柴油机活塞热冲击问题的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
活塞作为发动机的主要受热零件之一,在实际应用中,承受着剧烈的高周及低周热冲击作用,这是活塞热损伤的主要原因所在。本文在理论研究方面并没有建立更为复杂的模型,而是通过集总参数、一维平壁、二维轴对称三种不同模型对150活塞进行了仿真对比研究。研究工作的侧重点在试验上,主要进行了发动机多通道储测系统的研制,并利用该系统对150活塞实际工况下温度及应力进行了测量;同时在国内首次建立了基于激光加热的热冲击模拟试验台架,并创新性地将激光光束变换技术应用于活塞热冲击模拟试验。上述试验技术的开发为深入探索内燃机活塞等受热零部件热状态变化规律提供了先进的手段,进而为工程实际中热损伤现象的预防奠定了工作基础。
     本文的主要工作及结论如下:
     1)文中在给出活塞的集总参数模型、一维平壁模型、二维有限元模型的基础上,着重分析了考虑动态耦合效应的一维平壁模型。分析结果表明:一维平壁模型中惯性项与准静态计算结果差别甚微,可以忽略不计。同时通过计算可知,考虑耦合项的导热模型与傅立叶导热方程相比,仅是引进了一个常数项,两方程计算结果相差仅1.8%。通过对惯性项及耦合项的上述处理并以矩形波载荷为激励,得到了一维平壁模型的解析解。并从材料物性参数,载荷强度,载荷周期以及初始温度等方面研究了各参数对一维平壁模型仿真计算结果的影响,结果显示:在上述因素中,载荷强度对仿真结果的影响最为显著。
     2)以150活塞为例,分别应用集总参数模型、一维平壁模型、二维轴对称有限元模型进行仿真对比研究。计算结果表明:三种模型都能够对活塞的高周热冲击过程进行模拟,活塞温度波动趋势相同,波动幅值存在差别。对于高周热冲击过程中的应力仿真,集总参数模型由于建立在忽略内部温度变化的基础上,因而不适用;一维平壁模型、二维轴对称模型的仿真结果与实际情况存在较大偏差,这是因为模型的计算精度与边界条件以及初始条件的选取有直接关系。因此,在活塞热冲击的研究上,理论模型的复杂程度并不是主要因素,边界条件和初始条件的选择是否合适才是模型是否实用的先决条件,而边界条件与初始条件的选择在很大程度上上依赖于试验。
     3)研制了多通道活塞储测仪,该仪器可以安装于活塞底部,对活塞在实际运行过程中的温度、应力参数进行在线测量及存储,停机后再对储测仪内存储的试验数据进行处理。在150活塞上的实际应用表明,该系统的
High-frequency and low-frequency thermal shock under different conditions, these are the main factors that lead to the thermal damage of piston. In this paper, high-frequency thermal shock of piston was studied by means of experimental way. The main research work was not focused on the theoretic way. So the new and complicated models were not developed. The main work in theoretic way was the analysis of the simulated results by means of the lumped parameter, 1 dimension plane wall and 2 dimension finite element models.
    In this paper, a multi-channel stored testing and measuring system (MSTMS) was established, the temperature and strain values under real operating conditions are also measured by this equipment. A laser heat thermal shock test bench was developed for the first time in China, and also the laser light beam space transform technology was used in the piston thermal shock experiment innovatively. These research works make steady base for the study of the thermal damage of the piston. The main content and conclusion in this paper were shown as following:
    1. In theoretic way, there are three different models: the lumped parameter model, 1 dimension plane wall model and 2 dimension model used for temperature and strain analyses of the piston. The influence of coupling factor and inertia factor in 1 dimension plane wall was also analyzed. The studies show that the simulated result of 1 dimension plane wall model with inertia factor is good agreement with the simulated result of quasi-stationary 1 dimension plane model. And the error between the classic Fourier heat conduction equation and the equation with the influence of coupling is only 1.8%. The affection of the material characteristic, load intensity, load cycle, initial temperature on the simulation results under the rectangle thermal shock model is also studied. The results shown that the load intensity is one of the most important among the parameters.
