精密动态测量精度检测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
动态测量技术作为一种新兴的测量技术已经越来越多地被应用于各种测量场合,使得测量技术无论从效率还是技术内涵上都发生了较大的变革。不同于传统的静态测量技术,动态测量的特性决定了其精度评定和数据处理方法的复杂性。随着动态测量应用的日趋广泛,对于动态测量误差的研究具有很强的必要性,本文的研究目的就是期望通过一定的方法和技术手段为动态测量提供有效的检测平台并能够通过实践完成对动态测量的检测。
     文中首先根据动态测量传感器及精密机电设备的应用现状提出了搭建高精度动态检测平台的方案,给出了检测方案的工作原理。通过对几种潜在解决方案的分析,确立了最优方案;基于检测平台的基本原理,分别设计实现了20cm、60cm动态检测平台缩尺模型,完成了模型机械结构设计实践及部分相关设备的性能测试,在缩尺模型基础上完成了100cm检测平台的机械结构设计和性能测试;针对检测系统的组成分别对时间系统、光电位置传感器、电机及机械结构的精度进行了分析,根据各组成部分的精度得出系统在不同检测方案条件下的检测精度:低动态条件下(3cm/s以内)对于全站仪跟踪测量能够完成0.4-0.6mm精度的动态检测,中低动态条件下(6m/s以内)对于GPS动态测量能够完成3-10mm精度的动态绝对位置检测和0.5mm精度的相对位置检测;基于100cm检测平台开展了全站仪及GPS动态检测实践,通过事后处理的方法对全站仪在准动态和实时动态条件下的动态测量精度进行了检测,得到不同动态条件下的测量误差;通过相关分析,得到利用全站仪动态跟踪测量的时滞在不同动态条件下约为110-120ms,通过对测量误差进行时滞改正和合作目标360度棱镜的误差改正,取得了良好的效果,其中0.9cm/s条件下的水平位置和高程的平均误差分别从1.02mm、2.18mm下降到0.83mm和0.51mm。在GPS动态差分相对测量时,静态与低动态条件下(0.314m/s以下)的测量精度差异很小,水平方向的标准差在5mm以内,高程方向上标准差接近1cm。不同动态条件下的双动态相对测量中,不仅出现了2-3mm的系统误差,还存在7-10mm的标准差。通过实践证明,检测平台能够有效地完成动态检测,并取得良好效果。
As a newly emerged technology, dynamic surveying technology is applied to more and more surveying cases, leading to great changes for traditional surveying in terms of both working efficiency and the technology connotation. Dynamic surveying is different from the static surveying in terms of precision evaluation and the methods of data processing. And with the increasingly wide application of dynamic surveying error, it is really necessary to carry out the research into it. The purpose of the essay is to establish an effective inspection plat for dynamic surveying which can be applied in the practice of dynamic precision inspection.
     The feasibility of inspection platform and the principal are addressed based on the analysis of some optic-mechanical -electric instruments and the appliances, and the optimal proposal is made after the comparison between several potential solutions. Based on the principal of inspection, the 20cm and 60 cm reduce-scale models are designed and the model composition are also depicted, with which some relevant instruments are tested. Then the 100cm model is successfully completed on the basis of the reduce-scale models. In order to achieve precision, the time system, photoelectric sensor, servo motor and mechanical apparatus are tested according to the composition of the inspection system. Different precision for inspection system in different plans are figured out according to the results of all the factors: under low velocity condition(lower than 3cm/s), the precision for total station is from 0.4mm to 0.6mm, while the absolute and relative precisions for GPS dynamic surveying are 3mm -10mm and 0.5mm under low and median velocity condition(lower than 6m/s). the experiments and analysis for the dynamic precision of total station and GPS are carried out based on 100cm model, and the results of preliminary dynamic surveying and real-time dynamic surveying are gained through post-processing. Meanwhile, through the correlation analysis for surveying errors, the surveying delay ranges from 110ms to 124ms under different dynamic conditions. After the correction of surveying time-delay and the cooperated-target 360 degree prism, the errors are dramatically reduced: the vertical error and horizontal error are reduced from 1.02mm and 2.18mm to 0.83mm and 0.51mm respectively under the velocity of 0.9cm/s, which proves the effectiveness of error correction. There is little difference in the static and dynamic errors (lower than 0.314m/s), as for vertical and horizontal results under the condition of GPS dynamic differential surveying, in which the horizontal standard deviation is lower than 5cm while the vertical standard deviation approches 1cm. The experiments of different double-moved GPS dynamic surveying prove a systematic error of 2-3cm and standard deviation of 7-8cm. All the results prove the platform's effectiveness and qualification for inspection.
