松软介质中弧形足运动特性分析及足—蹼复合推进两栖机器人研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水陆两栖机器人凭借其既能在陆地推进,又能在水中巡游的特性,能够完成许多陆地或水中单一推进方式的移动机器人所无法完成的两栖任务,例如地质灾害排险救援、农田病虫害状态监测、水陆两栖战场侦察通信等复杂环境下的作业,因此被全世界越来越多的研究人员所关注。目前对于水陆两栖机器人的研究工作大多集中在复合推进机构设计、简单水陆单一环境下的推进性能实验研究等方面,而对于影响水陆两栖机器人走向实用化的机器人推进机构在水陆过渡环境松软介质(如不同含水量的沙质或泥质介质)中的运动特性研究却很少涉及。此外,能够适应水、陆、过渡环境松软介质的合理而有效的两栖复合推进技术也亟待创新,只有了解了推进机构与水陆过渡环境松软介质之间的相互作用规律,建立行之有效的两栖推进方案,才能为将来能够真正服务于人类生产生活的水陆两栖机器人系统提供理论基础和设计准则。因此本研究具有重要的价值和意义。
     本论文以兼顾轮式和足式特点的弧形足推进机构与水陆过渡环境松软介质的相互作用机理出发,开展了弧形足在松软介质中推进过程力学行为分析计算、颗粒流仿真分析、松软介质土槽中多变量正交实验研究,基于可变形足-蹼复合两栖推进技术的水陆两栖机器人系统设计,水陆两栖机器人样机陆地、水中、水陆过渡环境推进性能实验测试等研究工作。论文的主要研究内容和成果如下:
     (1)对三种常见水陆过渡环境介质(干沙、湿沙、淤泥)进行了三轴抗剪强度测试,初步掌握了其土壤力学特性。通过微元法对弧形足在松软介质中运动的受力情况进行了分析,并利用拖杆实验获得力学模型参数,进而计算出固定旋转轴的不同构型参数下弧形足在一个运动周期内与沙质介质相互作用时推进力、支撑力及驱动力矩的变化规律。利用颗粒流仿真软件(PFC)对同样条件下的弧形足运动行为进行了仿真研究分析,对比所得到的推进力、支撑力及驱动力矩,不同足型的变化趋势基本一致,验证了理论分析方法的可行性及准确度,为弧形足式两栖机器人的机构设计及控制方式提供了设计参考。
     (2)自行搭建了水陆过渡环境松软介质实验土槽平台,对不同构型的弧形足在不同含水量的沙质介质、泥质介质环境,不同运动控制参数条件下的推进性能进行实验研究。由于变量多、实验难度较大,采用了正交实验和极差分析的方法,分别以推进过程中所消耗的能量、行进速度及重心起伏量为优化目标,分析了不同变量对推进性能影响的规律。结合之前理论分析及仿真研究的结果,更加深入地了解了弧形足与水陆过渡松软介质之间相互作用的关系,并得到了不同优化目标条件下的最佳参数组合。
     (3)基于弧形足在水陆过渡环境下推进时的支撑力和推进力相对平衡这一优点,我们设计了一种基于可变形足-蹼复合两栖推进的水陆两栖机器人(AmphiHex).它在陆地和过渡环境下利用弧形足行进,在水下通过推进机构变形使其能够依靠蹼的拍动实现多种机动动作。搭建了水陆两栖机器人的电路控制硬件系统。设计了AmphiHex在陆地和水下的常用步态。利用基于Hopf模型的中枢模式发生器(CPG)产生适合陆地和水下推进的步态信号,并初步实现了三角步态和同步步态之间的平顺转换,为CPG仿生控制方式在水陆两栖机器人两栖行为控制提供了新的思路。
     (4)对六足-蹼水陆两栖机器人/AmphiHex进行了大量实验,测试其环境适应性及两栖推进性能。陆地平坦地面上,机器人最大行走速度可达到约0.49m/s(0.58倍体长);爬坡最大角度约为35。;采用同步步态能够翻越最大高度180mm的垂直障碍物;可爬越单级台阶高度低于160mm的连续台阶。在水下,由于目前壳体阻力较大,最大巡游速度约为0.25m/s(约0.3倍体长);依靠六个蹼的不同动作组合,可实现原地转弯、上升、下潜、紧急制动等机动动作。水陆过渡环境中,通过改变足-蹼状态能够实现有效水陆转换。
An amphibious robot is a robot which should be adapted to various environmental conditions inland and underwater. It also could pass through complex medium terrain at the transitional zone between the land and water. Such a robot can find broad applications in resource exploration, disaster rescue, and reconnaissance, etc. Developing amphibious robots constitute a challenging research topic that has gained much attention from worldwide researchers. Current researches of amphibious robot are mainly focused on the design of the composite propulsion mechanism and the experimental study in the land and water. But the capability and effectiveness of the amphibious robot when locomoting at the transitional zone between the water and the land to which relatively little attention has been paid. In the real world, various complex terrains at the transitional zone are always not easily to be conquered with regard to a robot. In all of the complex terrains, the soft substrates which are common at the transitional zone is more difficult to the robot. This kind of complex terrain is quite a nightmare for most of the current amphibious robots. Furthermore, the selection of the amphibious propulsion methods also plays an important role in the construction of amphibious robot. Above all, it is meanful to understand the mechanism of interaction between the propulsion performer and soft substrates. In the like manner, we also need to promote the technology of amphibious composite propulsion method.
