基于磁力弹簧的非公路车辆驾驶员座椅悬架系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究表明,对于长期作业和行驶在恶劣环境中的农用车辆、林用车辆以及工程车辆等非公路车辆,采用座椅悬架提高其乘坐舒适性是最为简单直接和经济的方法。因此,深入研究驾驶员座椅悬架系统,采用切实可行的技术措施,隔离由于地面激励而引起的通过车辆底盘和座椅传递到人体的振动,是提高非公路车辆乘坐舒适性的一个重要而实际的课题。
     基于非公路车辆对驾驶员座椅悬架的要求,结合当前国内外在驾驶员座椅悬架系统方面的研究现状,以及磁力弹簧刚度可调可控的特点,本课题将一种混合式单向磁力弹簧引入到座椅悬架中,研制了垂向力一位移特性呈非线性且垂向等效刚度可以调节的磁力驾驶员座椅悬架。主要完成的工作和取得的结论归纳如下:
     1、剪式座椅悬架静动态特性的研究。选取当前应用较为广泛的弹簧水平上置式剪式驾驶员座椅悬架作为磁力座椅悬架的结构基础,运用理论分析、动力学仿真和实验研究相结合的方法对其进行了全面系统的研究,为磁力座椅悬架的研究提供了理论指导和实验参照。研究结果表明:微幅振动条件下,所研究的剪式座椅悬架可近似简化为线性振动系统,其垂向等效刚度在工作行程内基本保持不变;座椅悬架中的弹簧布置方式、悬架几何参数以及弹簧刚度对垂向等效刚度均具有一定的影响;系统的振动固有频率、阻尼比、位移传递率以及响应加速度均方根值均与等效簧载质量(即驾驶员体重)有关,而且,等效簧载质量对位移传递率的影响程度与减振器的阻尼系数大小有关;由于座椅悬架中各运动构件间存在较大的摩擦,以及剪杆及其连接杆自身的重力和转动惯量的影响,实验过程中座椅悬架在低频小振幅激振时出现“锁止”现象,其位移传递率的峰值频率随激振幅值的增加而减小,在位移激振幅值较小时,实验测得的位移传递率的峰值频率大于理论研究和仿真研究的结果。
     2、带附加弹性元件的剪式座椅悬架刚度调节特性的理论研究。首先理论分析了附加弹性元件在剪式座椅悬架中的布置方式,在布置方式确定的情况下,构建了带附加弹性元件的剪式座椅悬架的理论模型,分析了弹性元件的刚度对座椅悬架垂向力—位移特性、垂向等效刚度以及振动固有频率的影响,考察了通过对附加弹性元件刚度的调节实现座椅悬架垂向等效刚度调节的可行性,为垂向等效刚度可调的磁力座椅悬架的研制提供了理论基础。研究结果表明:带附加弹性元件的座椅悬架,其工作行程内的垂向力—位移特性呈明显的非线性特性,且非线性特性随附加弹性元件刚度的增加而显著增强;垂向等效刚度与振动固有频率在悬架处于不同行程高度时具有不同的值,且在悬架伸张行程内的值总是大于其在压缩行程内的值;附加弹性元件的刚度对悬架的垂向力一位移特性,垂向等效刚度和振动固有频率均具有显著的影响。
     3、磁力弹簧的构建及其磁场理论分析。对刚度可调的附加弹性元件—混合式单向磁力弹簧的主要设计参数进行了系统的分析和计算,内容包括磁力弹簧所需磁场力和工作气隙大小的计算,电磁铁与永磁铁的材料和工作特性参数的选择,电磁铁和永磁铁几何参数的确定。在此基础上,运用静电学与电动力学理论,推导了气隙磁通密度和轴向磁场力的表达式,并分析了各种因素对它们的影响,为磁力弹簧的实验研究提供了理论指导。研究结果表明:所构建的磁力弹簧的气隙磁通密度除与电磁线圈中的电流大小、永磁铁的直径与长度以及工作气隙大小有关外,还与电磁线圈的匝数、线圈的高度和厚度、铁心的长度以及退磁因子等诸多因素有关;磁力弹簧的轴向磁场力主要由气隙中平面z_m上的轴向和径向磁通密度大小以及同极相对的磁铁半径决定,平面z_m在气隙中的位置则由两侧的磁铁在气隙中产生的磁通密度大小决定。
     4、磁力弹簧的实验研究。实验研究了不同磁极形状的电磁铁在不同电磁线圈端电压下的空间场强分布,以及不同尺寸柱状永磁铁的空间场强分布;构建了磁力弹簧磁力特性测试实验台,实验研究了电磁线圈端电压、永磁铁尺寸以及不同永磁铁尺寸的组合对磁力弹簧磁力特性的影响。研究结果表明:在各主要几何参数及电磁线圈端电压相同的情况下,无极帽平头磁极电磁铁的平均气隙磁通密度大于其它两种磁极形状的电磁铁;永磁铁的表面及气隙磁通密度在一定程度上取决于其长径比;排斥型磁力弹簧,当同极相对的两个磁极上的磁通密度相差较大时,磁极间的排斥力在气隙小至一定程度时将随气隙的进一步减小而减小,使磁力弹簧呈现负刚度特性,而当同极相对的两个磁极上的磁通密度值相近时,磁极间的排斥力随气隙的减小将呈非线性关系增大;随着电磁线圈端电压的增大,磁力弹簧的轴向磁场力呈线性关系增加,磁力特性曲线沿力轴向上移动,并且其非线性度随电磁线圈端电压的增大而增大。
     5、磁力座椅悬架的研制及其实验研究。研制了基于磁力弹簧的磁力座椅悬架系统,理论分析了其垂向等效刚度的构成;构建了磁力座椅悬架系统研究实验台,实验研究了磁力座椅悬架的动态特性,主要包括其位移传递率、位移传递率的峰值频率以及悬架上板的加速度响应,考察了它们随悬架的等效簧载质量、电磁线圈端电压、激振振幅和激振频率的变化情况,并与原剪式座椅悬架进行了比较分析。研究结果显示:磁力座椅悬架的位移传递率在振动放大区,随电磁线圈端电压的增大而减小,随等效簧载质量的增大而增大;在隔振区,位移传递率几乎与电磁线圈端电压的变化无关,而随等效簧载质量的增大而减小;位移传递率的峰值频率和响应加速度均方根值均随电磁线圈端电压的增大而增大,随等效簧载质量的增大而减小;与有减振器的磁力座椅悬架相比,无减振器的磁力座椅悬架的位移传递率的峰值频率和响应加速度均方根值均较小,且它们受等效簧载质量的影响程度均较小。此外,无减振器的磁力座椅悬架的振动放大频段较窄,加速度的响应幅值比激振幅值减小约2/3。
     通过本课题的研究,有望为基于磁力弹簧的垂向力—位移特性呈非线性且垂向等效刚度可调的半主动驾驶员座椅悬架的研究提供理论基础和技术支持。
