人类触碰行为中的试探性过程。
     为了帮助用户快速创建正确的虚拟人位姿,本文提出了一个用户友好的三维人体位姿草绘系统。通过对高维图像描述符进行低维空间映射,系统实现了对大规模三维人体位姿的快速查找。在用户绘制的过程中,系统通过在绘图板上给用户提供相应的反馈信息来帮助他们进行下一笔的绘制。
The wide application of motion capture equipment brings more and more motion data, although these data can provide sufficient support for human motion generation, the large amount of data also brings a series of difficult problems in classification, marking, retrieval, storage and so on. In addition, the topological structure of the human body is so complex and too many controllable variables are involved, that it becomes a very difficult problem for directly controlling human movement through manipulating these high dimensional variables. To solve these problems, we focus on the organization, dimensionality reduction and search for motion data. Based on corresponding low-dimensional feature space, we study on the approaches for character motion and posture concerning to reaching and sketching-based system.
     To overcome the defects of flexibility and realism for existing algorithms for reaching motion synthesis, we present a Biomechanics-based Life-like Reaching Controller (BLRC). BLRC employs various reaching strategies borrowed from biomechanics and exploits the arm-reachable workspace to guide the motion sampling. Through constructing different low-dimensional spaces for reaching strategies, the BLRC can solve the optimization problem in the low-dimensional space quickly.
     To further improve the realism of reaching motion, we present a controller-based framework for reaching motion synthesis. Based on low-dimensional motion feature, we construct four stationary controllers to generate concrete reaching motion and three transition controllers to stitch these stationary controllers. The experiments show that our framework can express the inherent tentative process for human reaching effectively.
     In order to facilitate users to create a right human posture quickly, we create a user-friendly sketch-based character posing system. By mapping the high-dimensional image descritptor into low-dimensional space, our system realizes the fast retrieval of3D character pose in a large database. While the user is sketching, our system is able to provide some feedback information to help him/her to draw next stroke.
引文
[1]N. I. Badler and C. B. Phillips, Simulating Humans:Computer Graphics, Animation, and Control. Oxford University Press,1992.
    [2]M. Girard, Constrained optimization of articulated animal movement in computer animation, Making them move. Morgan Kaufmann Publishers,1990.
    [3]K. K. Yin, K. Loken and M. van de Panne. SIMBICON:simple biped locomotion control. A CM Transactions on Graphics (TOG),2007,26(3)
    [4]W. W. Armstrong and M. W. Green. The dynamics of articulated rigid bodies for purposes of animation. The Visual Computer,1985,1(4):231-240.
    [5]J. Wilhelms and B. A. Barsky. Using dynamic analysis to animate articulated bodies such as humans and robots. In Proceedings-Graphics Interface'85., Canadian Information Processing Soc, Montreal, Que, Can,1985:97-104.
    [6]T. Geijtenbeek and N. Pronost. Interactive Character Animation Using Simulated Physics:A State-of-the-Art Review. Computer Graphics Forum, 2012,31(8):2492-2515.
    [7]刘更代,潘志庚,程熙,李灵,张明敏.人体运动合成中的机器学习技术综述.计算机辅助设计与图形学学报,2010,(9):1619-1627.
    [8]P. Faloutsos, M. v. d. Panne and D. Terzopoulos. Composable controllers for physics-based character animation. In Proceedings of the 28th annual conference on Computer graphics and interactive techniques, ACM,2001:251-260.
    [9]J. K. Hodgins, W. L. Wooten, D. C. Brogan and J. F. O'Brien. Animating human athletics. ACM Computer Graphics,1995:71-78.
    [10]J. Laszlo, M. v. d. Panne and E. Fiume. Limit cycle control and its application to the animation of balancing and walking. In Proceedings of the 23rd annual conference on Computer graphics and interactive techniques, ACM, 1996:155-162.