     In this paper, preliminary theoretical and simulation analysis are presented to explore the dynamics between the arched foot and soft substrates. An orthogonal experiment is conducted to study the locomotion performance of the propulsion unit equipped with arched feet in the sandy and muddy terrain with different water content. We presented the detailed structural design of the transformable foot-flipper propulsion mechanism and its driving module. Finally, basic propulsion experiments of the robot are launched, which verifies that the transformable foot-flipper mechanisms have enabled the amphibious robot to pass through rough land, soft substrate, and underwater, simultaneously. The main research contents and contributions of this thesis are listed as follows:
     (1) By testing three kinds of common water-land transitional environment medium's shear strength resistance (dry sand, wet sand, mud), we obtain the soil mechanical properties preliminarily. we use infinitesimal method to analysis the stress situation of the arc foot moving in soft medium, and take advantage of the experiment of the bar to achieve the mechanical model parameters, then calculate the variation of the propulsive force, supporting force and torque in one rotation period when the arc feet of different configuration parameters moving in the sand medium. We also make the arched foot motion simulation analysis in the same condition by using the Particle Flow Code (PFC), and the trends of the variation of different foot types are similar. It implies that the theoretical analysis method is feasible and the results of the theoretical analysis can provide design reference for the amphibious robots' mechanism design and control method.
     (2) We built the soft medium experimental platform which is in water-land transitional environment autonomously, and we do research on propulsion performance of different types of arc feet with different motion control parameter in sand medium and mud medium with different moisture content. Because of the large number of variables and the difficulty of experiment, in order to optimize the energy consuming, the speed of moving and the value of centroid fluctuation, we adopt the way of orthogonal test and range analysis to analysis the law of the different variables influence on propulsion performance from considering the results of the theory analysis and simulation, we can understand the relationship between the arc feet and the soft medium in water-land transitional environment deeper,and achieve the best combination of parameters under the conditions of different optimization goal.
     (3) It is suitable to adopting the arched foot as the propulsion performer in the soft substrates due to the balance of supportive force and forwarding force compared with the wheeled and straight leg methods. According this result, we proposed a novel amphibious robot with the foot-flipper composite propulsion mechanism. When proceeding terrestrial locomotion, the robot occupies six arc shaped legs and walks like a cockroach. By switching the legs to the flipper state, the robot could swim in the water and perform various maneuvering. The electrical system design of the robot is introduced. We also developed a neural control system using the central pattern generator (CPG) based on the Hopf model. It can easily generate the gait signals which are designed for the propulsion in land and underwater. The gait conversion between triple gait and synchronous gait is also realized.
