甲虫鞘翅材料微结构、力学性能及联接机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以生活在三种不同生活环境(包括水环境、陆地环境、土壤环境)的9种甲虫为研究对象,从微结构、力学性能、鞘翅联接机制和鞘翅张合几何等方面对甲虫生物材料进行实验和微结构观测,并就实验结果进行对比分析和研究。
     结构上,鞘翅是非光滑表面,主要存在2种形貌:“犁沟状”条凸形貌和凹坑、凸苞分布形貌,鞘翅断面SEM实验表明鞘翅是一种中空型轻质生物复合材料,由鞘翅背壁层、中空夹芯层和腹壁层构成,而背壁层又是由黑色的致密外表皮层和数层纤维层相互交织后再铺设而成的内表皮层组成,实验得到甲虫鞘翅的比重(单位:kg/m~3)为0.8×10~3~0.9×10~3;东方龙虱前附足吸附脚掌上面布满“鞋形状”微型吸盘,侧缘长有许多微刚毛群,实验得到其最大法向吸附力53.3mN±7.68mN,最大切向吸附力213.5mN±33.53mN,猜测其吸附机制包含微吸盘的真空负压吸附和微刚毛群的Van der Waars力粘附两种。
     力学性能上,本文对9种甲虫鞘翅进行了纳米压痕实验和拉断实验,纳米压痕实验测定了鞘翅外表皮层的硬度和弹性模量参数值,结果由头部区域至尾部区域呈增大趋势,其力学性能呈现拓扑分布规律,经线性回归得到甲虫鞘翅力学参数值为:硬度0.335GPa±0.130GPa,弹性模量6.920GPa±1.461GPa,而东方龙虱鞘翅硬度为0.475GPa±0.089GPa,弹性模量为8.214 GPa±0.708GPa,分别为甲虫鞘翅平均值的1.41倍和1.19倍,该结果体现东方龙虱鞘翅力学性能较一般甲虫鞘翅优异;拉伸实验表明鞘翅的变形主要以弹性变形为主,鞘翅纵向强度极限要大于横向强度极限,实验得到新鲜鞘翅强度极限值(σb)169.2MPa~194.5MPa,其比强度为0.20~0.22(比强度定义为材料的强度极限σb除以材料的比重ρ),与超轻质镁锂合金相当(0.16~0.21)。
     联接机制方面,鞘翅采用了“楔形状”榫嵌入式联接机构,头部区域凸出榫片和楔形槽尺寸较小,尾部区域凸出榫片和楔形槽尺寸较大,其几何结构由头部至尾部呈线性增大,在鞘翅的凸出榫片端面均布满朝向一致的微刺突和微凸苞结构,该微结构主要加强鞘翅间的锁合联接,鞘翅的联接机制主要经由两个阶段:一是合翅联接过程,二是锁合联接过程。
     鞘翅张合机制方面,通过高速摄像机录制的鞘翅张合运动轨迹录像,分析甲虫鞘翅上标记点的三维轨迹来描述甲虫鞘翅的张合运动机制,得到甲虫鞘翅的张合运动机制为:绕经过小盾板位置的单轴的旋转运动;鞘翅仰角在30°~60°之间,甲虫为了最大限度地减少鞘翅在飞行当中的能量消耗而选择了最适应的角度,鞘翅的张合过程易于控制且节能、高效。
     综合上述,甲虫鞘翅是一种轻质、具高比强度和优异延塑性能的生物复合材料,该研究为航空航天领域对于轻质高强复合材料的设计提供仿生的生物学基础。
In the dissertation, Morphological structures, mechanical properties, coupling mechanism and geometry of elytra opening and closing from 9 different beetles, which live in various environments (air, water, soil), were investigated.