    [11]M. H. Raibert and J. K. Hogdins. Animate of Dynamic Legged Locomotion. Computer Graphics,1991.25(4):349-358.
    [12]J. K. Hodgins and N. S. Pollard. Adapting simulated behaviors for new characters. In Proceedings of the 24th annual conference on Computer graphics and interactive techniques, ACM Press/Addison-Wesley Publishing Co., 1997:153-162.
    [13]D. Sharon and M. van de Panne. Synthesis of controllers for stylized planar bipedal walking. In IEEE International Conference on Robotics and Automation, IEEE, New York,2005:2387-2392.
    [14]J. M. Wang, D. J. Fleet and A. Hertzmann. Optimizing walking controllers. ACM Transactions on Graphics (TOG),2009,28(5):1-8.
    [15]Y. Abe, M. d. Silva and J. Popovic. Multiobjective control with frictional contacts. In Proceedings of the ACM SIGGRAPH/Eurographics symposium on Computer animation, Eurographics Association, San Diego, California, 2007:249-258.
    [16]A. Shkolnik and R. Tedrake. High-dimensional underactuated motion planning via task space control. In IEEE/RSJ International Conference on Intelligent Robots and Systems,2008:3762-3768.
    [17]M. de Lasa, I. Mordatch and A. Hertzmann. Feature-based locomotion controllers. ACM Transactions on Graphics (TOG),2010,29(4):1-10.
    [18]Y. Ye and C. K. Liu. Synthesis of responsive motion using a dynamic Model. Computer Graphics Forum,2010,29(2):555-562.
    [19]X. Wei, J. Min and J. Chai. Physically valid statistical models for human motion generation. ACM Transactions on Graphics (TOG),2011,30(3):1-10.
    [20]K. W. Sok, M. Kim and J. Lee. Simulating biped behaviors from human motion data, ACM Transactions on Graphics,2007,26(3)
    [21]M. d. Silva, Y. Abe and J. Popovic. Interactive simulation of stylized human locomotion. ACM Transactions on Graphics (TOG),2008,27(3):1-10.
    [22]X. Cheng, G. Liu, Z. Pan and B. Tang. Fragment-based responsive character motion for interactive games. The Visual Computer,2009,25(5):479-485.
    [23]潘志庚,程熙,唐冰.一种实时虚拟人反应式动画生成算法.计算机研究与发展,2009,(1):151-158.
    [24]程熙,潘志庚.虚拟人运动中受扰的平衡保持算法.计算机辅助设计与图形 学学报,2009,21(3):325-330.
    [25]M. Xu, Z. Pan, M. Zhang, P. Lv, P. Zhu, Y. Ye and W. Song. Character behavior planning and visual simulation in virtual 3D space. IEEE Multimedia, 2013,20(1):49-59.
    [26]B. Tang, Z. Pan, L. Zheng and M. Zhang. Interactive generation of falling motions. Computer Animation and Virtual Worlds,2006,17(3-4):271-279.
    [27]M. Xu, H. Li, P. Lv, W. Chen, G. Liu, P. Zhu and Z. Pan. L4RW:Laziness-based Realistic Real-time Responsive Rebalance in Walking. Computer Graphics Forum,2010,29:2187-2196.
    [28]刘更代,潘志庚,程熙,徐明亮.结合低维运动模型和逆运动学的风格化人体运动合成.计算机辅助设计与图形学学报,2010,22(1):145-151.
    [29]刘更代,徐明亮,张明敏.基于独立时空特征空间的人体运动合成.计算机学报,2011,34(3):3464-3472.
    [30]F. S. Grassia. Practical parameterization of rotations using the exponential map. Journal of graphics tools,1998,3(3):29-48.
    [31]S. Giovanni and K. Yin. Loco Test:Deploying and evaluating physics-based locomotion on multiple simulation platforms. In 4th International Conference on Motion in Games, MIG 2011, Springer Verlag, Edinburgh, United kingdom, 2011:227-241.