    2. Based on the above theory preparation, the 150 piston's dynamic thermal behavior under high-frequency thermal shock is simulated by using the three models. The simulated results show that the three models can simulate the piston's temperature variation quite well, but simulated results of the thermal stress are not agreement with the test data that gotten under the engine's operating conditions. This is due to the boundary constraint and the initial temperature of these models not agreement with the engine's operating condition. In conclusion, the boundary
引文
1.蒋德明.面向21世纪的高速重载直喷式柴油机的新技术[C].99年歙县内燃机高新技术研讨会论文集,论文编号9901.
    2.朱大鑫.涡轮增压与涡轮增压器[M].大同:兵器工业第七○研究所,1997.
    3.陈长虹,鲍仙华.全球能源消费与CO_2排放量[J].上海环境科学,1999,18(2):62-64.
    4.刘育民,杨长林.一种高效的燃烧模式[J].内燃机学报,1994,12(2):127-132.
    5.陆家祥.柴油机涡轮增压技术[M].北京:机械工业出版社,1999.
    6.肖永宁.内燃机热负荷和热强度[M].北京:机械工业出版社,1988.
    7.严兆大.内燃机的热负荷[M].杭州:浙江大学内燃机教研室,1984.
    8.严兆大,郑飞.风冷柴油机的传热与热负荷[M].杭州:浙江大学出版社,1983.
    9.(前苏联).高振庚译.高速柴油机的热负荷强化度[J].车用发动机,1984(5):36-38.
    10.内燃机杂志编辑部.内燃机结构强度研究[M].北京:机械工业出版社,1977.
    11.平修二.热应力与热疲劳[M].北京:国防工业出版杜,1983.
    12.董尧清.从能源和排放角度谈未来车用柴油机及燃料喷射系统的可持续发展[C].99年歙县内燃机高新技术研讨会论文集,论文编号9902.
    13.古浜庄一.内燃机的热负荷问题(俞小莉译)[M].杭州:浙江大学,1985.
    14.魏春源,曲振玲,张维正.内燃机典型零件损伤图谱[M].北京:北京理工大学,2001.
    15.铃木吉洋.内燃机活塞的评价技术[J].车用发动机,1994,(1):1-6.
    16.刘高典.温度场的数值模拟[M].重庆:重庆大学出版社,1990.
    17.陆瑞松,林发森,张芮.内燃机的传热与热负荷[M].北京:国防工业出版社,1985.
    18.郭成壁,张文孝,梁莎莉.柴油机活塞的热疲劳寿命预测[J].大连理工大学学报,1996,36(5):595-599.
    19.郭成壁,张文孝,梁莎莉.三维应力状态柴油机活塞的低周热疲劳安全性评价fJ].大连理工大学学报,1996,36(5):600-604.
    20.郭成璧,张文孝.多维应力状态下LD8铝合金高温低周疲劳寿命的评价[J].大连理工大学学报,1996,36(3):319-323.
    21.张文孝,郭成璧.热疲劳过程力学行为的数值模拟[J].大连理工大学学报,1995,35(4):511-515.
    22.姜任秋,杨光升,刘顺隆.活塞热冲击问题理论分析[J].内燃机学报,1993,11(1):83-87.
    23.姜任秋,沈孟良.柴油机活塞热冲击问题有限元分析fJ].内燃机学报,1996,11(2):127-133.
    24.姜任秋,刘顺隆.冲击加热半无限物体瞬态温度场理论分析[J].哈尔滨船舶工程学院学报.1991,12(4):415-420.
    25.姜任秋,刘顺隆.热冲击轴对称问题有限元分析[J].哈尔滨工程大学学报,1995,16(3):18-24.
    26.刘顺隆,姜任秋.冲击加热半无限物体温度波效应[J].哈尔滨船舶工程学院学报,1993,14(4):19-23.
    27.李志生,姜任秋.周期震荡温度场非傅立叶分析[J].哈尔滨工程大学学报,2001,22(4):25-28.
    28.许光映,姜任秋.阶跃热流冲击加热半无限体动态热应力分析[J].强度与环境,2002,29f3):11-16.
    29.许光映,吕政,姜任秋.热惯性对热冲击半无限体热应力影响非傅立叶效应研究[J].强度与环境,2004,31(1):1-5.
    30.李永祥.活塞热冲击试验台控制与监测系统的研制.杭州:浙江大学硕士学位论文,1999.
    31.谭建松.高强化柴油机活塞的热负荷及结构改进.杭州:浙江大学硕士论文,2000.
    32.沈季胜.活塞热冲击及随机过程的传热研究.杭州:浙江大学博士学位论文,2001.
    33.苏石川,沈季胜,严兆大.高周波活塞热冲击计算与分析[J].内燃机工程,2002,23(6):34-37.
    34.王玉芝,胡亚才,洪荣华.活塞热冲击集总参数模型的随机温度分析[J].内燃机学报,2003,21(1):81-85.
    35.李莉,胡亚才,沈季胜.活塞热冲击平壁模型的计算与分析[J].燃烧科学与技术,2003,9(5):439-443.
    36.薛明德,丁宏伟,王利华.柴油机活塞的温度场、热变形与应力三维有限元分析[J].兵工学报,2001,2(1):11-14.
    37.俞小莉,沈瑜铭,沈晓霞.三维有限元法预测活塞负荷与强度[J].内燃机工程,1999,(3):70-73.
    38.俞小莉,金瑞斌,沈瑜铭,等.内燃机活塞热疲劳模拟试验台[J].内燃机工程,1997,18(4):43-47.
    39.刘震涛,俞小莉,齐放,等.活塞热疲劳模拟试验技术的自动控制系统[J].内 燃机工程.2001,22(2):24-26.
    40.白敏丽,沈胜强,陈家骅等.内燃机传热全仿真模拟研究进展综述[J].内燃机学报,2000,18(1):96-99.
    41.白敏丽,沈胜强,陈家骅等.燃烧室部件耦合系统过渡工况传热全仿真模拟研究[J].内燃机学报,2001,19(3):229-234.