     (4) Experimental study on the motion performance of six foot-flipper amphibious robot is carried out. In land, the maximum walking speed is up to approximately0.49m/s (0.58times of body length). The maximum angle of slope that can be conqued by the robot is about35degrees. The robot could go over a obstacle with the vertical height less than180mm and climb up continuous stairs with the single stair height less than160mm. In water, the robot could realize a linear maneuvering at about maximum speed of0.25m/s (0.3times of body length) because of the non-streamline of the body case. Thanks to the cooperation of six flippers, the robot can realize the motion including pivot turning, ascending, diving and braking. A landing motion has also been performed to verify the movement of the robot at soft muddy terrain between the water and land.
引文
[1]Dickinson M H, Farley C T, Full R J, et al. How animals move:an integrative view [J]. Science,2000,288(5463):100-106.
    [2]Lejeune T M, Willems P A, Heglund N C. Mechanics and energetics of human locomotion on sand [J]. Journal of Experimental Biology,1998,201(13):2071-2080.
    [3]Kokshaysky N V. Tracing the wake of a flying bird [J].1979.
    [4]Rayner J M V, Jones G, Thomas A. Vortex flow visualizations reveal change in upstroke function with flight speed in bats [J]. Nature,1986,321(6066):162-164.
    [5]Iagnemma K, Kang S, Shibly H, et al. Online terrain parameter estimation for wheeled mobile robots with application to planetary rovers [J]. Robotics, IEEE Transactions on, 2004,20(5):921-927.
    [6]Brooks C A, Iagnemma K. Vibration-based terrain classification for planetary exploration rovers [J]. Robotics, IEEE Transactions on,2005,21(6):1185-1191.
    [7]Wong J Y. Theory of ground vehicles [M]. Wiley-Interscience,2001.
    [8]Ward C C, Iagnemma K. A dynamic-model-based wheel slip detector for mobile robots on outdoor terrain [J]. Robotics, IEEE Transactions on,2008,24(4):821-831.
    [9]Bekker M G. Theory of land locomotion:the mechanics of vehicle mobility [M]. University of Michigan Press,1956.
    [10]Cavagna G A, Heglund N C, Taylor C R. Mechanical work in terrestrial locomotion:two basic mechanisms for minimizing energy expenditure[J]. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology,1977,233(5): R243-R261.
    [11]Hu D L, Nirody J, Scott T, et al. The mechanics of slithering locomotion [J]. Proceedings of the National Academy of Sciences,2009,106(25):10081-10085.
    [12]Tritton D J. Physical fluid dynamics [J]. Oxford, Clarendon Press,1988,536 p.,1988,1.
    [13]童秉纲.鱼类波状游动的推进机制[J].力学与实践,2000,22(3):69-74.
    [14]童秉纲,陆夕云.关于飞行和游动的生物力学研究[J].力学进展,2004,34(1):1-8.
    [15]Lighthill M J. Note on the swimming of slender fish [J]. J. Fluid Mech,1960,9(2): 305-317.
    [16]Wu T Y. Hydromechanics of swimming propulsion. Part 1. Swimming of a two-dimensional flexible plate at variable forward speeds in an inviscid fluid [J]. J. Fluid Mech,1971,46(2):337-355.
    [17]Cheng J Y, Zhuang L X, Tong B G. Analysis of swimming three-dimensional waving plates [J]. J. Fluid Mech,1991,232:341-355.
    [18]Bekker M.G.,地面——车辆系统导论[M],北京:机械工业出版社,1978
    [19]J.Y.Wong,地面车辆原理[M],北京:机械工业出版社,1985
    [20]庄继德,计算汽车地面力学[M],北京:机械工业出版社,2002
    [21]Wong J Y, Huang W. "Wheels vs. tracks"-A fundamental evaluation from the traction perspective [J]. Journal of Terramechanics,2006,43(1):27-42.
    [22]Falk A. Advanced mobility in difficult terrain [J]. Journal of terramechanics,2004,41(2): 101-111.