     An analysis of the morphological structure indicates that the elytra have a non-smooth surface, containing two kinds of appearances: furrow surface or concave and convex surface, which can reduce adhesion and resistance present in surface contact. SEM photos of elytra sections show that the elytra are hollow and light-weight composite biomaterials, which consist of a compact dorsal side, a hollow section and a ventral side. The dorsal side consists of black compact epicuticle and looser exocuticle formed from some fibre layers complexed with each other in a parallel way, a positive-negative way and a helical way. The elytra’s density (in kg/m~3) was tested and shown to be 0.8×10~3~0.9×10~3. The morphology of the Cybister adhesive fore-foot was observed under SEM, and it was shown that lots of micro-discs functioning as a shoe are distributed on its surface and lots of setae are distributed on its marginal side. The maximal normal force is 53.3mN±7.68mN and the maximal tangential force is 213.5mN±33.53mN. It is estimated that the vacuum adsorption of the micro-discs, together with the van der Waals adhesion of the setae, produce the ultimate adhesive forces of a single adhesive foot.
     Regarding mechanical properties, a Nano-indenter Test and a Tensile Test were carried out on different beetles’elytra to investigate its mechanical properties and tensile intensity. Results show that the mechanical properties of elytra increase gradually from the cephalosome zone to the empennage zone, which presents topological distribution. The hardness and modulus of beetles’elytra were taken from the results of the Nano-indenter and Tensile tests through linear regression and the average values were 0.335GPa±0.130GPa and 6.920GPa±1.461GPa, respectively. Cybister’s results were 0.475GPa±0.089GPa and 8.214GPa±0.708GPa, respectively, which is 1.41 and 1.19 times that of beetles’elytra, respectively. Thus, this confirms conclusively that Cybister elytra have a much more excellent performance compared to that of beetles’elytra. Tensile Test results indicate that the distortion of beetles’elytra is largely elastic, while the longitudinal stress to fracture is larger than the transverse one. The stress to fracture of fresh elytra (σ_b) is 169.2MPa~194.5MPa; the specific intensity is 0.20~0.22 (the specific intensity is defined asσ_b toρ). Compared to the Mg-Li alloy (0.16~0.21), fresh elytra have a high specific intensity.
     Regarding its coupling mechanism, beetles’elytra are conjugated with each other via the cuneal tenon carving into the mortise. The dovetail and mortise are short and thick in the cephalosome zone and become longer and thinner in the empennage zone. There are some spinules oriented in the same way and convex buds emerging into the surface of the dovetail surface. These micro-structures help to lock two elytra tightly together. Coupling of elytra is accomplished via the following two steps: the first is the coupling process of elytra; the other is the locking process of elytra.
     On geometry, the mark’s 3D-tracks marked on the elytra apex were analyzed with special software from beetles’elytra flight videos via a high speed camera to explain the geometry of beetles’elytra opening and closing. Previous research has shown that the geometry of elytra opening and closing in some beetles are a planar rotation around a single axis across the scutellum. The elevated angle of elytra in opening is 30°~60°. Beetles choose an adaptive angle to adequately reduce energy use during flight. This indicates that the coupling mechanism of elytra permits rotation to be easily controlled while the process spends less energy and works more effectively.
     In conclusion, beetles’elytra are light-weight composite biomaterials with a high ratio of intensity to weight, high stress to fracture and excellent flexibility. The results of this work offer biomimetic reference for designing future light-weight, high intensity composites for use in aeronautics and astronautics industry.