    42.白敏丽,沈胜强,陈家骅.燃烧室部件耦合系统循环瞬态传热模型的研究[J].内燃机学报,2000,18(1):100-103.
    43.白敏丽,朱国朝.内燃机燃烧室瞬态导热有限元计算网格剖分规则研究[J].内燃机工程,2000,21(4):53-57.
    44.白敏丽,沈胜强.活塞环摩擦热对燃烧室部件耦合系统的传热影响模拟研究[J].内燃机学报,2001,19(2):182-186.
    45.张卫正,魏春源,苏志国.内燃机铝合金活塞疲劳寿命预测研究[J].中国机械工程,2003,14(10):865-867.
    46.张卫正,魏春源,刘金祥等.热应力产生的根源及针对发动机受热件的解决方法[J].内燃机工程,2002,23(3):5-8.
    47.孙平、陈英军.无冷却柴油机陶瓷活塞及气缸套的结构设计和热负荷计算分析[J].小型内燃机,1993,(1):50-55.
    48.张卫正,郭良平,魏春源.铂电阻瞬态气体温度传感器研制及试验验证[J].内燃机工程,2000,21(4):62-70.
    49.张卫正,魏春源,郭良平等.柴油机受热件热疲劳台架的感应加热特征[J],北京理工大学学报,2001,(6):314-317.
    50.张卫正,薛剑青,吴思进等.加速热疲劳试验条件下内燃机受热件寿命的修正计算[J].内燃机学报,1998,16(2):184-190.
    51.刘金祥,张卫正.铝合金活塞加热热疲劳试验台架研究[J].河北科技大学学报,2000,(3):37-40.
    52.李炯,杨世文,张翼等.汽油机活塞组三维有限元耦合分析[J].华北工学院学报,2004,25(5):319-321.
    53.张勇,张力,申正均等.振荡冷却油腔活塞热结构强度的有限元分析[J].内燃机工程,2004,25(5):56-59.
    54.杨万里,陈国华,王春发等.内燃机缸内零件系统传热的计算机模拟进展[J].小型内燃机与摩托车,2003,32(2):46-48.
    55.杨万里,陈国华,陈燕.内燃机燃烧室耦合三维零件系统过渡工况传热模拟[J].内燃机学报,2003,21(2):161-166.
    56.孔祥谦.热应力有限单元法分析[M].上海:上海交通大学出版社,1999.
    57.冯立岩,高希彦,夏惠民等.8E160柴油机活塞组热负荷及机械负荷耦合分 析[J].内燃机学报,2002,20(5):441-446.
    58.于建国,叶庆泰,陈超.热冲击下机械结构非线性热力耦合模型的建立[J].应用力学学报,2004,21(4):43-46.
    59. Woschni G, Fieger J. Determination of Local Heat Transfer Coefficients at the Piston of a High Speed Diesel Engine by Evaluation of Measured Temperature Distribution[C]. SAEPaper790834, 1979.
    60. Assanis N D, Bsdil]o E. Transient Heat Conduction in Low-Heat-Rejection Engine Combustion[C]. SAE Paper 870156, 1987.
    61. Woschni G, Spindler W. Heat Transfer with Insulated Combustion Chamber ls and its Influence on the Performance of Diesel Engines[J]. Transactions of the ASNE, 1988, (110): 482-501.
    62. Reichelt L, Neingast U, Rein U. Calculating Transient Wall Heat Flux from Measurements of Surface Temperature[J]. International Journal of Heat and Mass Transfer, 2002, (45): 579-584.
    63. Prasad R, Savindra N. Transient Heat Transfer Analysis in an Internal Combustion Engine Piston[J]. Computer& Structures, 1990, 34(5): 787-793.
    64. LIU Xiaojun, LIU Kun, JIAO Minghua, et al. Effects of Nano. Particles on Thermal Properties of Piston the Tribological and Ring Cylinder Liner[J]. TSINGHUA SCIENCE AND TECHNOLOGY, 2004, 9(3): 286-289.
    65. Dong W P, Davis E J, Butler D L, et al. Topographic features of cylinder liners An application of three-dimensional characterization techniques. Tribology International[J], 1995, 28(7): 453-463.
    66. Michael Winship. Piston Design for the Nineties[J]. SAE 930273, 1993.
    67. Woschni G. Fieger J. Determination of Local Heat Transfer Coefficients at the Piston of a High Speed Diesel Engine by Evaluation of Measured Temperature Distribution[J]. SAE Paper 790834.
    68. Prasad R , Savindra N. Transient Heat Transfer Analysis in an Internal Combustion Engine Piston[J]. Computer.& Structures, 1990, 34(5): 787-793.
    69. Morel t Keribar R, Blumberg P N. Cyclical thermal phenomena in engine combustion chamber surface[J]. SAE850360.
    