    [23]Sohl G, Jain A., Wheel-terrain contract modeling in the roams planetary rover simulation[A].Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineer Conference [C]. NY, USA: ASME,2005.89-97
    [24]Richter L, Ellery A, Gao Y, et al. A predictive wheel-soil interaction model for planetary rovers validated in testbeds and against MER Mars rover performance data [C]. European Planetary Science Congress 2006.2006,1:343.
    [25]Nakashima H, Fujii H, Oida A, et al. Parametric analysis of lugged wheel performance for a lunar microrover by means of DEM [J]. Journal of Terramechanics,2007,44(2): 153-162.
    [26]Shibly H, Iagnemma K, Dubowsky S, An equivalent soilmechanics formulation for rigid wheels in deformable terrain, with application to planetary exploration rovers [J]. Journal of Terramechanics,2005,42(1):1-13
    [27]Iagnemma K, Shibly H. Dubowsky S, On-line terrain parameter estimation for planetary rovers[A]. Proceedings of the 2002 IEEE International Conference on Robotics and Automation [C]. Piscataway, NJ, USA:IEEE,2002 3142-3147
    [28]Iagnemma K, Kang S, Shibly H, Online terrain parameter estimation for wheeld mobile robots with application to planetary rovers [J]. IEEE Transactions on Robotics,2004, 20(5):921-927
    [29]Lauria M, Piguet Y, Siegwat R, Octopus-an autonomous wheeled climbing robot. Proceedings of the Fifth International Conference on Climbing and Walking Robot [C]. Suffolk, UK, Professional Engineering Publishing Limited,2002 315-322
    [30]任露泉,贾阳,李建桥等,月球车行走性能地面模拟实验方案设想[C].中国宇航学会深空探测技术专业委员会第二次学时年会,北京2005,10:458-466
    [31]邹猛,李建桥,贾阳等,月壤静力学特性的离散元模拟研究[J].吉林大学学报,2006, 38(2):383-387
    [32]邹猛,李建桥,任露泉等,月面探测车辆牵引通过特性研究[J].深空探测研究.2007,5(3):16-21
    [33]孙鹏,高峰,李雯等,深空探测车可变直径车轮牵引通过性分析[J].北京航空航天大学学报,2007,33(12):1404-1407
    [34]孙刚,高峰,李雯,地面力学及其在行星探测研究中的应用[J].力学进展,2007,37(3):453-465
    [35]陶建国,王林,吴凤久,邓宗全.月球车车轮与土壤相互作用的力学特性分析[J].机械设计与制造.2006,(12):56-57.
    [36]陶建国,胡明,高海波等.月球车刚性车轮与土壤相互作用的力学模型与测试.空间科学学报.2008,28(4);340-344
    [37]陶建国,全齐全,邓宗全,赵文德.月球车不等径车轮在土壤上滚动的力学分析与实验[J].哈尔滨工程大学学报.2007,28(10):1144-1149.
    [38]Yang R, Xu M, Liang X, et al. Experimental study and DEM analysis on rigid driving wheel's performance for off-road vehicles moving on loose soil [C]. Mechatronics and Automation (ICMA),2011 International Conference on. IEEE,2011:142-147.
    [39]Ezcurra E. Global deserts outlook [M]. UNEP/Earthprint,2006.
    [40]Jaeger H M, Nagel S R, Behringer R P. Granular solids, liquids, and gases [J]. Reviews of Modern Physics,1996,68(4):1259-1273.
    [41]Leo P. Kadanoff. Built upon sand:Theoretical ideas inspired by granular flows. Rev. Mod. Phys.71,435-444,1999
    [42]孙其诚,王光谦.颗粒物质力学导论,科学出版社,2009
    [43]Kumagai J. Sand trap [J]. Spectrum, IEEE,2004,41 (6):44-50.
    [44]Mazouchova N, Gravish N, Savu A, et al. Utilization of granular solidification during terrestrial locomotion of hatchling sea turtles [J]. Biology letters,2010,6(3):398-401.
    [45]Maladen R D, Ding Y, Umbanhowar P B, et al. Mechanical models of sandfish locomotion reveal principles of high performance subsurface sand-swimming [J]. Journal of The Royal Society Interface,2011,8(62):1332-1345.
