基于多刚体逆向运动学原理的人体运动测试技术及运动耦合特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在国家自然科学基金重点项目“机械仿生耦合设计原理与关键技术(No. 50635030)”的资助下,本文以人体运动作为研究对象,运用逆向运动学原理,通过建立人体多刚体运动生物力学模型,并设计和研制一套红外反光试验标记系统,应用三维光学运动捕捉技术和研发的试验测试方法,实现对人体全身各环节和各关节的运动测试,应用QTM软件和对SMAS软件进行二次开发和模块扩展,实现试验数据的处理和计算,对复杂的人体的上肢、下肢和脊柱运动功能的实现进行生物耦合和运动耦合的研究,以描述人体的空间运动行为,揭示人体空间运动的规律。
     将机械学的理论方法引入人体运动研究,运用机械学原理和数学的空间坐标变换等方法,建立了人体运动的17环节-16关节的多刚体运动模型,并对运动模型的组成进行物理描述,对模型的求解进行数学描述。
     设计并研制了一套基于所建模型参数要求的人体全身运动红外反光试验标记系统,系统包括人体全身17个运动环节的标记子系统和1个静态标定杆系统,每个标记子系统又包括静态解剖学标记点系统和动态技术标记点群系统,各系统之间相互配合,可以完成人体多种运动的试验测试。
     搭建三维运动捕捉系统测试平台,辅助自行研制的红外反光试验标记系统和研发的试验标定技术和试验测试方法,对8名健康亚洲成年男性分别进行3种运动速度(慢速、正常速和快速)和2种运动步态(走步和跑步)共6种运动状态(每种运动状态进行10次重复测试)的运动测试试验。
     应用QTM软件和SMAS软件,对试验数据进行3D重构、纠错、标定、数字滤波和降维等处理,以SMAS软件为基础进行二次开发和模块扩展,实现对人体上肢、下肢以及脊柱运动数据的同时计算,得到人体各关节和各环节的运动参数。
     通过研究人体的结构、形态、组成等生物学特征,探讨人体的生物耦合行为;通过对试验数据结果统计和绘图等分析,研究人体不同运动状态的运动周期、运动速度和运动时相,以及描述和揭示人体上肢、下肢和脊柱的空间位移和旋转运动的运动耦合特性。
     利用本文所建生物力学模型和研制的试验标记系统,同时搭建多设备同步测试平台,进行坐姿操作人机工程学和人体蹲-起生物力学的探索性试验研究,进一步验证所建生物力学模型和研制的试验标记系统在人体局部测试以及其他领域的应用。
     本文研究内容可以为工程仿生、人机工程、航空航天、国防军事、生物医学和体育竞技等领域的研究和应用,提供有效的研究方法和技术手段。
Testing and analysis of human motion is cross-frontier research area of science and engineering, which is related to human anatomy, human physiology, biomathematics, biomechanics, mechanics, and ergonomics, etc. and thus it is a highly comprehensive developing interdisciplinary research, in which the concepts and methods of biology, mathematics and engineering are needed to be applied.
     This dissertation, supported by Key Program of the National Natural Science Foundation of China (Grant No. 50635030), mainly focused on the study of human locomotion. From the viewpoints of biology, anatomy, and mechanics, the human multiple rigid-body kinematic models were established applying the theory of inverse kinematics. And a novel infrared reflective tracking marker system had been constructed using stereophotogrammetry techniques. So the 3-dimensional human motion had been successfully measured by the optical motion capture technology and the innovative experimental testing method. Based on QTM software as well as the further development and expansion modules of SMAS software, the kinematic parameters of human motion were successfully processed and calculated. And then, the biological coupling behavior and the kinematic coupling characteristics of the upper limb, the lower limb and the spine of human could be detailed analyzed, and consequently, the behavior and basic rules of human 3-dimensional motion were finally revealed. This research may provide the effective research methods and technical means for many research fields, such as biomimetic engineering, ergonomics, aeronautics and astronautics, defense and military, biomedicine engineering and sports competition, etc. The main research works and obtained conclusions of this dissertation are as follows:
     1. Based on the mechanical theory and inverse kinematics, human multiple rigid body kinematic models were successfully established. We introduced the mechanistic methods into the research of human motion, and simplified different segments of human body as rigid bodies, and the joints of human body as hinges. Thus, the human multiple rigid body kinematic models included 17 segments and 16 joints were established according to the bone structure and motion characteristics of human body. The models were composed of the segment-joint distributed model, segmental marker model, functional joint rotation center position model, human locomotor global coordinate system and segmental anatomical local coordinate systems. Each part of the models was described by physical methods, and the solution methods of the models were also introduced by the mathematic methods, such as the Spatial Coordinate Transformation, the Euler Transformation and the Finite Difference, etc.