    70.Assan is D N, Badillo E. Transient an alysis of piston-liner heat transfer in low-heat-rejection diesel engines[J]. SAE880189.
    
    71. Liu Y Reitz R D. Modeling of heat conduction within chamber walls for multidimensional internal combustion engine simulations[J] . International Journal of Heat MassTransfer, 1998, 41(6): 859-869.
    
    72. Yang W L, Chen G H, Wang C F Simulation of non-steady heat transfer for coupling:. 3-D moving component system within internal combustion chamber[J]. SAE ,2003,01-0617.
    
    73.Tamma, K. K. and Namburu, R. R. An effective finite element modelling/analysis approach for dynamical thermoelasticity due to second sound effects[J]. Comput.Mechanics, 1992, (9): 73-84.
    
    74. Chen, J. and Dargush, G. F. BEM for dynamic proelastic and thermoelastic analysis[J]. J. Solids Structs, 1995, 32(15): 2257-2278.
    
    75. Chen, H. T. and Lin, H. J. Study of transient coupled thermoelastic problems with relaxation times[J]. Trans. ASME, 1995, 6(2): 208-215.
    
    76. Hosseini-Tehrani, P. and Eslami, M. R. Two-dimensional time harmonic dynamic coupled thermoelasticity analysis by BEM formulation[J]. Engine Analysis with Boundary Elements, 1998, (22): 245-250.
    