引文
[1]叶家明,社会仿生论,香港,香港中华书局,1992:11~12。
    [2]吴娜,面向仿生应用的金龟子外型测量及量化分析,[博士学位论文],吉林,吉林大学,2006。
    [3]马祖礼,生物与仿生,天津,天津工业出版社,1984:13~14。
    [4]孙久荣,戴振东,仿生学的现状和未来,生物物理学报,2007,23(2):109~115。
    [5]路甬祥,仿生学的科学意义与前沿,科学中国人,2004,(4):22~24。
    [6]孙久荣,戴振东,非光滑表面仿生学(I),自然科学进展,2008,18(3):241~246。
    [7] Benyus J M, Biomimicry: Innovation Inspired by Nature,New York, William Morrow and Company, 1998。
    [8]赵子夫,仿生设计创造法,发明与革新,1999,(2)。
    [9]宋广庆,飞机升力的创新理论,科学中国人,2000,(2)。
    [10]陶东香,吴华,程嗣仪,现代飞机的雷达隐身技术,航天电子对抗,2003,(5):36~39。
    [11] Neinhuis C,Barthlott W,Characterization and distribution of water-repellent,self-clearing plant surfaces,Annas of Botany,1997,79(6):667~677。
    [12]孙久荣,戴振东,非光滑表面仿生学(Ⅱ),自然科学进展,2008,18(7):727~733。
    [13]戴振东,佟金,任露泉,仿生摩擦学研究及发展,科学通报,2006,51(1):1~7。
    [14] Dai Zhengdong,Yu Min,Gorb S N,Adhesion characteristics of polyurethane for bionic hairy foot, Journal of Intelligent Material Systems and Structures, 2006,17 (8): 737~741。
    [15]孙久荣,郭策,戴振东,等,蜣螂与壁虎刚毛的比较及改形对其功能的影响,动物学报,2005,51(4):761~767。
    [16]周骥平,武立新,朱兴龙,仿生扑翼飞行器的研究现状及关键技术,机器人技术与应用,2004,(6):12~18。
    [17]周骥平,朱兴龙,周建华,等,仿生扑翼飞行简化力学模型及其实验研究,中国机械工程,2007,18(6):631~634。
    [18]端义霞,周骥平,朱兴龙,仿生扑翼飞行机理的分析研究与技术发展,徐州工程学院学报,2007,22(4):27~32。
    [19]王书荣,自然的启示,上海,上海人民出版社,1976:78~81。
    [20]李世红,周本濂,郑宗光,一种在细微尺度上仿生的复合材料模型,材料科学进展,1991,5(6):543~547。
    [21]曾其蕴,李世红,周本濂,等,压缩竹材的研制及性能,林业科学,1994,30(3):254~258。
    [22]李世红,付绍云,周本濂,等,竹子-一种天然生物复合材料的研究,材料研究学报,1994,8(2):188~192。
    [23]任露泉,李建桥,陈秉聪,非光滑表面的仿生降阻研究,科学通报,1995,40(19):1812~1814。
    [24]丛茜,王连成,任露泉,等,凸包形推土板减粘降阻的仿生研究,工程机械,1995,(11):14~16。
    [25]Tong J, Wang H, Ma H, et al, Two-body abrasive wear of the outside shell surfaces of mollusk Lamprotula fibrosa Heude, Rapana venosa Valenciennes and Dosinia anus Philippi, Tribology Letters, 2005,19(4):331~338。
    [26]程红,孙久荣,任露泉,等,臭蜣螂体壁表面结构及其与减粘脱附功能的关系,昆虫学报,2002,45(2):175~181。
    [27]李建桥,李忠范,李重涣,等,仿生非光滑犁壁规范化设计,农机化研究,2004,11(6):119~121。
    [28]任露泉,杨卓娟,韩志武,生物非光滑耐磨表面仿生应用研究展望,农业机械学报,2005,36(7):144~147。
    [29]杜家纬,生命科学与仿生,生命科学,2004,16(5):318~323。
    [30]杜家纬,动植物功能性结构与分子仿生,科学中国人,2004,(4): 33~34。