    [32]J. Wang, D. Fleet and A. Hertzmann. Gaussian process dynamical models for human motion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008,30(2):283-298.
    [33]J. Lee and S. Y. Shin. Motion Fairing. In Proceedings of the Computer Animation, IEEE Computer Society,1996:136-143.
    [34]J. Lee and S. Y. Shin. A coordinate-invariant approach to multiresolution motion analysis. Graphical models,2001,63(2):87-105.
    [35]L. Jehee and S. Sung Yong. General construction of time-domain filters for orientation data. IEEE Transactions on Visualization and Computer Graphics. 2002,8(2):119-128.
    [36]H. J. Shin, J. Lee, S. Y. Shin and M. Gleicher. Computer puppetry:An importance-based approach. ACM Transactions on Graphics(TOG), 2001,20(2):67-94.
    [37]S. Tak and H. S. Ko. A physically-based motion retargeting filter. ACM Transactions on Graphics (TOG),2005,24(1):98-117.
    [38]J. Wang, S. M. Drucker, M. Agrawala and M. F. Cohen. The cartoon animation filter. ACM Transactions on Graphics (TOG),2006,25(3):1169-1173.
    [39]K. Yamane and Y. Nakamura. Dynamics filter-Concept and implementation of online motion generator for human figures. IEEE Transactions on Robotics and Automation,2003,19(3):421-432.
    [40]L. Kovar and M. Gleicher. Flexible automatic motion blending with registration curves. In Proceedings of the ACM SIGGRAPH/Eurographics symposium on Computer animation, Eurographics Association, San Diego, California, 2003:214-224.
    [41]A. Bruderlin and L. Williams. Motion signal processing. In Proceedings of the 22nd annual conference on Computer graphics and interactive techniques, ACM, 1995:97-104.
    [42]Y.-L. Chen, J. Min and J. Chai. Flexible registration of human motion data with parameterized motion models. In Proceedings of the 2009 symposium on Interactive 3D graphics and games, ACM, Boston, Massachusetts, 2009:183-190.
    [43]H. Hotelling. Analysis of a complex of statistical variables into principal components. Journal of educational psychology,1933,24(6):417.
    [44]R. A. Fisher. The use of multiple measurements in taxonomic problems. Annals of Human Genetics,1936,7(2):179-188.
    [45]E. Oja, A. Hyvarinen and J. Karhunen, Independent component analysis.2001, John Wiley & Sons.
    [46]B. Scholkopf, A. Smola and K. R. Muller. Kernel principal component analysis. Artificial Neural Networks-ICANN'97,1997:583-588.
    [47]F. R. Bach and M. I. Jordan. Kernel independent component analysis. The Journal of Machine Learning Research,2003,3:1-48.
    [48]J. Yang, A. F. Frangi, D. Zhang and Z. Jin. KPCA plus LDA:a complete kernel Fisher discriminant framework for feature extraction and recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(2):230-244.
    [49]J. B. Tenenbaum, V. De Silva and J. C. Langford. A global geometric framework for nonlinear dimensionality reduction. Science,2000,290(5500):2319-2323.
    [50]S. T. Roweis and L. K. Saul. Nonlinear dimensionality reduction by locally linear embedding. Science,2000,290(5500):2323-2326.
    [51]M. Belkin and P. Niyogi. Laplacian eigenmaps and spectral techniques for embedding and clustering. Advances in neural information processing systems, 2001,14:585-591.
    [52]J. Venna and S. Kaski. Local multidimensional scaling. Neural Networks, 2006,19(6):889-899.
    [53]N. D. Lawrence. Gaussian process latent variable models for visualisation of high dimensional data. Advances in neural information processing systems, 2004,16:329-336.
    [54]H. J. Shin and J. Lee. Motion synthesis and editing in low-dimensional spaces. Computer Animation and Virtual Worlds,2006,17(3-4):219-227.