    77. Hosseini-Tehrani, P. and Eslami, M. R. Boundary element analysis of coupled thermoelastic problem with relaxation times in a finite domain[J]. J. Am. Inst. Aeronaut. Astronaut., 2000, 38(3):534-541.
    
    78. Hosseini-Tehrani, P. and Eslami, M. R. BEM analysis of thermal and mechanical shock in a two-dimensional finite domain considering coupled thermoelasticity[J]. Engng Analysis with Boundary Elements, 2000, (24): 249-257.
    
    79. Hosseini-Tehrani, P. and Eslami, M. R. Boundary element analysis of Green and Lindsay theory under thermal and mechanical shock in a finite domain[J]. J. Thermal Stresses,2000, (23): 773-792.
    
    80. D. Y. Zhou. Experimental evidence for the temperature waves around a rapidly propagating crack tip[J]. ASME J. Heat Transfer, 1992,114:1042-1045.
    
    81.D.Y. Zhou. Stochastic Modeling for Contact Problems in Heat Conduction[J].
    Inter.J. Heat Mass Transfer, 1989, 32(5):913-921.
    82. D. Y. Zhou. Thermal wave behavior in high-speed penetration[J]. Int. J.Eng.
    Sci., 1994,32:1195-1205.
    83. A. Barletta, E. Zanchini. Hyperbolic heat conduction and local equilibrium: a second law analysis[J]. Int. J. HeatMass Transfer, 1997, 40: 1007-1016.
    84. A. E. Kronberg, A. H. Benneker, K. R. Westerterp. Notes on wave theory in heat conduction: A new boundary condition[J]. Int. J. Heat Mass Transfer, 1998, 41 (1): 127-137.
    85. P. J. Antaki. Analysis of hyperbolic heat conduction in a semi-infinite slab with surface convection[J]. Int. J. Heat mass Transfer, 1997, 40(13): 3247-3250.
    86. D. W. Tang, N. Araki. Non-Fourier heat conduction in a finite medium under periodic surface thermal disturbance[J]. Int. J. Heat Mass Transfer, 1996, 39(8): 1585-1590.
    87. A. Majda, E. Thomann. Multi-dimensional shock fronts for second order wave equations[J]. Comm. Partial Differential Equations, 1987, (12): 777-828.
    88. Prevost, J. H. and Tao, D. Finite element analysis of dynamic coupled thermoelasticity problems with relaxation times[J]. J. Appl. Mechanics, 1983, 50: 817-822.
    89. Chen Han Taw, Lin Shen Yih. Estimation of surface temperature in two—dimensional inverse heat conduction problems[J]. International Journal of Heat and Mass Transfer, 2001, 44: 1455-1463.
    90. Somchart Chantasiriwan. An algorithm for solving multi-dimensional inverse heat conduction problem[J]. International Journal of Heat and Mass Transfer, 2001, 4: 3823-3832.
    91.王庆峰,张卫正,郭良平等.小缸径活塞温度场红外遥测系统研究[J].内燃机工程,2004,25(5):60-62.
    92.钱作勤,杨新桥,周祥军.YC 6108柴油机活塞温度测量的实验研究[J].武汉理工大学学报,2004,28(6):814-816.
    93.高镇同,熊峻江.疲劳学的研究进展[J].北京航空航天大学学报,1996(3):245-248.