    [31]杜家纬,从自然界中探寻之源,文汇报(科技文摘), 2003,497。
    [32]杜家纬,仿生梦幻,郑州,河南科学技术出版社,2000,280。
    [33]郭巧,现代机器人学—仿生系统的运动感知与控制,北京,北京理工大学出版社,1999。
    [34]奥华,前景广阔的仿生技术,电子展望,1997,(6):28~29。
    [35]王书荣,自然的启示,上海,上海人民出版社,1976,78~81。
    [36]Lu Yongxiang,Significance and Progress of Bionics,Journal of Bionics Engineering, 2004,1(1):1~3。
    [37]崔福斋,冯庆玲,生物材料学,北京,北京科学出版社, 1996,1~2。
    [38]王立铎,孙文珍,梁彤翔,等,仿生材料的研究现状,材料工程,1996,17(2):3~5。
    [39]张广平,戴干策,复合材料蜂窝夹芯板及其应用,纤维复合材料,2000,6(2):25~28。
    [40]周曦亚,复合材料,北京,化学工业出版社,2005。
    [41]周本濂,冯汗保,张弗天,等,复合材料的仿生探索,自然科学进展,1994,4(6):713~725。
    [42]杨志贤,戴振东,甲虫生物材料的仿生研究进展,复合材料学报,2008,25(2):1~9。
    [43]马惠钦,昆虫与仿生学浅淡,昆虫知识,2000,37(3):170~172。
    [44]马铁山,昆虫是人类仿生的不竭源泉,中学生物学,2004,20(3)。
    [45]肖艺,墓碑上的“蝴蝶”,发明与革新,1995,(3)。
    [46]孙茂,黄华,微型飞行器的仿生力学-蝴蝶飞行的气动力特性,北京航空航天大学学报,2006,32(10):1146~1151。
    [47]房岩,孙刚,王重庆,等,蝴蝶翅膀表面非光滑鳞片对润湿性的影响,吉林大学学报,2007,37(3)。
    [48]伍一军,陈瑞,李薇,昆虫仿生,昆虫知识,2005,42(1)。
    [49]张欣茹,姜泽毅,张欣欣,等,沙漠甲虫Stenocara与空气取水,科技导报(北京),2006,24(2)。
    [50]Andrew R P,Chris R L,Water capture by a desert beetle,Nature,2001,414:33~34。
    [51] Hamiltom W J,Henschel J R,Seely M K,Fog collection by Namib Desert beetles,South African Journal of Science,2003,4:181~182。
    [52]Summers A,Like water off a beetle's back,Natural History,2004,2:26~27。
    [53]Parker A,Hickey G,Water-harvesting Beetle,Nature Australia,2002,27:10~13。
    [54]曹旭平,罗庆生,王飞,一种仿生飞行机器人装配及运动动画的研究与制作,现代计算机,2007,(1)。
    [55]刘岚,方宗德,候宇,等,仿生微扑翼飞行器的翅翼设计与优化,机械科学与技术,2005,24(3)。
    [56]颜幸尧,朱善安,包含翅膀转动效应的昆虫简化气动力模型,浙江大学学报,2008, 42(4)。
    [57]张红鑫,卢振武,李凤有,人工仿生复眼的仿生研究,长春理工大学学报,2006,29(2)。
    [58]王谷岩,眼睛与仿生学,现代语文,2004,7。
    [59]吴卫国,吴梅英,昆虫视觉的研究及其应用,昆虫知识,1997,34(3):179~183。
    [60]肖战中,郄希发,王力,生物技术与基因武器,北京,军事宜文出版社
    [61]陶洪渊,仿生材料与微系统,科学中国人,2004,4。
    [62]陈德芳,仿生破壁蜂花粉用于虾饵添加剂,饲料工业,1992,13(4)。
    [63]彩万志,蜜蜂巢房的结构与仿生,昆虫知识,2001,38(2)。
    [64]庄元忠,李玉珊,仿生法加工生产蜂花粉产品的新工艺,蜜蜂杂志,2000,11。
    [65]汪栋,奇妙的仿生学,生物学教学,1995,(11):44~45。
    [66]崔福斋,郑传林,仿生材料,北京,化学工业出版社,2004,6~11。
    [67]戴振东,王卫英,张亚峰,等,高比强度甲虫外骨骼材料的结构、强度拓扑及其在深空探测中的应用,863-703主题,深空探测技术与科学专题研讨会,2005,68~72。