     2. Based on the parameter requirements of the kinematic models, a novel infrared reflective tracking marker system had been constructed using stereophotogrammetry techniques. The system included 17 tracking sub-systems of the segmental motion of human body and 1 static calibration wand. Each tracking sub-system included a static anatomical landmark system and a dynamic technical marker cluster system. The whole tracking marker system was composed of 130 markers in total, including 42 markers of 5 segments of trunk and the spine, 34 markers of 6 segments of upper limbs, and 54 markers of 6 segments of lower limbs (please see appendix A). Depending on the interaction between these various sub-systems, we could carry out a series of experimental tests innovatively.
     3. Due to the developed innovative experimental testing methods, the 3-dimensional human motion had been successfully measured. By building up testing platform of motion capture system, using the novel infrared reflective tracking marker system, and utilizing a series of new techniques, such as the complementarities of static anatomical landmark and static calibration wand, the mapping of static anatomical landmark and dynamic technical marker cluster, dynamic calibration of the functional joint motion, etc., the 3-dimensional human motion experiments of eight Asian healthy mature men were successfully carried out. Under the same experimental conditions, each subject had been measured for six kinds of state of motion, including three kinds of velocities(slow, normal, fast) and two kinds of motion gait(walking, running), and ten repeated trials were accomplished in each kind of state of motion.
     4. Based on QTM software and SMAS software, the experimental data were successfully processed and calculated. Firstly, we utilized QTM software to actualize 3-dimensional data construction, data error correction and data calibration, etc. Secondly, we applied SMAS software to realize digital filter, and data dimensionality reduce, etc. Finally, based on the further development and expansion modules of SMAS software, we successfully calculated the experimental data of the upper limbs, the lower limbs and the spine, and obtained the kinematic parameters of human motion, including 3D displacements, angles of the segments, and the joints of human body.
     5. The biological coupling behavior and the kinematic coupling characteristics of the upper limbs and the lower limbs of human were analyzed. Firstly, motion cycle, motion phase and average velocity of human motion were calculated. The results showed that, in six kinds of different motion conditions (from slow walking to fast running), the motion cycle and the motion stance phase were gradually reduced, while the average velocities were gradually increased. Secondly, the biological coupling behavior of the upper limbs and the lower limbs were investigated. The results showed that, the upper and lower limbs of human showed significant characteristic of joint motion. It indicated that flexion/extension was the main motion feature in sagittal plane, while the lateral bending in coronal plane and the axial rotation in transverse plane were subsidiary motions. Finally, the kinematic coupling characteristics of the upper limbs and the lower limbs of human were analyzed. The results were as follows: 1) the kinematic coupling characteristics of upper limbs motion. The elbow joint and shoulder joint displayed synchronizing vertical displacement motion trend to achieve the transformation of kinetic energy to potential energy during the gait cycle; For angle-angle movements of joints, the flexion/extension-lateral bending of shoulder joint, the flexion/extension-axial rotation of shoulder joint, the flexion/extension of elbow joint-the flexion/extension of shoulder joint, and the flexion/extension of elbow joint-the axial rotation of shoulder joint all showed characteristics of coordinated kinematic coupling . And these coupling characteristics maintained the coordination, stability and balance of the human body during human gait locomotion. 2) The kinematic coupling characteristics of lower limbs motion. The angle-angle movements of the lower limbs, such as the ankle joint and the knee joint performed the synchronizing vertical displacement motion trend; the flexion/extension-lateral bending of shoulder joint, the flexion/extension-axial rotation of hip joint, the flexion/extension of ankle joint-the flexion/extension of knee joint, the flexion/extension of knee joint-the flexion/extension of hip joint, and the flexion/extension of knee joint-the axial rotation of hip joint all showed characteristics of coordinated kinematic coupling , which maintained the lower limbs to carry out the complex movements in a complete gait cycle motion, such as braking, balance, driving, etc.