Researches show that it is the simplest, directest and most economic method utilizingseat suspension to improve the ride comfort for the off-road vehicles such as agriculturaland forestry machinery, construction and quarrying vehicles and machinery etc., whichcommonly work and run in worse environment. Therefore carrying out an in-depth studyon the driver's seat suspension system and taking feasible technical measurements toisolate the vibration transmitting from the vehicle bottom to human body through thevehicle chassis and the seat is an important and practical subject for improving the ridecomfort of off-road vehicles.
     Based on the requirements of the off-road vehicles for the driver's seat suspension, thenowaday study actualities of driver's seat suspension system home and abroad and theadjustability and controllability of the magnetic spring stiffness, a kind of mingledsingle-direction magnetic spring composed of electromagnet and permanent magnet wasadded to a scissors linkage seat suspension to establish the driver's seat suspension whosevertical equivalent stiffness is non-linear and can be controlled. The finished work andachieved results are generalized as follows:
     1. Researches of the static and dynamic characteristics of the scissors linkage seatsuspension. One kind of scissors linkage seat suspension was chosen as the structural baseof the magnetic force seat suspension and the complete and systematical study about itsstatic and dynamic characteristics and their effect factors was made through theoreticalanalysis, dynamical simulation and experiment. Study results show that the seat suspensionsystem can be approximately treated as a linear system and its vertical equivalent stiffnessis almost unchanged in the working stroke; the spring layout mode, suspension geometryparameters and the spring stiffness all affect the seat suspension vertical equivalentstiffness in some degree; the natural frequency, damping ratio, dynamic amplificationfactor and the acceleration root of mean squares of the seat suspension are all related to theequivalent sprung mass. Moreover, the effect degree of the mass on the dynamicamplification factor is related to the damping coefficient of the damper; because of thefriction between motion parts and the gravity and rotary inertia of the scissors linkages the seat suspension appears "locked" when the excitation frequency is low and the magnitudeis small. The peak value frequency of the dynamic amplification factor in experiment isbigger than the theory and simulation results and it obviously decreases with the excitationmagnitude increasing.