    [68]虞庆庆,杨志贤,戴振东,等,东方龙虱鞘翅微结构及力学性能研究,自然科学进展,2006,16(3): 365~369。
    [69]Stork N E,Adaptations of arboreal carabids to life in trees,Acta Phytopathol Entom Hungarica, 1987, 22(1):273~291。
    [70]M.谢尔格,S.戈尔博,微/纳米生物摩擦学—大自然的选择,北京,中国机械工业出版社,2004,6~10。
    [71]Stork N E ,A comparison of the adhesive setae on the feet of lizards and arthropods,J Nat Hist ,1983,17(4): 829~835。
    [72]Stork N E,The adherence of beetle tarsal setae to glass,J Nat Hist,1983,17(3): 583~597。
    [73]戴振东, Gorb S N, Schwarz U,甲壳虫脚爪微结构、在粗糙表面上的驱动力及其仿生研究,昆虫学报,2003。
    [74]Dai Z D,Gorb S N,Schwarz U,Roughness - dependent Friction Force of the Tarsal Claw System in the Beetle Pachnoda Marginata (Coleoptera , Scarabaeidae),J.Exp.Biol. , 2002 ,205(10) : 2479~2488。
    [75]戴振东,于敏,吉爱红,等,动物驱动足摩擦学特性研究及仿生设计,中国机械工程,2005,16(16):1454~1457。
    [76]Jiao Y K, Gorb N S, Scherge M,Adhesion measured on the attachment pads of Tettigonia viridissima (Orthopt era Insecta),J.ExpBiol,2000,203(8): 1887~1895。
    [77]戴振东, Gorb S N,蝗虫脚掌微结构及其接触的有限元研究,上海交通大学学报, 2003,37(1): 66~69。
    [78]Autumn K, Liang Y A, Hsieh T, et al,Adhesive force of a single gecko foot hair,Nature, 2000,405(6787):681~685。
    [79] Autumn K, Sitti M, Liang Y A, et al,Evidence for van der walls adhesion in gecko setae,PANS, 2002,99(19):12252~12256。
    [80] Peressadko A G, Gorb S N,Surface profile and friction force generated By insect,Proceedings of the First International Industrial Conference Bionik, 2004, 257~263。
    [81]王国林,任露泉,陈秉聪,蜣螂体表几何非光滑结构单元分布的分形特性,农业机械学报,1997,28(4): 5~9。
    [82]李建桥,任露泉,刘朝宗,等,减粘脱附仿生犁壁的研究,农业机械学报,1996,27(2):1~14。
    [83]李建桥,任露泉,陈秉聪,土壤动物非光滑体表几何单元的统计分析及模拟,农业工程学报,1995, 11(2):1~5。
    [84]王国林,推土板的仿生分形设计,农业工程学报,2000,16(5):23~25。
    [85]孙久荣,程红,丛茜,等,蜣螂(Coprisochus Motschulsky)减粘脱附的仿生学研究,生物物理学报,2001, 17(4): 785~793。
    [86]张迎春,海世伟,张金选,等,扫描电镜对锯齿叉趾铁甲背部形态的观察研究,陕西师范大学学报(自然科学版),2001,29(2):70~73。
    [87]张迎春,张莹,郑哲民,等,4种昆虫鞘翅表面超微结构的比较,西北大学学报(自然科学版), 2001,31(6): 522~524。
    [88]程红,陈茂生,孙久荣,臭蜣螂体壁的组织结构,昆虫学报,2003,46(4):429~435。
    [89]陈锦祥,倪庆清,李庆,等,“蜂窝-柱子”芯夹层轻量型仿生物复合材料结构,复合材料学报,2005, 22(2):103~108.