     6. The biological coupling behavior and the kinematic coupling characteristics of the spine of human were analyzed. Firstly, the shape changes of the whole spinal were investigated in a complete gait cycle motion. The results demonstrated that the spine shape changed a little in the sagittal plane, but it periodically changed in the coronal plane and the transverse plane. Secondly, we systematically explored the biological coupling behavior of the human spine motion. The results showed that, the spine motion of human possessed remarkable features of segmental motion. It indicated that little motion of the segments in the sagittal plane was detected, while significant motion in the coronal plane and the transverse plane was discovered. Finally, the kinematic coupling characteristics of human spine were analyzed. Each segmental motion of the cervical, thoracic and lumbar performed coordinated kinematic characteristics in vertical displacement related to lateral displacement. In addition, the angle-angle segmental motion of the spine, such as the lateral bending-axial rotation of thoracic, the lateral bending-axial rotation of lumbar, the axial rotation of thoracic-the axial rotation of lumbar, the axial rotation of lumbar-the axial rotation of hip, the lateral bending of thoracic-the lateral bending of lumbar, and the lateral bending of lumbar-the lateral bending of hip all displayed the coordinated kinematic coupling characteristics, which ensured spine to adjust the center of mass of the human body and maintain the stability of the human body in human gait motion.
     7. Based on the kinematic model of human motion and the experimental tracking marker system we had built and developed, we also carried out some exploratory experiments. Applying the kinematic model and the experimental tracking marker system, and building up the testing platform for multi-device synchronization integrated motion capture system, forceplate system, EMG system, Ultrasound system, and signal synchronization trigger, we had exploratorily carried out the experiment of ergonomic operation of sit posture as well as sit-stand human motion. The experiments showed that, it was feasible to study the biomechanics of local position of human body using the testing platform for multi-device synchronization, and it also verified the applied feasibility in other research fields using this kinematic model and the experimental tracking marker system.
引文
[1] Y. C. Fung. Biomechanics: Mechanical Properties of Living Tissues (second edition) [M]. New York: Springer-Verlag, 1992.
    [2] Y. X. Lu. Significance and progress of bionics[J]. Journal of Bionics Engineering, 2004, 1(1): 1–3.
    [3]陈秉聪.车辆行走机构形态学及仿生减粘脱土理论[M].北京:机械工业出版社,2001.
    [4] W. B. Griffin, W. R. Provancher, M. R. Cutkosky. Feedback strategies for telemanipulation with shared control of object handling forces[J]. PRESENCE: Teleoperators and Virtual Environments, 2005, 14(6):720-731.
    [5] http://www.honda-taiwan.com.tw/tech/asimo/ASIMO01.html
    [6] http://tech.163.com/tm/031219/031219_120775.html
    [7]张梅霞,姚瑶,李妙,靳安民.四种新型仿生骨组织工程支架材料生物安全性评价[J].中国组织工程研究与临床康复,2008,12(19),3641-3644.
    [8]苏世虎,张建华,陶德华.仿生人工关节囊研究(1)-力学仿真[J].生物医学工程学杂志,2007,24(1),120-123.
    [9]赵江洪,人机工程学[M].北京:高等教育出版社,2006
    [10] S. Huang. Analysis of human body dynamics in simulated rear-end impacts[J]. Human Movement Science, 1998, 17(6): 821-838.
    [11] http://www.motionanalysis.com.cn/application/ergonomics.htm
    [12] http://www.hinews.cn/pic/0/10/30/24/10302452_526419.jpg
    [13] http://hiphotos.baidu.com/qq851365978/pic/item/6e5bccc23a31ce7cb319a8fd.jpg
    [14] R. Collins, A. Lipton, T. Kanade, et al. A system for video surveillance and monitoring: VSAM final report[R], CMU-RI-TR-00-12, Robotics Institute, Carnegie Mellon University, May, 2000.