     2. Researches on the stiffness adjustability of the scissors linkage seat suspension withadditional elastic part. First the layout mode of the additional elastic part in the scissorslinkage seat suspension was theoretically analyzed and then the theoretical model of theseat suspension with additional elastic part was established. Based on the theoretical modelthe effect of the additional elastic part on the characteristic relationship, the seat verticalequivalent stiffness and the suspension vibration natural frequency were analyzed and thefeasibility of changing vertical equivalent stiffness by adjusting the stiffness of theadditional elastic part was discussed, which will build theoretical base for the constructionof the magnetic force seat suspension whose vertical equivalent stiffness is adjustable.Research results show that the relationship between the vertical load and displacement ofthe seat suspension with the additional elastic part behaves nonlinearity and thenonlinearity becomes stronger with the stiffness of additional elastic part increasing; theseat suspension vertical equivalent stiffness and the vibration natural frequency havedifferent values in different suspension position and their values in the suspensionextending stroke are much larger than which in compressing stroke; the stiffness of theadditional elastic part has obvious effect on the characteristic relationship, the verticalequivalent stiffness and the suspension vibration natural frequency.
     3. Construction of the magnetic spring and theoretical analysis of its magnetic field.Systematical analysis and calculation were made on the main design parameters of theadditional elastic part with adjustable stiffness—the mingled single-direction magneticspring, and the contents included calculation of the magnetic field force and the working airgap required by the magnetic spring, choice of the material and the working parameters ofthe electromagnet and the permanent magnet and determination of the geometry parametersof the magnets. In addition, the formulation of the air gap magnetic flux density and theaxial magnetic field force were deduced according to the theory of static electrics andelectrodynamics and their effecting factors were analyzed, which are theoretical guide forthe experimental study of the magnetic spring. Research results show that the air gapmagnetic flux density of the magnetic spring is related not only to the electromagnetismwinding current, the diameter and length of the permanent magnetic and the working air gap but also to many other factors such as the circles, length and thickness of theelectromagnetism winding, the length of the iron core and the demagnetizing factor etc.;the axial magnetic field force of the magnetic spring is mainly decided by the axial andradial magnetic flux density on the plane z_m in the air gap and the diameter of the facedmagnet, and the position of the plane z_m is decided by the magnetic flux density in the airgap produced by the magnets.
     4. Experimental study on the magnetic spring. The space distribution of the magneticflux density of the electromagnet with different magnetic pole shape under differentelectromagnetism winding voltage and that of the permanent magnet with differentdimension were experimentally studied; the experimental system for magnetic forcecharacteristics test of magnet spring was Constructed and the effecting factors of themagnetic force characteristics such as electromagnetism winding voltage, permanentmagnet dimension and the combination of different permanent magnet 1 and 2 wereexperimentally studied. Research results show that the average air gap magnetic fluxdensity of the electromagnet with flat magnetic pole without cap is larger than that of theother two magnetic poles; the surface and air gap magnetic flux density of permanentmagnet is decided by its ratio of length to diameter; For the repulsive type magnetic spring,when the surface magnetic flux density values of the two faced magnetic poles have bigdisparity and the air gap is small to some degree the repulsive force will decrease with theair gap decreasing and the magnetic spring stiffness behaves negative stiffness; and whenthe surface magnetic flux density values of the two faced magnetic poles are nearly samethe repulsive force will increase with the air gap decreasing; with the electromagnetismwinding voltage increasing the axial magnetic force increases linearly and the magneticforce characteristic curves move up along the force axis; moreover the curvature of thecharacteristic curves also increase with the electromagnetism winding voltage increasing.