    [90]陈锦祥,倪庆清,甲虫前翅中的三维复合材料结构,复合材料学报,2003,20(6):61~66。
    [91]陈锦祥,倪庆清,徐英莲,甲虫前翅结构中的优化设计,复合材料学报,2004,21(5):88~92。
    [92]Cheng Jinxiang,Ni Qingqing,Yasuhisa Endo,et al, Distribution of trabeculae and elytral surface structures of the horned beetle (Allomyrina dichotoma),Entomologia Sinica, 2002,9(1):55~61。
    [93]Cheng Jinxiang,Ni Qingqing,Yasuhisa Endo,et al, Fine Structure of Trabecula in The Elytra of Allomyrina Dichotoma (linne) and Prosopocoilus Inclinatus ( motschulsky ) ( coleoptera: scarabaeidae),Entomologia Sinica,2001,8(2):115~123。
    [94]陈斌,彭向和,范镜泓,金龟子外甲壳的纤维增强特征和树枝状分叉纤维结构,材料研究学报,2003, 17(6): 630~636。
    [95]陈斌,生物复合材料的细观结构和仿生复合材料的研究,材料导报,1998,12(5):70~75。
    [96]陈斌,彭向和,范镜泓,生物自然复合材料的结构特征及仿生复合材料的研究,复合材料学报,2000,17(3):59~62。
    [97]Chen Bin,Pang Xianghe,et al,Research on the microstructure of insect cuticle and the strength of a biomimetic performed hole composite, Micron, 2002,33:571~574。
    [98] Chen Bin,Pang Xianghe,Fan Jinghong, Round-Hole-Fiber Distribution in Insect Cuticle and Biomimetic Research, JSME International Journal,2004,47(4):1128~1132。
    [99] Chen Bin, Pang Xianghe, et al, Helicoidal microstructure of Scarabaei cuticle and biomimetic research,Materials Science and Engineering,2006,423:237~242。
    [100]Gorb S N, Frictional surfaces of the elytra-to-body arresting mechanism in tenebrionid beetles(coleoptera:tenebrionidae): Design of co-opted fields of microtrichia and cuticle ultrastructure, 1998,27(3): 205~225。
    [101]Gorb S N,Goodwyn P J, Wing-locking mechanisms in aquatic Heteroptera, Journal of Morphology, 2003, 257(2):127~146。
    [102]Goodwyn P J, Gorb S N, Frictional properties of contacting surfaces in the hem- elytra-hindwing locking mechanism in the bug Coreus marginatus (Heteroptera, Coreidae), Journal of Comparative Physiology, 2004,190(7):575~580。
    [103]Goodwyn P J, Gorb S N, Attachment forces of the hemelytra-locking mechanisms in aquatic bugs (Heteroptera: Belostomatidae),Journal of insect physiology,2003,49(8):753~764。
    [104]Gorb S N, Attachment Devices of Insect Cuticle, Dordrect, Kluwer Academic Publisher, 2001。
    [105]Schuh, R T, Slater J A, True Bugs of the World(Hemiptera:Heteroptera), Classification and Natural History, London, Comstock Publishing Associates, 1995。
    [106]Weis-Fogh T, Jensen M, Biology and physics of locust flight. I: Basic principles in insect flight, A critical review, Phil. Trans. R. Soc. Lond. B, 1956, 239(2): 415~458。
    [107]Weis-Fogh T,Biology and physics of locust flight. II: Flight performance of the desert locust,Phil. Trans. R. Soc. Lond. B, 1956, 239(2):459~510。
    [108]Jensen M,Biology and physics of locust flight. III: The aerodynamics of locust flight,Phil. Trans.R. Soc. Lond. B., 1956, 239(2): 511~552。
    [109]Gorb S N, Kesel A, Berger J,Microsulpture of the wing surface in Odonata: evidence for cuticular wax covering,Arthropod Structure and Development, 2000,29(2): 129~135。
    [110]Wootton R J,Functional morphology of insect wings,Annual Review of Entomology, 1992, 37 (1): 113~140。
    [111]Wootton R J, Evans K E, Herbert R, Smith C W,The hind wing of the desert locust. I: Functional morphology and mode of operation,J. Exp. Biol. 2000,203(12): 2921~2931。
    [112]Combes S A, Daniel T L,Flexural stiffness in insect wings.II: Spatial distribution and dynamic wing bending,J. Exp. Biol.,2003, 20(12):2989~2997。