    [15] HID[EB/OL]. http: //www-static.cc.gatech.edu/gvu/perception//projects/hid.
    [16] M. Naylor, C. Attwood. Annotated digital video for intelligent surveillance and optimized retrieval[R]. ADVI-SOR Conortium, 2003.
    [17]王亮,胡卫明,谭铁牛.基于步态的身份识别[J].计算机学报,2003,26(03): 353-360.
    [18] H. Ning, L. Wang, W. Hu, T. Tan. Articulated model based people tracking using motion models[C]. Proceedings of the 4th IEEE International Conference on Multimeia Interfaces,2002:383.
    [19]燕铁斌,窦祖林.实用瘫痪康复[M].北京:人民卫生出版社,1999
    [20]杨年峰.人体运动协调规律及其参数化描述[D].北京:清华大学,2004.
    [21] http://www.xinxuyao.com/products/body/1/4/200608315493.shtml
    [22] http://www.kyguke.com/three.php?sort=11&id=512
    [23]刘维平,王峰,曹伟国等.装甲车辆驾驶员虚拟人体运动控制[J].装甲兵工程学院学报,2008,22(3):47-49.
    [24] http://www.motionanalysis.com.cn/application/film%20and%20art.htm
    [25]丁海曙,容观澳,王广志.人体运动信息检测与处理[M].北京:宇航出版社,1992.
    [26]外骨骼式单兵智能装备技术研制突飞猛进[EB/OL]. http:// www.clzg.cn/xinwen/ 2008-10/ 08/ content _1620076.htm.
    [27] L. Ren, R. Jones and D. Howard. Dynamic analysis of load carriage biomechanics during level walking[J], Journal of. Biomechanics, 2005, 38(4), 853-863.
    [28] R. Green, L. Guan. Quantifying and recognizing human movement patterns from monocular video images-Part I: A new framework for modeling human motion[C]. IEEE Transactions on Circuits and systems for Video Technology, Special Issue on Image and Video-Based Biometrics, 2004,14: 179-190.
    [29]张文增,赵冬斌,陈强等.基于模型的人体运动参数检测[J].生物医学工程学杂志,2005,22(1):147-150.
    [30]赵晓军,黄强,彭朝琴等.基于人体运动的仿人型机器人动作的运动学匹配[J],机器人,2005,27(4):358-361.
    [31]李豪杰,林守勋,张勇东.基于视频的人体运动捕捉综述[J],计算机辅助设计与图形学学报,2006,18(11):1645-1651.
    [32]李振波,李华.基于运动生物力学的三维人体运动模型[J].系统仿真学报,2006,18(10):2992-2994.
    [33]龚光红,李宁.人体运动的测量与数据修正.测控技术[J],2003,22(4),21-23.
    [34]张振龙,陈慧宝,何毅.人体运动的三维分析.中国康复[J],1999,14(3),184-185.
    [35]陶增羽,人体膝关节的耦合特性及其前向不稳的步态分析[M],长春:吉林大学,2009.
    [36] G. Zhao, L. Ren, L. Ren, J. R. Hutchinson, L. Tian, J. S. Dai. Segmental kinematic coupling of the human spinal column during locomotion[J]. Journal of Bionic Engineering, 2008, 5(4):328-334.
    [37] L. Ren, G. Zhao, X. Jiang, et al. The measurement and analysis of gait information of the human body and biomimetic engineering[C]. Proceedings of the International Conference of Bionic Engineering (ICBE’06). Changchun, China: Luquan-Ren, September 17-20, 2006:181-184.
    [38]赵国如,任露泉,田丽梅.人体步态信息测量方法及其工程应用前景探讨[C].中国农业机械学会2006年学术年会论文集.中国,镇江,2006年11月:768-771.
    [39]运动生物力学编写组.运动生物力学(第二版)[M],北京:高等教育出版社,2000.
    [40] E. Muybridge. Complete Human and Animal Locomotion[M], New York: Dover Publishers, 1887.(Engl. transl., Berlin: Springer, 1991.)
    [41] M. A. Buckley, A. Yardley, G. R. Johnson, et al.. Dynamics of the upper limb during performance of the tasks of everyday living-a review of the current knowledge base[J]. Proceedings of the Institution of Mechanical Engineers. Part H, 1996, 210(4): 241-247.