引文
[1]费业泰.误差理论与数据处理(第四版)[M].北京:机械工业出版社,2000.
    [2]张善钟.计量光栅技术[M].北京:机械工业出版社,1985.
    [3]李殿奎.光栅计量技术[M].北京:中国计量出版社,1987.
    [4]费业泰,卢荣胜.动态测量误差修正原理与技术[M].北京:中国计量出版社,2001.
    [5]丛爽,李泽湘.实用运动控制技术[M].北京:电子工业出版社,2006.
    [6]刘宝廷,程树康.步进电动机及其驱动控制系统[M].哈尔滨:哈尔滨工业大学出版社,1997.
    [7]谭浩强.C程序设计(第二版)[M].北京:清华大学出版社,2001.
    [8]肖宏伟.Visual++6.0实效编程百例[M],北京:人民邮电出版社,2002.
    [9]李现勇.Visual++串口通信与工程实践[M],北京:人民邮电出版社,2002.
    [10]同志工作室.Visual++6.0开发技巧与实例教程[M],北京:人民邮电出版社,2000.
    [11]郁有文.传感器原理及工程应用[M].西安:西安电子科技大学出版社,2000.
    [12]张威,MATLAB基础与编程入门[M],西安:西安电子科技大学出版社,2004.
    [13][美]Charles Petzold.Windows程序设计(第五版)[M],北京:北京大学出版社,1999.
    [14]张洪润,马平安,张亚凡.单片机原理及应用[M],北京:科学出版社,2002.
    [15]秦曾煌.电工学[M].北京:高等教育出版社,1999.
    [16]徐忠阳.全站仪原理与应用[M],北京:解放军出版社,2003.
    [17][日]井町勇.机械振动学[M],北京:科学出版社,1979.
    [18]温熙森,陈循,徐永成,陶利民.机械系统建模与动态分析[M],北京:科学出版社,2004.
    [19]骆亚波.测量机器人在FAST馈源动态跟踪测量中的应用[D].郑州:解放军信息工程大学,2003.
    [20]张超.新型野外天文测量系统的研制[D].郑州:解放军信息工程大学硕士,2002.
    [21]许桢英.动态测量系统误差朔源与精度损失诊断理论的与方法研究[D],合肥:合肥工业大学,2004.
    [22]刘介良.高精度丝杠动态检测系统研究[D].西安:西安理工大学,2005.
    [23]刘春山.光栅测长仪动态测量误差研究[D].合肥工业大学,2005.
    [24]费业泰.误差理论的研究与进展[J].计量技术,1998,8.
    [25]费业泰,于连栋.论全系统动态测试精度理论研究[J].合肥工业大学学报,2000,23(1):6-7
    [26]费业泰.精度理论若干问题研究进展与未来[J].中国机械工程,2000,11(3)
    [27]徐进军,张民伟,何长虹.几种动态测量传感器综述[J].测绘信息与工程,2005,30(2).
    [28]殳伟群.动态测量不确定度问题初探[J].计量学报,2003,7.
    [29]许桢英,费业泰.动态精度理论研究与发展[J].仪器仪表学报,第22卷 第4期增刊.
    [30]马强,许桢英.动态测量误差溯源方法研究[J].安徽机电学院学报,2001,12.
    [31]曾鸣,徐凤霞.转台测角系统的设计与实施[J].齐齐哈尔大学学报,2002,3.
    [32]刘春山,陈晓怀,许桢英.动态测量光栅测长仪的位置误差[J].计量测试与检定,2005,Vol115 No15.
    [33]吴玉斌,朱勤.基于虚拟仪器的光栅尺误差动态检测[J].光电技术应用,2005,8,第20卷,第4期.
    [34]胡孟春,叶文英.实时测量与控制系统的软硬件设计[J].传感与自动测控技术,2002,21(3).