    [55]P. Glardon, R. Boulic and D. Thalmann. PCA-based walking engine using motion capture data. In Proceedings-Computer Graphics International, CGI 2004, Institute of Electrical and Electronics Engineers Computer Society, Crete, Greece,2004:292-298.
    [56]R. Urtasun, P. Glardon, R. Boulic, D. Thalmann and P. Fua. Style Based Motion Synthesis. Computer Graphics Forum,2004,23(4):799-812.
    [57]李淳芃,王兆其,夏时洪.人体运动的函数数据分析与合成.软件学报,2009,20(6):1664-1672.
    [58]H. Mori and J. Hoshino. ICA-based interpolation of human motion. In IEEE International Symposium on Computational Intelligence in Robotics and Automation,2003:453-458.
    [59]A. Shapiro and F. Pighin. Hybrid control for interactive character animation. In The 11th Pacific Conference on Computer Graphics and Applications, 2003:455-461.
    [60]A. Shapiro, Y. Cao and P. Faloutsos. Style components. In Proceedings of Graphics Interface, Canadian Information Processing Society,2006:33-39.
    [61]G. Liu, Z. Pan and Z. Lin. Style subspaces for character animation. Computer Animation and Virtual Worlds,2008,19(3-4):199-209.
    [62]M. Tournier, X. Wu, N. Courty, E. Arnaud and L. Reveret. Motion compression using principal geodesics analysis. Computer Graphics Forum, 2009,28(2):355-364.
    [63]S. R. Carvalho, R. Boulic and D. Thalmann. Interactive low dimensional human motion synthesis by combining motion models and PIK. Computer Animation and Virtual Worlds,2007,18(4-5):493-503.
    [64]D. Raunhardt and R. Boulic. Motion constraint The Visual Computer, 2009,25(5):509-518.
    [65]P. Lv, M. Zhang, M. Xu, H. Li, P. Zhu and Z. Pan. Biomechanics-based reaching optimization. The Visual Computer,2011,27(6-8):613-621
    [66]A. Safonova, J. K. Hodgins and N. S. Pollard. Synthesizing physically realistic human motion in low-dimensional, behavior-specific spaces. ACM Transactions on Graphics,2004,23(3):514-521.
    [67]J. Chai and J. K. Hodgins. Constraint-based motion optimization using a statistical dynamic model. ACM Transactions on Graphics (TOG),2007,26(3):8.
    [68]吕培,张明敏,徐明亮,李灵,宋青见,潘志庚.基于高斯过程动态模型的人体节奏运动合成.中国图象图形学报,2011,16(8):1511-1515.
    [69]K. Grochow, S. L. Martin, A. Hertzmann and Z. Popovic. Style-based inverse kinematics. ACM Transactions on Graphics (TOG),2004,23(3):522-531.
    [70]C. F. Rose Ⅲ, P. P. J. Sloan and M. F. Cohen. Artist Directed Inverse Kinematics Using Radial Basis Function Interpolation. Computer Graphics Forum, 2001,20(3):239-250.
    [71]C. Rose, M. F. Cohen and B. Bodenheimer. Verbs and adverbs:Multidimensional motion interpolation. Computer Graphics and Applications, IEEE, 1998,18(5):32-40.
    [72]T. Mukai and S. Kuriyama. Geostatistical motion interpolation. ACM Transactions on Graphics (TOG),2005,24(3):1062-1070.
    [73]J. Min, Y. L. Chen and J. Chai. Interactive generation of human animation with deformable motion models. ACM Transactions on Graphics (TOG), 2009,29(9):l-12.
    [74]李淳芃,王兆其,夏时洪,朱登明.基于局部支撑姿态的逆运动学求解.计算机学报,2007,30(11):1982-1988.
    [75]朱登明,王兆其.基于运动序列分割的运动捕获数据关键帧提取.计算机辅助设计与图形学学报,2008,20(6):787-792.