    [42] T. L. Packer, M. Peat, U. Wyss, et al.. Examining the elbow during functional activities[J]. Occupational Therapy Journal of Research, 1990, 10(6): 323-333.
    [43] J. E. Cooper, E. Shweddyk, A. O. Quanbury, et al.. Elbow joint restriction:effect on functional upper limb motion during performance of three feeding activities[J]. Archives of Physical Medicine and Rehabilitation, 1993, 74(8): 805-809.
    [44] F. C. T. Van der helm, H. E. J. Veeger. Quasi-static analysis of muscle forces in the shoulder mechanism during wheelchair propulsion[J]. Journal of Biomechanics, 1996, 29(1): 39-52.
    [45] G. A. Borelli. De motu animalium[M], Lugduni Batavorum, 1679. (Engl. transl. P Maquet, Berlin: Springer, 1989.)
    [46]郑秀嫒,贾书惠,高云峰等.现代运动生物力学[M],北京:国防工业出版社,2002.
    [47]李建设,王良民.运动生物力学研究技术的发展与存在问题[J],中国运动医学杂志, 2002, 21(4): 389-391.
    [48] G. Hochmuth. Biomechanics of Athletic Movement[M], Berlin : Sport verlag Blerlin , 1984.
    [49] S. Siegler, R. Seliktar, W. Hyman. Simulation of human gait with the aid of a simple mechanical model[J]. Journal of Biomechanics, 1982, 15(6): 415-425.
    [50] T. A. McMahon. Mechanics of locomotion[J]. International Journal Robotics Research, 1984, 3(2): 4-28.
    [51] M. G. Pandy, N. Berme. A numerical method for simulating the dynamics of human walking[J]. Journal of Biomechanics, 1988, 21(12): 1043-1051.
    [52] M. L. Audu, D. T. Davy. The influence of muscle model complexity in musculoskeletal motion modeling[J]. Journal of Biomechanical Engineering, 1985, 107(2): 147-157.
    [53] T. S. Buchanan, D. A. Shreeve. An evaluation of optimization techniques for the prediction of muscle activation patterns during isometric tasks[J]. Journal of Biomechanical Engineering, 1996, 118(4): 565-574.
    [54] S. J. Piazza, S. L. Delp. The influence of muscles on knee flexion during the swing phase of gait[J]. Journal of Biomechanics, 1996, 29(6): 723-733.
    [55]赵杰.动态捕捉五大技术种类及光学式运动捕捉数据的实用技巧(上) [J].电视字幕特技与动画, 2009(2): 30-32.
    [56]乔建军.基于运动捕获的运动编辑技术研究[D].济南:山东大学,2007.
    [57]] T. W. Calvert,J. Chapman, A. Patla. Aspects of the kinematic simulation of human movement[J]. IEEE Computer Graphics and Applications,1982, 2(9): 41-50.
    [58] C. M. Ginsberg, D. Maxwell. Graphical marionette[C]. In Proceedings: ACM SIGGRAPH/SIGART Workshop on Motion, ACM Press, New York, 1983: 172-179.
    [59] B. Robertson. Mike, the talking head[J]. Computer Graphics World. 1988: 15-17.
    [60] G. Walters. The story of Waldo C. Graphic[C]. Course Notes: 3D character animation by computer,ACM SIGGRAPH’89, Boston, 1989: 65-79.
    [61].J. Kleiser. Character motion systems[C]. Course Notes: Character Motion Systems. ACM SIGGRAPH’93, Anaheim, CA, 1993: 33-36.
    [62] H. Tardif, Character animation in real time[C]. Panel: Applications of Virtual Reality I: Reports from the Field, ACM SIGGRAPH Panel Proceedings, 1991.
    [63] D. J. Sturman. A brief history of motion capture for computer character animation[C]. Course 9: Character Motion Systems, ACM SIGGRAPH'94, 1994.
    [64] http://www.vicon.com/
    [65] http://www.qualisys.com/
    [66] http://www.motionanalysis.com/
    [67] S. Dyer, J. Martin, J. Zulauf. Motion capture white paper[R]. Technical Report. Silicon Graphics, December 12, 1995.