    [35]程步军,林寥廓.PLC在位移测量与控制中的应用(磁栅尺)[J].自动化与仪表,2004(1)
    [36]陈昆昌,孙政荣,张丽琼,陈本永.多光纤传感器数据融合测量表面误差的方法研究(光纤传感器)[J].传感技术学报,2005,6.
    [37]常春,胡瑜,董彬.光电旋转编码器的研究与应用[J].仪表技术与传感器,2001,12.
    [38]王文利,段宝岩,彭勃,南仁东.基于计算机视觉的大射电望远镜馈源舱动态定位系统[J].光学技术,2001,1,第27卷第1期.
    [39]吴双卿,王泽勇,高晓蓉.倾角传感器检测轨道不平顺状态[J].铁道标准设计,2004,(12).
    [40]黄建中,刘智,姚清华.运动目标瞬时速度实时测量系统的研究[J].长春理工大学学报,2004,3月,第27卷,第1期.
    [41]毕海,李国栋,李永新,孔德仁.绝对式旋转编码器用于线位移测量的研究[J].传感器技术,1998,第17卷第6期.
    [42]清华大学土木工程系地球空间信息研究所.NOVATEL RT2/RT-20 GPS接收机(RTK)测试报告
    [43]PCI-1261 User Manual ADVANTECH CO.LTD
    [44]PCI1241_42_61SoftwareManual ADVANTECH CO.LTD
    [45]photoelectrics_1999_2000_chinese Banner Engineering Corp.·Minneapolis,U.S.A.
    [46]基恩士国际贸易(上海)有限公司.2005传感器影像系统及测量仪器
    [47]D12 Series Fiber Optic Sensors Banner Engineering Corp.·Minneapolis,U.S.A.
    [48]美国邦纳工程国际有限公司.Banner公司光电传感器检测原理及术语
    [49]《全站仪原理》莱卡全站仪技术手册
    [50]《TPS1000全站仪定位系统操作手册》莱卡测量系统有限公司
    [51]GPS constellation,GLONASS Constellation.July 1997 GPS WORLD
    [52]Fei Yetai,Zhao Jing,Chen Xiaohuai,Wang Hongtao.Research on influence of velocity Parameters on Dynamic Performance of Coordinate Measuring Machines(Contributed to 7thISMT Ⅱ2005)[C]
    [53]H.F.F.Castro,M.Burdekin.Dynamic Calibration of Machine Tools and CMMs[J]International Journal of Machine Tools & Manufacture,2003,(43):947-954.
    [54]ISO 230-2.1997 Test code for machine tools-part 2:Determination of accuracy and repeatability of positioning of numerically controlled axes,seconded.,International Standardization Organization,Geneva,Switzerland,1997[S].
    [55]WANGJ.GPS/INS/Pseudolites:Concepts,Simulation and Testing[A].In:14th Int.Tech.Meeting of the Satellite Division of the U.S.Inst.of Navigation[C].Salt Lake City:Utah,2001
    [56]Market Department.Leica Geosystems Products[EB/OL].http://www.leica2geosystems.com,2004203201
    [57]Wu zhi Qiao,Masaharu Mizumo to.PID Type Fuzzy Controller and Parameters Adaptive Method.Fuzzy Set and Systems,1997,78:23-35.
    [58]Ying.H.The Simplest Fuzzy Controllers using Different Inference Methods are Different Nonlinear Proportional intergral Controllers with Variable Gains.Automatica.1993,29:1597-1598.
    [59]Tzafestas,N P Papanikolopoulos.Incremental Fuzzy Expert PID Control.IEEE Transactions on Industrial Electronics.1990,37(5):365-371.
    [60]Wu TX,Thompson DJ.Theoretical investigation of wheel/rail nonlinear interaction due to roughness excitation[J].Vehicle System Dynamics,2000,34(5):261-282.
    [62]哈尔滨工业大学博实精密测控有限责任公司,RBT-6SO4P教学机器人实验指导书
    [63]Schwieger V,Foppe K.Kinematische Messmet hoden-Vermes-sung in Bewegung.Beit rEge zum 58.DVW2Seminar am 17.und 18.Februar 2004 in Stuttgart[EB/OL].http://www.vugtk.cz/kam/nzk/indnzk,html,2004-02-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700