    [76]J. Tautges, A. Zinke, B. Kruger, J. Baumann, A. Weber, T. Helten, M. Muller, H. P. Seidel and B. Eberhardt. Motion reconstruction using sparse accelerometer data. ACM Transactions on Graphics (TOG),2011,30(3):1-12.
    [77]J. Chai and J. K. Hodgins. Performance animation from low-dimensional control signals. ACM Transactions on Graphics (TOG),2005,24(3):686-696.
    [78]C. Y. Chiu, S. P. Chao, M. Y. Wu, S. N. Yang and H. C. Lin. Content-based retrieval for human motion data. Journal of Visual Communication and Image Representation,2004,15(3):446-466.
    [79]K. Forbes and E. Fiume. An efficient search algorithm for motion data using weighted PCA. In Proceedings of the ACM SIGGRAPH/Eurographics symposium on Computer animation, ACM, Los Angeles, California, 2005:67-76.
    [80]L. Kovar and M. Gleicher. Automated extraction and parameterization of motions in large data sets. A CM Transactions on Graphics (TOG), 2004,23(3):559-568.
    [81]M. Muller, T. Roder and M. Clausen. Efficient content-based retrieval of motion capture data. ACM Transactions on Graphics (TOG),2005,24(3):677-685.
    [82]Z. Deng, Q. Gu and Q. Li. Perceptually consistent example-based human motion retrieval. In Proceedings of the symposium on Interactive 3D graphics and games, ACM, Boston, Massachusetts,2009:191-198.
    [83]Y. Gao, L. Ma, Y. Chen and J. Liu. Content-based human motion retrieval with automatic transition. In 24th Computer Graphics International Conference, CGI 2006, Springer Verlag, Hangzhou, China,2006:360-371.
    [84]M. Meinard and R. Tido. Motion templates for automatic classification and retrieval of motion capture data In Proceedings of the 2006 ACM SIGGRAPH/Eurographics symposium on Computer animation, Eurographics Association, Vienna, Austria,2006:137-146.
    [85]S. Ha, Y. Bai and C. K. Liu. Human motion reconstruction from force sensors. In Eurographics/ACM SIGGRAPH Symposium on Computer Animation, The Eurographics Association,2011:129-138.
    [86]B. Kruger, J. Tautges, A. Weber and A. Zinke. Fast local and global similarity searches in large motion capture databases. In Proceedings of the 2010 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, Eurographics Association, Madrid, Spain,2010:1-10.
    [87]J. Lee and K. H. Lee. Precomputing avatar behavior from human motion data. Graphical models,2006,68(2):158-174.
    [88]J. McCann and N. Pollard. Responsive characters from motion fragments. ACM Transactions on Graphics (TOG),2007,26(3):6.
    [89]A. Treuille, Y. Lee and Z. Popovic. Near-optimal character animation with continuous control. ACM Transactions on Graphics (TOG),2007,26(3):7.
    [90]W.-Y. Lo and M. Zwicker. Real-time planning for parameterized human motion. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, Eurographics Association, Dublin, Ireland,2008:29-38.
    [91]Y. Lee, S. J. Lee and Z. Popovic. Compact character controllers. ACM Transactions on Graphics (TOG),2009,28(5):1-8.
    [92]Y. Lee, K. Wampler, G. Bernstein, J. Popovic and Z. Popovic. Motion fields for interactive character locomotion. ACM Transactions on Graphics (TOG), 2010,29(6):1-8.
    [93]S. Cooper, A. Hertzmann and Z. Popovic. Active learning for real-time motion controllers. ACM Transactions on Graphics (TOG),2007,26(3):5.
    [94]L. Kovar, M. Gleicher and F. Pighin. Motion graphs. ACM Transactions on Graphics(TOG),2002,21 (3):473-482.