    [46]Maladen R D, Ding Y, Umbanhowar P B, et al. Undulatory swimming in sand: experimental and simulation studies of a robotic sandfish [J]. The International Journal of Robotics Research,2011,30(7):793-805.
    [47]Maladen R D, Ding Y, Li C, et al. Undulatory swimming in sand:subsurface locomotion of the sandfish lizard [J]. Science,2009,325(5938):314-318.
    [48]Li C, Umbanhowar P B, Komsuoglu H, et al. Sensitive dependence of the motion of a legged robot on granular media [J]. Proceedings of the National Academy of Sciences, 2009,106(9):3029-3034.
    [49]Li C, Umbanhowar P B, Komsuoglu H, et al. The effect of limb kinematics on the speed of a legged robot on granular media [J]. Experimental mechanics,2010,50(9): 1383-1393.
    [50]Albert R, Pfeifer M A, Barabasi A L, et al. Slow drag in a granular medium [J]. Physical review letters,1999,82(1):205-208.
    [51]Albert I, Tegzes P, Kahng B, et al. Jamming and fluctuations in granular drag [J]. Physical Review Letters,2000,84(22):5122-5125.
    [52]Gravish N, Umbanhowar P B, Goldman D I. Force and flow transition in plowed granular media [J]. Physical review letters,2010,105(12):128301.
    [53]Ding Y, Gravish N, Goldman D I. Drag induced lift in granular media [J]. Physical Review Letters,2011,106(2):028001.
    [54]王兆印,任裕民,王兴奎.宾汉体泥浆湍流的结构特征[J].水利学报,1992,(12):9-17.
    [55]McAnally W H, Friedrichs C, Hamilton D, et al. Management of fluid mud in estuaries, bays, and lakes. Ⅰ:present state of understanding on character and behavior [J]. Journal of Hydraulic Engineering,2007,133(1):9-22.
    [56]Chowdhury M R, Testik F Y. Viscous propagation of two-dimensional non-Newtonian gravity currents [J]. Fluid Dynamics Research,2012,44(4):045502.
    [57]Chowdhury M R, Testik F Y. Laboratory testing of mathematical models for high-concentration fluid mud turbidity currents [J]. Ocean Engineering,2011,38(1): 256-270.
    [58]Saranli U, Buehler M, Koditschek D E. Design, modeling and preliminary control of a compliant hexapod robot [C]. Robotics and Automation,2000. Proceedings. ICRA'00. IEEE International Conference on. IEEE,2000,3:2589-2596.
    [59]Altendorfer R, Moore N, Komsuoglu H, et al. RHex:A biologically inspired hexapod runner [J]. Autonomous Robots,2001,11(3):207-213.
    [60]Koditschek D E, Full R J, Buehler M. Mechanical aspects of legged locomotion control [J]. Arthropod Structure & Development,2004,33(3):251-272.
    [61]Moore E Z, Campbell D, Grimminger F, et al. Reliable stair climbing in the simple hexapod'RHex1 [C]. Robotics and Automation,2002. Proceedings. ICRA'02. IEEE International Conference on. IEEE,2002,3:2222-2227.
    [62]Saranli U, Buehler M, Koditschek D E. RHex:A simple and highly mobile hexapod robot [J]. The International Journal of Robotics Research,2001,20(7):616-631.
    [63]Goldman D, Komsuoglu H, Koditschek D. March of the sandbots [J]. Spectrum, IEEE, 2009,46(4):30-35.
    [64]Galloway K C, Haynes G C, Ilhan B D, et al. X-RHex:A highly mobile hexapedal robot for sensorimotor tasks [J].2010.
    [65]Galloway K C, Clark J E, Yim M, et al. Experimental investigations into the role of passive variable compliant legs for dynamic robotic locomotion [C]. Robotics and Automation (ICRA),2011 IEEE International Conference on. IEEE,2011:1243-1249.
    [66]Holmes P, Full R J, Koditschek D, et al. The dynamics of legged locomotion:Models, analyses, and challenges [J]. Siam Review,2006,48(2):207-304.