    [113]Combes S A, Daniel T L,Flexural stiffness in insect wings. I: Scaling andthe influence of wing venation,J. Exp. Biol., 2003, 206(12):2979~2987。
    [114]Smith C W, Herbert R, Wootton R J,Evans K E,The hind wing of the desert locust.II:Mechanical properties and functioning of the membrane,J. Exp. Biol. 2000, 203(12): 2933~2943。
    [115] Herbert R, Yong P G, Smith C W, et al, The hind wing of the desert locust (Schistocerca gregaria Forsk?l)III: A finite element analysis of a deployable structure,J. Exp. Biol. 2000,203(12): 2945~2955。
    [116]张福兴,机载电子设备中的螺纹联接,光电对抗与无源干扰,2002,(3):38~40。
    [117]寺岛树雄,纸谷利之,荻本健二,等,交会对接机构及其控制,川崎重工业技报,1990,(7):2~11。
    [118]甘楚雄,弹道导弹与运载火箭总体设计,北京,北京国防工业出版社,1996。
    [119]易维坤,杜斌,航天制造技术,北京,中国宇航出版社,2003:27~28。
    [120]河南省昆虫学会,河南昆虫志·鞘翅目(一),郑州,河南科学技术出版社,1999。
    [121]郑国锠,谷祝平,生物显微技术(第二版),北京,高等教育出版社,1992。
    [122]程时,彭学敏,生物医学电子显微技术,北京,高等教育出版社,1997。
    [123]郑叔芳,吴晓琳,机械工程测量学,北京,科学出版社,1999。
    [124]徐坚,自清洁功能的高分子仿生表面研究取得新进展,中国科学院院刊,2005,20(1):45~48。
    [125]张少实,庄茁,复合材料与粘弹性力学,北京,机械工业出版社,2005。
    [126] Julian F V, Vincent,Ulrike G.K.Wegst,Design and mechanical properties of insect cuticle,Arthropod Structrue & Development,2004,(33):187~199。
    [127] Tomoaki Y, Shinji N, Yukio K, Development of a self-contained wall-climbing robot with scanning type suction cups, Proceeding of the 1998 IEEE /RSJ International Conference on Intelligent Robots and Systems, Victoria ,1998:900~905。
    [128] Jun Xiao, Jizhong Xiao, Ning Xi, et al, Fuzzy controller for wall-climbing micro-robots, IEEE Transactions on fuzzy systems, 2004,12(4):466~480。
    [129] Juan C G, Manuel P, Manuel A, et al, A six-legged climbing robot for high payloads, In: Proceedings of 1998 IEEE International Conference on Control Applications, Trieste, Italy, 1998:446~450。
    [130] Wang Yan, Liu Shuliang, Xu Dianguo, et al, Development & application of wall-climbing robots, In: Proceedings of the 1999 IEEE International Conference on Robotics & Automation, Detroit, Michigan, 1999:1207~1212。
    [131] Kathryn A D, Andrew D H, Gorb S N, et al, A small wall-walking robot with compliant adhesive feet, In: 2005 IEEE /RSJ International Conference on Intelligent Robots and Systems, Edmonton, Alberta, Canada, 2005:4018~4023。
    [132] Menon C, Murphy M, Sitti M, Gecko inspired surface climbing robots, In: Proceedings of the IEEE International Conference on Robotics and Biomimetics, Shenyang, China, 2004:431~436。
    [133]王卫英,戴振东,杨志贤,等,龙虱吸盘超微结构与吸附能力研究,南京航空航天大学学报,2007,39(1): 75~79。
    [134] Bergsten J, Toyra A, Nilsson A N, Intraspecific variation and intersexual correlation in secondary sexual characters of three diving beetles (Coleoptera:Dytiscidae), Biological Journal of the Linnean Society, 2001,73(2): 221~232。
    [135] Gorb S N, Jiao Y, Scherge M, Ultrastructural architecture and mechanical properties of attachment pads in Tettigonia viridissima(Orthoptera: Tettigoniidae), Journal of the Comparative Physiology, 2000,186(2):821~831。
    [136] Beutel R G, Gorb S N,Ultrastructure of attachment specializations of hexapods(Arthropoda): evolutionary patterns inferred from a revised ordinal phylogeny, Journal of Zoological Systematics and Evolutionary Research, 2001,39(1):177~207。