    [95]H. Liu, X. Wei, J. Chai, I. Ha and T. Rhee. Realtime human motion control with a small number of inertial sensors. In Symposium on Interactive 3D Graphics and Games, ACM, San Francisco, California,2011:133-140.
    [96]Y. Ye and C. Liu. Animating responsive characters with dynamic constraints in near-unactuated coordinates. ACM Transactions on Graphics (TOG), 2008,27(5):112.
    [97]S. Levine, J. M. Wang, A. Haraux, Z. Popovic and V. Koltun. Continuous character control with low-dimensional embeddings. ACM Transactions on Graphics (TOG),2012,31(4):28.
    [98]N. Klopcar, M. Tomic and J. Lenarcic. A kinematic model of the shoulder complex to evaluate the arm-reachable workspace. Journal of biomechanics, 2007,40(1):86-91.
    [99]D. R. Baker and C. W. Wampler Ii. On the inverse kinematics of redundant manipulators. The International journal of robotics research,1988,7(2):3-21.
    [100]D. Tolani, A. Goswami and N. I. Badler. Real-time inverse kinematics techniques for anthropomorphic limbs. Graphical models,2000,62(5):353-388.
    [101]W. Huang, M. Kapadia and D. Terzopoulos. Full-body hybrid motor control for reaching. In Motion in Games,2010:36-47.
    [102]T. Komura, A. Kuroda, S. Kudoh, T. C. Lan and Y. Shinagawa. An inverse kinematics method for 3d figures with motion data.2003,
    [103]C. W. Wampler. Manipulator inverse kinematic solutions based on vector formulations and damped least-squares methods. IEEE Transactions on Systems, Man and Cybernetics,1986,SMC-16(1):93-101.
    [104]D. E. Whitney. Resolved motion rate control of manipulators and human prostheses. IEEE Transactions on Man-Machine Systems,1969,10(2):47-53.
    [105]J. Zhao and N. I. Badler. Inverse kinematics positioning using nonlinear programming for highly articulated figures. ACM Transactions on Graphics (TOG),1994,13(4):313-336.
    [106]J. Min, Y.-L. Chen and J. Chai. Interactive generation of human animation with deformable motion models. Acm Transactions on Graphics,2009,29(1)
    [107]M. Alexa and W. Muller. Representing animations by principal components. Computer Graphics Forum,2000,19(3):411-418.
    [108]A. Safonova, J. K. Hodgins and N. S. Pollard. Synthesizing physically realistic human motion in low-dimensional, behavior-specific spaces. In ACM SIGGRAPH 2004 Papers, ACM, Los Angeles, California,2004.
    [109]C. Doorenbosch, A. Mourits, D. Veeger, J. Harlaar and F. van der Helm. Determination of functional rotation axes during elevation of the shoulder complex. The Journal of orthopaedic and sports physical therapy, 2001,31(3):133-137.
    [110]M. J. Bey, R. Zauel, S. K. Brock and S. Tashman. Validation of a new model-based tracking technique for measuring three-dimensional, in vivo glenohumeral joint kinematics. Journal of biomechanical engineering, 2006,128:604-609.
    [111]N. Klopcar and J. Lenarcic. Bilateral and unilateral shoulder girdle kinematics during humeral elevation. Clinical Biomechanics,2006,21:20-26.
    [112]W. Maurel and D. Thalmann. Human shoulder modeling including scapulo-thoracic constraint and joint sinus cones. Computers & Graphics, 2000,24(2):203-218.
    [113]H. E. J. Veeger, F. C. T. van dee Helm, E. K. J. Chadwick and D. Magermans. Toward standardized procedures for recording and describing 3-D shoulder movements. Behavior Research Methods,2003,35(3):440-446.
    [114]Q. Y. Hong, S. I. Park and J. K. Hodgins. A Data-driven Segmentation for the Shoulder Complex. Computer Graphics Forum,2010,29(2):537-544.