    [67]Altendorfer R, Koditschek D E, Holmes P. Stability analysis of a clock-driven rigid-body SLIP model for RHex [J]. The International Journal of Robotics Research,2004, 23(10-11):1001-1012.
    [68]Haynes G C, Pusey J, Knopf R, et al. Laboratory on legs:an architecture for adjustable morphology with legged robots [C]. SPIE Defense, Security, and Sensing. International Society for Optics and Photonics,2012:83870W-83870W-14.
    [69]Johnson A M, Koditschek D E. Toward a vocabulary of legged leaping [C]. IEEE Intl. Conference on Robotics and Automation.2013.
    [70]Boxerbaum A S, Werk P, Quinn R D, et al. Design of an autonomous amphibious robot for surf zone operation:Part I mechanical design for multi-mode mobility [C]. Advanced Intelligent Mechatronics. Proceedings,2005 IEEE/ASME International Conference on. IEEE,2005:1459-1464.
    [71]Harkins R, Ward J, Vaidyanathan R, et al. Design of an autonomous amphibious robot for surf zone operations:part II-hardware, control implementation and simulation [C]. Advanced Intelligent Mechatronics. Proceedings,2005 IEEE/ASME International Conference on. IEEE,2005:1465-1470.
    [72]Boxerbaum A S, Klein M A, Bachmann R, et al. Design of a semi-autonomous hybrid mobility surf-zone robot [C]. Advanced Intelligent Mechatronics,2009. AIM 2009. IEEE/ASME International Conference on. IEEE,2009:974-979.
    [73]Prahacs C, Saudners A, Smith M K, et al. Towards legged amphibious mobile robotics [J]. Proceedings of the Canadian Engineering Education Association,2011.
    [74]Dudek G, Giguere P, Prahacs C. et al. Aqua:An amphibious autonomous robot [J]. Computer,2007,40(1):46-53.
    [75]Theberge M, Dudek G. Gone swimming [seagoing robots] [J]. Spectrum, IEEE,2006, 43(6):38-43.
    [76]AQUA2 amphibious robot is super cute and fast, less annoying than most pets because it has no head, http://www.engadget.com/2010/07/08/aqua2-amphibious-robot-is-super-cute-and-fast-less-annoying-tha/
    [77]German A, Jenkin M. Gait synthesis for legged underwater vehicles [C]. Autonomic and Autonomous Systems,2009. ICAS'09. Fifth International Conference on. IEEE,2009: 189-194.
    [78]Hirose S, Yamada H. Snake-like robots [tutorial] [J]. Robotics & Automation Magazine, IEEE,2009,16(1):88-98.
    [79]Hopkins J K, Spranklin B W, Gupta S K. A survey of snake-inspired robot designs [J]. Bioinspiration & biomimetics,2009,4(2):021001.
    [80]Ijspeert A J, Crespi A, Ryczko D, et al. From swimming to walking with a salamander robot driven by a spinal cord model [J]. Science,2007,315(5817):1416-1420.
    [81]Ijspeert A J, Crespi A, Cabelguen J M. Simulation and robotics studies of salamander locomotion [J]. Neuroinformatics,2005,3(3):171-195.
    [82]Crespi A, Ijspeert A J. Online optimization of swimming and crawling in an amphibious snake robot [J]. Robotics, IEEE Transactions on,2008,24(1):75-87.
    [83]Ijspeert A J.2008 Special Issue:Central pattern generators for locomotion control in animals and robots:A review [J]. Neural Networks,2008,21(4):642-653.
    [84]Crespi A, Karakasiliotis K, Guignard A, et al. Salamandra robotica Ⅱ:an amphibious robot to study salamander-like swimming and walking gaits [J]. Robotics, IEEE Transactions on,2013,29(2):308-320.
    [85]Yang Q, Yu J, Tan M, et al. Preliminary development of a biomimetic amphibious robot capable of multi-mode motion [C]. Robotics and Biomimetics,2007. ROBIO 2007. IEEE International Conference on. IEEE,2007:769-774.