    [68] http://ns3.freeheberg.com/~remicamb/Mocap/images/product_mocaptrack_animazoo _ gypsy5_2.jpg.
    [69] http://www.polhemus.com/polhemus_editor/assets/motion_VR_ent_lg.jpg.
    [70] K. Pullen, C. Bregler. Motion capture assisted animation: texturing and synthesis[C]. In proceedings: SIGGRAPH 2002, San Antonio, Texas, 2002: 501-508.
    [71] F. Liu, Y. Zhuang, F. Wu, Y Pan. 3D motion retrieval with motion index tree[J]. Computer Vision and Image Understanding, 2003, 92(2): 265-284.
    [72]J. Lee, J. Chai, P. S. A. Reitsma, K. Jessica. Interactive control of avatars animated with human motion data[C]. In proceedings: SIGGRAPH 2002, San Antonio, Texas, 2002: 491-500.
    [73] C. Y. Chao, S. P.Wu, M. Y. Yang. Content-based retrieval for human motion data[J]. Journal of Visual Communication and Image Representation, 2004, l5(3): 446-466,.
    [74] O. Arikan, D. A. Forsyth, J. F. O'Brien. Motion synthesis from annotations[J]. ACM Transactions on Graphics, 2003, 22(3): 402-408.
    [75] I. S. Lim, D. Thalmann, Key-posture extraction out of human motion data by curve simplification[C], EMBC2001, 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2001:1167-1169.
    [76] I. T. Jolliffe. Principal Component Analysis[M]. Series: Springer Series in Statistics, 2nd ed., New York: Springer, 2002.
    [77]王永强,基于子空间和流形的降维算法研究[D].合肥:中国科学技术大学,2006.
    [78] S. Roweis, L. Saul. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000, 290(5500): 2323-2326.
    [79] J. Tenenbaum, V. D. Silva, J. Langford. A global geometric framework for nonlinear dimensionality reduction[J]. Science, 2000, 290(5500): 2319-2323.
    [80] M. Belkin, P. Niyogi. Laplacian eigenmaps for dimensionality reduction and data rep-resentation[J]. Neural Computation, 2003, 15(6): 1373-1396.
    [81]徐力,郭巧,陈海英.虚拟人体运动系统建模方法研究[J],系统仿真学报,2004,16(8):1789-1793.
    [82] M. E. Gierke, R. R. Coerman. The biodynamics of human response to vibration and impact[J], Industrial medicine and surgery, 1963, 32: 30-32.
    [83] W. Liu, B. Nigg. A mechanical model to determine the influence of masses and mass distribution on the impact force during running[J]. Journal of Biomechanics, 2000, 33(2): 219-224.
    [84] E. P. Hanavan. A mathematical model of the human body[R]. AMRL Technical Report 64-102, Wright Patterson Air Force Base, Ohio, 1964.
    [85] T. R. Kane, M. P. Scher. Human self-rotation by means of limb movements[J]. Journal of Biomechanics,1970, 3(1): 39-49.
    [86] X. Zhou, F. L. Draganich, F. Amirouche. A dynamic model for simulating a trip and fall during gait[J]. Medical Engineering and Physics, 2002, 24(2): 121–127.
    [87] M. M. Ayoub. A 2-D simulation model for lifting activities[J]. Computer Industry Engineering, 1998, 35(3-4): 619-622.
    [88] H. Hatze. The complete optimization of human motions[J]. Mathematical Biosciences, 1976(1-2), 28: 99-135.
    [89] F. C. Anderson, M. G Pandy. A dynamic optimization solution for vertical jumping in three dimensions[J]. Computer methods in Biomechanics and Biomedical Engineering, 1999, 2(3): 201-231.
    [90] M. J. Ackerman. Viewpoint: the visible human project[J]. Journal Biocommunication, 1991, 18(2): 14.
    [91] B. W. Heller, P. H. Veltink, N. J. M. Rijkhoff, W. L. C. Rutten, B. J. Andrews. Reconstructing muscle activation during normal walking:a comparison of symbolic and connectionist machine learning techniques[J]. Biological Cybernetics, 1993, 69(4): 327–335.