    [115]S. H. Lee, E. Sifakis and D. Terzopoulos. Comprehensive biomechanical modeling and simulation of the upper body. ACM Transactions on Graphics (TOG),2009,28(4):99.
    [116]Z. Dvir and N. Berme. The shoulder complex in elevation of the arm:A mechanism approach. Journal of biomechanics,1978,11 (5):219-225.
    [117]M. Kallmann, A. Aubel, T. Abaci and D. Thalmann. Planning Collision-free Reaching Motions for Interactive Object Manipulation and Grasping. Computer Graphics Forum,2003,22(3):313-322.
    [118]E. Hsiao and S. Robinovitch. Biomechanical influences on balance recovery by stepping. Journal of biomechanics,1999,32(10):1099-1106.
    [119]K. Iqbal and Y. C. Pai. Predicted region of stability for balance recovery. Journal of biomechanics,2000,33(12):1619-1627.
    [120]C. Runge, C. Shupert, F. Horak and F. Zajac. Ankle and hip postural strategies defined by joint torques. Gait & posture,1999,10(2):161-170.
    [121]Y. Aydin and M. Nakajima. Database guided computer animation of human grasping using forward and inverse kinematics. Computers & Graphics, 1999,23(1):145-154.
    [122]A. W. Feng, Y. Xu and A. Shapiro. An example-based motion synthesis technique for locomotion and object manipulation. In Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, ACM, Costa Mesa, California.2012:95-102.
    [123]R. Heck, L. Kovar and M. Gleicher. Splicing upper-body actions with locomotion. Computer Graphics Forum,2006,25(3):459-466.
    [124]B. J. H. van Basten and A. Egges. Flexible Splicing of Upper-Body Motion Spaces on Locomotion. Computer Graphics Forum,2011,30(7):1963-1971.
    [125]M. da Silva, F. Durand and J. Popovi Linear Bellman combination for control of character animation. ACM Transactions on Graphics (TOG),2009,28(3):82.
    [126]U. Muico, J. Popovic and Z. Popovic. Composite control of physically simulated characters. ACM Transactions on Graphics (TOG),2011,30(3):16.
    [127]K. Yamane, J. J. Kuffner and J. K. Hodgins. Synthesizing animations of human manipulation tasks. ACM Transactions on Graphics (TOG),2004,23(3):532-539.
    [128]S. P. Lee, J. B. Badler and N. I. Badler. Eyes alive. ACM Transactions on Graphics (TOG),2002,21(3):637-644.
    [129]S. H. Yeo, M. Lesmana, D. R. Neog and D. K. Pai. Eyecatch:simulating visuomotor coordination for object interception. ACM Transactions on Graphics (TOG),2O12,31(4):1-10.
    [130]X. K. Wei and C. Jinxiang. Intuitive Interactive Human-Character Posing with Millions of Example Poses. Computer Graphics and Applications, IEEE, 2011,31(4):78-88.
    [131]Y. J. Lee, C. L. Zitnick and M. F. Cohen. ShadowDraw:real-time user guidance for freehand drawing. ACM Transactions on Graphics (TOG),2011,30(4):1-10.
    [132]A. Chalechale, G. Naghdy and A. Mertins. Sketch-based image matching Using Angular partitioning. IEEE Transactions on Systems, Man and Cybernetics, Part A:Systems and Humans,2005,35(1):28-41.
    [133]M. Eitz, K. Hildebrand, T. Boubekeur and M. Alexa. Sketch-Based Image Retrieval:Benchmark and Bag-of-Features Descriptors. IEEE Transactions on Visualization and Computer Graphics,2011,17(11):1624-1636.
    [134]C. Yang, W. Changhu, Z. Liqing and Z. Lei. Edgel index for large-scale sketch-based image search. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),2011:761-768.
    [135]T. Shao, W. Xu, K. Yin, J. Wang, K. Zhou and B. Guo. Discriminative Sketch-based 3D Model Retrieval via Robust Shape Matching. Computer Graphics Forum,2011,30(7):2011-2020.