    [86]Yang Q, Yu J, Tan M, et al. A multi-mode biomimetic amphibious robot [C]. Intelligent Control and Automation,2008. WCICA 2008.7th World Congress on. IEEE,2008: 3236-3241.
    [87]Wang W, Yu J, Ding R, et al. Bio-inspired design and realization of a novel multimode amphibious robot [C]. Automation and Logistics,2009. ICAL'09. IEEE International Conference on. IEEE,2009:140-145.
    [88]Ding R, Yu J, Yang Q, et al. CPG-based dynamics modeling and simulation for a biomimetic amphibious robot [C]. Robotics and Biomimetics (ROBIO),2009 IEEE International Conference on. IEEE,2009:1657-1662.
    [89]王卫兵,喻俊志,成斌等.两栖仿生机器鱼Ⅰ的建模及推进机构设计[J].石河子大学学报(自然科学版),2009,27(1):92-96.
    [90]王卫兵,马燕,裴晓锐等.两栖仿生机器鱼行为方式及其实现[J].机械,2009,36(3):53-55.
    [91]葛云,马燕,裴晓锐等.两栖仿生机器鱼机构设计及初步运动仿真[J].机械研究与应用,2009,(1):32-33.
    [92]Ding R, Yu J, Yang Q, et al. Robust gait control in biomimetic amphibious robot using central pattern generator [C]. Intelligent Robots and Systems (IROS),2010 IEEE/RSJ International Conference on. IEEE,2010:3067-3072.
    [93]Ding R, Yu J, Yang Q, et al. CPG-based behavior design and implementation for a biomimetic amphibious robot [C]. Robotics and Automation (ICRA),2011 IEEE International Conference on. IEEE,2011:209-214.
    [94]Yu J, Ding R, Yang Q, et al. On a bio-inspired amphibious robot capable of multimodal motion [J]. Mechatronics, IEEE/ASME Transactions on,2012,17(5):847-856.
    [95]Tang Y, Zhang A, Yu J. Modeling and Optimization of Wheel-Propeller-Leg Integrated Driving Mechanism for an Amphibious Robot [C]. Information and Computing Science, 2009. ICIC'09. Second International Conference on. IEEE,2009,4:73-76.'
    [96]宋吉来,俞建成,公丕亮,李智刚.轮桨腿一体化两栖机器人控制系统设计,微计算机信息,2009,25(5):208-210
    [97]Yu J, Tang Y, Zhang X, et al. Design of a wheel-propeller-leg integrated amphibious robot [C]. Control Automation Robotics & Vision (ICARCV),2010 11th International Conference on. IEEE,2010:1815-1819.
    [98]Guo W, Yu Y, Yu J. Control system design of the Wheel-Paddle-Leg Integration Amphibious Robot [C]. Intelligent Control and Automation (WCICA),2010 8th World Congress on. IEEE,2010:6428-6432.
    [99]张少伟,俞建成,张艾群等.轮桨腿一体两栖机器人推进系统控制分配研究[J].机械设计与制造,2010,(12):147-149.
    [100]马秀云,俞建成,张竺英.足板驱动两栖机器人陆地运动研究[J].机械设计与制造,2010,(3):151-153.
    [101]Li-quan W, De-feng L, Dong-liang C, et al. The virtual prototype design and simulation of amphibious bio-crab robot with variable posture [C]. Robotics and Biomimetics (ROBIO),2009 IEEE International Conference on. IEEE,2009:2140-2145.
    [102]王沫楠,王立权,孟庆鑫等.基于ADAMS软件两栖仿生机器蟹的动力学建模与仿真[J].哈尔滨工程大学学报,2003,24(4):355-358.
    [103]王立权,孙磊,陈东良等.仿生机器蟹样机研究[J].哈尔滨工程大学学 报,2005,26(5):591-595.
    [104]王沫楠,王立权,孟庆鑫等.两栖仿生机器蟹行走过程运动学研究[J].哈尔滨工程大学学报,2003,24(2):179-183.
    [105]袁鹏,孟庆鑫,王沫楠等.两栖仿生机器蟹的单足路径规划和生成[J].哈尔滨工程大学学报,2003,24(3):296-301.