    [92] F, Sepulveda, D. M. Wells, C. L.Vaughan. A neural network representation of electromyography and joint dynamics in human gait [J]. Journal of Biomechanics, 1993, 26(2): 101–109.
    [93] MIT校长谈生命科学和工程学的融合[EB/OL],http://166.111.152.68/index.php? option=com_content&task =view&id=258&Itemid=90
    [94]任露泉.地面机械脱附减阻仿生研究进展[J],中国科学E辑,2008,38(9):1353-1364.
    [95] L. Q. Ren. Progress in the bionic study on anti-adhesion and resistance reduction of terrain machines[J]. Science in China Series E: Technological Sciences, 2009, 52(2): 273―284.
    [96] K. Judge. The definition of coupling[EB/OL]. http://www.sharpy.dircon.co.uk/ index_files /DefinitionOfCoupling.htm
    [97]刘献祥,尉禹,王志彬.骨伤科生物力学研究[M],北京:北京科学技术出版社,2006.
    [98]刘执玉,应大君.系统解剖学(双语版)[M].北京:科学出版社,2005.
    [99]卢德明,王云德,严波涛.运动生物力学测量方法[M],北京:北京体育大学出版社,2002.
    [100] P. Devita. Effects of asymmetric load carrying on the biomechanics of walking[J]. Journal of Biomechanics, 1991, 24(12): 1119-1129.
    [101] F. M. L. Amirouche, S. K. Ider, J. Trimble. Analytical method for the analysis and simulation of human locomotion[J]. Journal of Biomechanical Engineering, 1990, 112(4): 379-386.
    [102] A. Cappozzo. Gait analysis methodology[J]. Human Movement Science, 1984, 3(1-2): 27–50.
    [103] S. S. H. U. Gamage, J. Lasenby. New least squares solutions for estimating the average centre of rotation and the axis of rotation[J], Journal of Biomechanics, 2002, 35(1): 87–93.
    [104] G. Wu, P. R. Cavanagh. ISB recommendations for standardization in the reporting data[J]. Journal of Biomechanics, 1995, 28(10): 1257-1261.
    [105] A. Cappozzo, F. Catani, U. D. Croce, A. Leardini. Position and orientation of bones during movement: anatomical frame definition and determination[J]. Clinical Biomechanics, 1995, 10(4): 171–178.
    [106] http://www.ulb.ac.be/project/vakhum/public_dataset/Doc/VAKHUM-3-Frame_Convention.pdf.
    [107] A. Cappozzo, U. D. Croce, A. Leardini, L. Chiari. Human movement analysis using stereophotogrammetry: Part 1: theoretical background[J]. Gait and Posture, 2005, 21(2): 186–196.
    [108] http://www.algeos.com/acatalog/Mulitcast_Rigid___Non_Perforated.html
    [109] L. Ren, R. Jones, D. Howard. Generalized approach to three-dimensional marker-based motion analysis of biomechanical multi-segment systems[C]. International Society of Biomechanics XXth Congress, Cleveland, Ohio, USA, 2005.
    [110] L. Ren, R. Jones, D. Howard. Whole body inverse dynamics over a complete gait cycle based only on measured kinematics[J]. Journal of Biomechanics, 2008, 41(12), 2750- 2759.
    [111] D. Winter, H. Sidwall, D. Hobson. Measurement and reduction of noise in kinematics of locomotion[J]. Journal of biomechanics, 1974, 7(2), 157-159.
    [112] J. H. Challis. A procedure for determining rigid body transformation parameters[J]. Journal of Biomechanics, 1995, 28(6): 733–737.
    [113] P. de Leva. Adjustments to Zatsiorsky-Seluyanov’s segment inertia parameters[J]. Journal of Biomechanics, 1996, 29(9), 1223–1230.
    [114] M. W. Whittle. Gait analysis: an introduction(second edition)[M]. U. K.: Reed Educational and professional publishing, 1997.
    [115] W. C. Whiting, S. Rugg. Dynatomy: dynamic human anatomy[M]. Human Kinetics Europe Ltd, 2005.