    [136]M. Eitz, R. Richter, T. Boubekeur, K. Hildebrand and M. Alexa. Sketch-based shape retrieval. ACM Transactions on Graphics (TOG),2012,31(4):1-10.
    [137]T. Chen, M.-M. Cheng, P. Tan, A. Shamir and S.-M. Hu. Sketch2Photo:internet image montage. ACM Transactions on Graphics (TOG),2009,28(5):1-10.
    [138]M. Eitz, R. Richter, K. Hildebrand, T. Boubekeur and M. Alexa. Photosketcher: Interactive Sketch-Based Image Synthesis. Computer Graphics and Applications, IEEE,2011,31(6):56-66.
    [139]H. Shin and T. Igarashi. Magic canvas:interactive design of a 3-D scene prototype from freehand sketches. In Proceedings of Graphics Interface 2007, ACM, Montreal, Canada,2007:63-70.
    [140]M. Eitz, J. Hays and M. Alexa. How do humans sketch objects? ACM Transactions on Graphics (TOG),2012,31(4):1-10.
    [141]J. Davis, M. Agrawala, E. Chuang, Z. Popovic and D. Salesin. A sketching interface for articulated figure animation. In ACM SIGGRAPH 2007 courses, ACM, San Diego, California,2007:23.
    [142]M. Thorne, D. Burke and M. v. d. Panne. Motion doodles:an interface for sketching character motion. ACM Transactions on Graphics (TOG), 2004,23(3):424-431.
    [143]E. Jain, Y. Sheikh, M. Mahler and J. Hodgins. Three-dimensional proxies for hand-drawn characters. ACM Transactions on Graphics (TOG),2012,31(1):1-16.
    [144]M. G. Choi, K. Yang, T. Igarashi, J. Mitani and J. Lee. Retrieval and Visualization of Human Motion Data via Stick Figures. Computer Graphics Forum,2012,31(7pt1):2057-2065.
    [145]L. Juncong, T. Igarashi, J. Mitani, L. Minghong and H. Ying. A Sketching Interface for Sitting Pose Design in the Virtual Environment. IEEE Transactions on Visualization and Computer Graphics,2012,18(11):1979-1991.
    [146]C. Min-Wen, L. Chao-Hung, J. Assa and L. Tong-Yee. Human Motion Retrieval from Hand-Drawn Sketch. IEEE Transactions on Visualization and Computer Graphics,2012,18(5):729-740.
    [147]J. J. Kuffner. Effective sampling and distance metrics for 3D rigid body path planning. In IEEE International Conference on Robotics and Automation. ICRA '04.,2004:3993-3998.
    [148]T. Feng, L. Suk Hwan and N. L. Chang. An improved local feature descriptor via soft binning. In 17th IEEE International Conference on Image Processing (ICIP), 2010:861-864.
    [149]A. Andoni and P. Indyk. Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions. Communications of the ACM, 2008,51(1):117-122.
    [150]M. Datar, N. Immorlica, P. Indyk and V. S. Mirrokni. Locality-sensitive hashing scheme based on p-stable distributions. In Proceedings of the twentieth annual symposium on Computational geometry, ACM, Brooklyn, New York, USA, 2004:253-262.
    [151]D. Bratton and J. Kennedy. Defining a Standard for Particle Swarm Optimization. In Swarm Intelligence Symposium,2007. SIS 2007. IEEE,2007:120-127.
    [152]M. Burtscher and P. Ratanaworabhan. FPC:A High-Speed Compressor for Double-Precision Floating-Point Data IEEE Transactions on Computers, 2009,58(1):18-31.
    [153]J. M. Saavedra and B. Bustos. An improved histogram of edge local orientations for sketch-based image retrieval. In Proceedings of the 32nd DAGM conference on Pattern recognition, Springer-Verlag, Darmstadt, Germany,2010:432-441.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700