    94.余寿文,冯西桥编著.损伤力学[M].北京:清华大学出版社,1997.
    95.张林.高温构件疲劳断裂的损伤力学研究.北京:北京航空航天大学博士学位论文,1995.
    96.陈特銮编.内燃机热强度[M].北京:国防工业出版社,1991.
    97.刘宏喜.大功率柴油机活塞蠕变、热疲劳计算分析及试验研究.北京理工大学硕士学位论文,1999.
    98.恽璋安.柴油机气缸盖热负荷的探讨[J].内燃机工程,1981(3):16-21.
    99.高政冠,冯耀潮,单菲等.涡流室陶瓷镶块稳态温度场的三维有限元分析 [J].內燃机工程,1998(1):39-44.
    100.朱延章,龚耐丹,潘晓春.涡流室镶块热裂模拟试验[J].汽车技术,1988,(1):16-18.
    101.吴志新,熊锐,李德桃等.柴油机涡流室內非稳态温度场的测试与分析[J].燃烧科学与技术,1995,(4):312-318.
    102.元成浩,赵元姬.CA488型发动机活塞温度场及热应力的有限元计算分析[J].汽车技术,1996,(6):12-15.
    103.马元骥,施润吕.内燃机测试技术.杭州:浙江大学出版社,1986.
    104.徐春龙,徐元利.柴油机缸盖热模拟试验研究[J].车用发动机,2000,(6):19-21,25.
    105.吕林,吴锦翔,高孝洪.柴油机燃烧室不同隔热方案的对比试验研究[J].武汉造船,1999,(2):19-23.
    106.简晓春,段泰崃.长安JL465Q1发动机热负荷分析研究[J].重庆交通学院学报,2001,(11):100-103.
    107.于革刚,张冀南,姚德民等.全自动柴油机热负荷试验装置的设计研究[J].车用发动机,1999,(5):31-34.
    108.徐春龙,魏春源.柴油机受热件加速热疲劳试验安全寿命估算[J].车用发动机,2001,(10):21-23.
    109.马宝华,现代引信设计哲学,现代引信,1993,(4):19-21.
    110.祖静,张文栋,电子测压蛋,兵工学报,1991,(1):12-16.
    111.祖静,张文栋,可编程与实时录存的弹载波存仪,兵工学报,1991,(4):23-26.
    112. Chester Smith, William Donnally, A Fuse Data Quantizing System, ADD007618, Oct., 1980.
    113. Louis R. Szabo, William I. Osborne, Advances in Digital Memory Telemeters for Artillery Projectiles, ADD090101, Dec., 1981: 321-345.
    114. Louis R. Szabo, Leon H. Glass, Applications of Recoverable Digital Memory Tele meters for Artillery Projectiles, ADD100116, May, 1983: 217-235.
    115. Donald M. Littrell, Keith A. Jamison, Rogewr D. Hudson, Measurement of Acceleration Using Instrumented Railgun Projectile AD253366, June, 1992.
    116.刘致安,梁燕熙.未来存储遥测技术,现代引信,1984,(1):9-13.
    117.祖静,申湘南,张文栋.存储测试技术,兵工学报,1994,(4):31-34.
    118.申湘南,祖静,微型工况测试仪,测试技术学报,1994,(2):19-23.
    119.王华,祖静,杨志刚,石油井下电子测压器的新发展[C].祖国兵工学会第六界测试技术学术年会论文集,1992:347-353.
    120.张文栋,弹道数据的存储测试方法[C].中国兵工学会第三届测试技术学术讨论会论文集,1988.
    121.刘立庄,祖静.一种高速数据采集系统的实现[J].测试技术学报,1998,12(3):512-515.
    122.白艳萍,张文栋.信息理论在存储测试系统设计中的应用研究[J].兵工学报,1998,19(2):113-116.
    123.汤华,刘庆明.存储测试数据处理软件的设计及应用[J].测试技术学报,2001,15(1):35-39.
    124.虞钢,虞和济.集成化激光智能加工工程[M].北京:冶金工业出版社,2002.
    125. Curtis Griffm. Rapid prototyping of structural ceramic components using selective laser sintering[J]. J. of Material Technology, 1996, (11): 48-49.
    126.李俊昌.激光的衍射及热作用计算[M].北京:出科学版社,2002.
    127. M. Agarwala, D. L. Bourell, J. Beman. Direct Selective Laser Sintering of Metals[J]. J of Rapid Prototyping, 1995, (1): 26-31.
    128. Renji Zhang, Guanghua Sui, Liang Guang. Selective Laser Sintering(SLS) and Its Materials[C]. Proceedings of the First International Conference on Rapid Prototyping Manufacturing'98, pp.506514, Beijing, 1998.
    129.伍茜.热冲击问题的理论及其在内燃机中的应用.杭州:浙江大学博士学位论文,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700