    [106]吴明阳,孟庆鑫,王沫楠等.电机驱动型两栖仿生机器蟹步行腿研究[J].电机与控制学报,2005,9(4):307-310,315.
    [107]陈东良,孟庆鑫,王立权等.仿生机器蟹变结构力觉传感器的设计及数据处理[J].哈尔滨工程大学学报,2006,27(1):118-122.
    [108]王沫楠,孙立宁,孟庆鑫等.两栖仿生机器蟹动力学建模及能量最优分配[J].哈尔滨工业大学学报,2006,38(2):173-176.
    [109]王沫楠,孙立宁.仿生机器蟹步行腿结构设计及运动学、动力学分析[J].机械设计与研究,2005,21(5):41-44.
    [110]王沫楠,杨玉春.仿生机器蟹的模型建立及优化[J].哈尔滨理工大学学报,2003,8(6):1-3.
    [111]罗红魏.两栖仿生机器蟹关键技术研究[D].哈尔滨工程大学,2007.
    [112]冯巍,杨洋,周静等.小型两栖机器人推进机构设计与水动力学分析[J].机械科学与技术,2006,25(11):1325-1327,1372.
    [113]周静,杨洋,边宇枢等.小型两栖机器人机构与系统的研究[C].//材料科学与工艺.2006:87-91.
    [114]孙安,高雪官,吴斌等.四足两栖仿生机器龟的研究[J].机械,2004,31(5):12-13,16.
    [115]孙安,吴斌,高雪官,水陆两栖仿生机器龟[P].中国:公开号CN1537703.2004-10-20
    [116]Ding R, Yu J, Yang Q, et al. Kinematics modeling and simulation for an amphibious robot:Design and implementation [C]. Automation and Logistics,2009. ICAL'09. IEEE International Conference on. IEEE,2009:35-40.
    [117]Zuo Z, Wang Z, Li B, et al. Serpentine locomotion of a snake-like robot in water environment [C]. Robotics and Biomimetics,2008. ROBIO 2008. IEEE International Conference on. IEEE,2009:25-30.
    [118]Yu S, Ma S, Li B, et al. An amphibious snake-like robot:Design and motion experiments on ground and in water [C]. Information and Automation,2009. ICIA'09. International Conference on. IEEE,2009:500-505.
    [119]Li B, Ma S, Ye C, et al. Development of an amphibious snake-like robot [C]. Intelligent Control and Automation (WCICA),2010 8th World Congress on. IEEE,2010:613-618
    [120]Yu S, Ma S, Li B, et al. An amphibious snake-like robot with terrestrial and aquatic gaits [C]. Robotics and Automation (ICRA),2011 IEEE International Conference on. IEEE,2011:2960-2961.
    [121]邹猛.月面探测车辆驱动轮牵引性能研究[D].吉林大学博士学位论文,吉林大学,2008.
    [122]冯启山.刚性轮与松软地面相互作用研究及仿真软件开发[D].吉林大学硕士学位论文,吉林大学,2001.
    [123]庄继德.汽车地面力学[M].北京:机械工业出版社,1980.
    [124]刘振学,黄仁和,田爱民.实验设计与数据处理[M].北京:化工出版社,2012
    [125]刘文卿.实验设计——应用统计学系列教材[M].北京:清华大学出版社,2005
    [126]Kamimura A, Kurokawa H, Yoshida E, et al. Automatic locomotion design and experiments for a modular robotic system [J]. Mechatronics, IEEE/A SME Transactions on,2005,10(3):314-325.
    [127]Sfakiotakis M, Tsakiris D P. Biomimetic centering for undulatory robots [J]. The International Journal of Robotics Research,2007,26(11-12):1267-1282.
    [128]Matsuoka K. Sustained oscillations generated by mutually inhibiting neurons with adaptation [J]. Biological cybernetics,1985,52(6):367-376.
    [129]Righetti L, Buchli J, Ijspeert A J. Dynamic hebbian learning in adaptive frequency oscillators [J]. Physica D:Nonlinear Phenomena,2006,216(2):269-281.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700