    [116] M.P. Murray, G. Guten, L. Mollinger, G. Gardner. Kinematic and electromyographic patterns of olympic racewalkers[J]. American Journal of Sports Medicine, 1983, 11(2), 68-74.
    [117]张志颖,吴丹.人体工程学[M].长沙:中南大学出版社,2007.
    [118] http://www.konjia.com/html/64/n-107464-4.html.
    [119] http://202.193.207.10/xtj/tuku/jiaoxue/jiaocai/yundong/html/guxue03.htm.
    [120]
    [121] A. Huxley. Muscle structure and theories of contraction[J]. Progress in biophysics and biophysical chemistry, 1957, 7: 255-318.
    [122] H. Huxley. The mechanism of muscular contraction[J]. Scientific American, 1965, 213(6): 18-27.
    [123] http://zh.wikipedia.org/zh-cn/File:Skeletal_muscle.jpg
    [124] http://www.konjia.com/html/64/n-107464-5.html.
    [125] L. Q. Ren, Y. H. Liang. Biological couplings: Classification and characteristic rules[J]. Science in China Series E: Technological Sciences, 2009, 52(10): 2791-2800.
    [126]任露泉,梁云虹.生物耦元及其耦联方式[J].吉林大学学报(工学版), 2009, 39(06):1504-1511.
    [127]张琰.蝼蛄触土部位生物耦合特性研究[D].长春:吉林大学,2008.
    [128] B.Drerup, B. Ellger, B. F. M. Meyer, E. Hierholzer. Functional rasterstereographic images. A new method for biomechanical analysis of skeletal geometry[J]. Orthopade, 2001, 30(4), 242–250.
    [129] M. A. Adams, N. Bogduk, K. Burton, P. Dolan. The Biomechanics of Back Pain[M], Edinburgh: Churchill Livingstone, 2002.
    [130] L. Chris, M. Stephen. Measurement of range of movement in the lumbar spine - what methods are valid? A systematic review[J]. Physiotherapy, 2007, 93(3), 201–211.
    [131] M. Pearcy, I. Portek, J. Shepherd. The effect of low-back pain on lumbar spinal movements measured by three-dimensional X-ray analysis[J]. Spine, 1985, 10(2), 150–153.
    [132] K. Takayanagi, K. Takahashi, M. Yamagata, H. Moriya, H. Kitahara, T. Tamaki. Using cineradiography for continuous dynamic-motion analysis of the lumbar spine[J]. Spine, 2001, 26(17), 1858–1865.
    [133] M. Syczewska, T. Oberg, D. Karlsson. Segmental movements of the spine during treadmill walking with normal speed[J]. Clinical Biomechanics, 1999, 14, 384–388.
    [134] L. Vogt, W. Banzer. Measurement of lumbar spine kinematics in incline treadmill walking[J]. Gait & Posture, 1999, 9, 18–23.
    [135] J. Crosbie, R. Vachalathiti, R. Smith. Patterns of spinal motion during walking[J]. Gait & Posture, 1997,5, 6–12.
    [136] W. Michael, L. David. Three-dimensional relationships between the movements of the pelvis and lumbar spine during normal gait[J]. Human Movement Science, 1999, 18(5), 681-692.
    [137] V. P. Stokes, C. Andersson, H. Forssberg. Rotational and translational movement features of the pelvis and thorax during adult human locomotion[J]. Journal of Biomechanics, 1989, 22(1), 43-50.
    [138] P. J. M. Scholten, A. G. Veldhuizen. The influence of spine geometry on the coupling between lateral bending and axial rotation[J]. Proceedings of the IMechE Part H: Journal of Engineering in Medicine, 1985, 14(4), 167-171.
    [139] J. Regina, F. Stefania, L. Rebecca, G. Aruna, A. Steven, O. Stephen. A kinematic model to assess spinal motion during walking[J]. Spine, 2006, 31(24), E898-E906.
    [140] http://www.konjia.com/html/64/n-107464-3.html.
    [141]刘献祥,尉禹,王志彬等.骨伤科生物力学研究[M],北京:北京科学技术出版社,2006.
    [142]刘英君.怎样保护好颈椎[N].人民日报海外版,2008-1-18(14).
    [143]丁玉兰.人机工程学[M].北京:北京理工大学出版社,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700