    [137] Beutel R G, Gorb S N, A revised interpretation of the evolution of attachement structures in Hexapoda with special emphasis on Mantophasmatodea, Arthropod Systematics and Phylogeny, 2006,64(1):3~25。
    [138] Pohl H, Beutel R G, Fine structure of adhesive devices of Strepsiptera (Insecta), Arthropod Structure & Develop- ment, 2004,33(1):31~43。
    [139]戴振东,孙久荣,壁虎的运动及仿生研究进展,自然科学进展, 2006,16(5):519~523。
    [140] Sitti M, Fearing R S, Nanomolding Based Fabrication of Synthetic Gecko Foot-Hairs, IEEE Conference on Nanotechnology, Washington D C, USA, 2003:26~28。
    [141] Geim A K, Dubonos S V, Grigorieva I V, et al, Microfabricated adhesive mimicking gecko foot-hair, Nature Materials, 2003,2(7):461~463。
    [142]戴振东,惠春,Gorb S N,表面粗糙度对4种聚氨酯弹性体粘着性能的影响,摩擦学学报,2003,23(3):245~249。
    [143] Dai Zhendong, Yu Min, Gorb S N, Adhesion Characteristics of Polyurethane for Bionic Hairy Foot , Journal of Intelligent Material Systems and Structures, 2006, 17(8): 737~741。
    [144] Autumn K, Liang Y A, Hsieh S T, et al, Adhesive force of a single gecko foot-hair, Nature, 2000,405(2):681~685。
    [145] Breed R S, Ball E F, The interlocking mechanisms which are found in connection with the elytra of Coleoptera, Biol. Bull, 1909 , 6(1): 289~303。
    [146] Fiori G, La’sutura’elitrale dei coleotteri, In Atti del Congresso Nazionale Italiano di Entomologia, 1975, 10: 91~111。
    [147]戴振东,张亚锋,梁醒财,等,甲虫鞘翅间的锁合机构、联接力及其表面织构效应,中国科学(C辑),2008,38(6):542~549。
    [148] DAI ZhenDong, ZHANG YaFeng, LIANG XingCai, SUN JiuRong,Coupling between elytra of some beetles: Mechanism, forces and effect of surface texture,Science in China (Series C: Life Science), 2008,51(10):894~901。
    [149]桂力丰,曹用涛,机械工程材料测试手册·力学卷,沈阳,辽宁科学技术出版社,2001。
    [150]张泰华,微/纳米力学测试技术及其应用,北京,机械工业出版社,2005。
    [151]张泰华,杨业敏,纳米硬度技术的发展和应用,力学进展,2002,32(3):349~364
    [152] Oliver W C, Pharr G M, An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments,Journal of Materials Research,1992,7(6):1564~1583。
    [153] Pharr G M,Oliver W C,Brotzen F R,On the Generality of the Relationship Among Contact Stiffness,Contact Area,and Elastic Modulus During Indentation,Journal of Materials Research,1992,7(2):613~617。
    [154]上海第一医学院主编,组织胚胎学,北京,人民卫生出版社,1979:39~47。
    [155] Kurachi M, Takaku Y, Komiya Y,et al, The origin of extensive colour polymorphism in Plateumaris sericea , Naturwissenschaften, 2002,89(7):295~298。
    [156]张泰华,杨业敏,纳米硬度技术的发展和应用,力学进展,2002,32(3):349~364。
    [157] Po-Yu Chen, Yu-Min Lin,et al, Structure and mechanical properties of crab exoskeletons, Acta Biomaterialia,2007,12(1):1~10。
    [158] Sachs C, Fabritius H, Raabe D, Experimental investigation of the elastic-plastic deformation of mineralized lobster cuticle by digital image correlation, Journal of Strutural Biology, 2006, 155(2):409~425。
    [159] Schneider V P, Meurer I, The Indirect-Indirect Movement of the Elytra in the Rhinoeeros Beetles, Zool.JB.Physiol,1975,79(8):297~310。
    [160] Nachtigall, W, Zur Aerodynamik des Coleopteren-Fluges: wirken die Elytren als Tragfl?ch -en , Verh. Dtsch. Zool. Ges., 1964, 27(1):319~326。
    [161] Brodsky, A K, The Evolution of the Insect Flight, Oxford, Oxford University Press, 1994。
    [162] Frantsevich L, Dai Zhengdong, Wang Weiying ,et, Geometry of elytra opening and closing in some beetles, The Journal of Experimental Biology, 2005, 208: 3145~3158。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700