     5. Development and experimental study of the magnetic force seat suspension. Themagnetic force seat suspension system was developed and its vertical equivalent stiffnessconstitution was theoretically analyzed; the experimental system for the magnetic force seatstudy was established and the dynamic characteristics of the magnetic force seat suspensionwere experimentally studied. Research results show that the dynamic amplification factorof the magnetic force seat suspension decreases with the electromagnetism winding voltageincreasing and increases with the equivalent sprung mass increasing in thevibration-amplifying zone and in the vibration-isolating zone it decreases with the equivalent sprung mass increasing and nearly have no relation with the change of thevoltage; the peak value frequency of the dynamic amplification factor and the respondingacceleration r.m.s, both increase with the electromagnetism winding voltage increasing anddecrease with the equivalent sprung mass increasing; compared with the magnetic forceseat suspension with damper the peak value frequency of the dynamic amplification factorand the responding acceleration r.m.s, of the magnetic force seat suspension withoutdamper are both lower and the degree of the equivalent sprung mass effecting on them issmaller.
     It is expected to build theoretical base and technological support for the in-depth studyof the semi-active seat suspension that is based on the magnetic spring and whoserelationship between vertical load and displacement behaves nonlinearity and the verticalequivalent stiffness can be adjustable.
引文
1 骆知俭,毛晓全.全身振动对人体腰椎的影响[J].职业医学,1989,16(5):7-9
    2 段骊,张祥春,程宏等.全身振动对人体肾脏位置的影响[J].中国公共卫生学报,1996,15(1):37-38
    3 张祥春,程宏,张新生等.全身振动对人体脊柱的损害[J].中华劳动卫生职业病杂志,1993,11(6):321-324
    4 熊敏如,吴维生,何兴轩等.全身振动对农用拖拉机驾驶员心血管系统影响的研究[J].职业医学,1994,21(3):24-26
    5 武丽杰,陈力,马龙滨.全身振动对林业集、运材作业工作的职业危害作用[J].森林工程,1998,14(1):20-22
    6 巴福森.长时间全身振动对作业人员胃的影响的跟踪研究[J].航天医学与医学工程,1993,6(4):274-281
    7 Wilder, D.G. The biomechanics of vibration and low back pain[J]. American Journal of industrial medicine, 1993(23): 577-588
    8 J. Hoy, N. Mubarak and S. Nelson etc. Whole body vibration and posture as risk factors for low back pain among forklift truck drivers[J]. Journal of sound and vibration, 2005(284): 933-946
    9 Olivera, C.G., Simpson, D.M. and Nadal, J.. Lumbar back muscle activity of helicopter pilots and whole-body vibration[J]. J. Biomech, 2001(34): 1309-1315
    10 Morrison, J.B., Martin, S.H. and Robinson, D.G.. Development of a comprehensive method of health hazard assessment for exposure to repeated mechanical shocks[J]. J. Low Freq. Noise Vibr. Act. Control, 1997(16): 245-255
    11 J. Lines, M. Stiles and R. Whyte. Whole body vibration during tractor driving[J]. Journal of low frequency noise and vibration, 1995(14): 87-95
    12 朱思洪,缪小红,尹文庆等.德国拖拉机发展现状与趋势[J].农业机械学报,2002,33(1):111-114
    13 李国英,万叶青.拖拉机驾驶座结构及其减振性能[J].拖拉机与农用运输车,1996(5):16-20
    14 周一鸣,毛恩荣.车辆人机工程学[M].北京:北京理工大学出版社,1999:353-354
    15 刘任先.非线性驾驶座悬架的设计参数及其实现方案研究[J].河海大学机械学院学报,1995,9(2):1-6
    16 洛阳工学院.非线性乘座悬架[P].中国,实用新型专利,91226632.5.1992年4月15日
    17 Yi Wan and Joseph M. Schimmels. Improved vibration isolation seat suspension designs based on position-dependent nonlinear stiffness and damping characteristics[J]. Journal of dynamic systems, measurement and control, 2003, 125(3): 330-338
    18 十堰市泰华实业有限责任公司.空气悬浮式减振座椅[P].中国,实用新型专利,02228327.7.2002年11月27日
    19 张启应,靳晓雄,谭珂.非线性弹簧悬架及其实现的方法[J].上海汽车,2003(8):29-31
    20 杨坚,韦林.手扶拖拉机非线性座椅的研究[J].振动、测试与诊断,1999,19(2):133-152
    21 周一鸣,邹剑林,邵万鹏等.农用车辆驾驶座椅悬架系统非线性特性的研究[J].农业机械学报,1989(3):22-28
    22 P. Donati. Survey of technical preventative measures to reduce whole body vibration effects when designing mobile machinery[J]. Journal of sound and vibration, 2002, 253(1): 169-183
    23 G.J. Stein and I. Ballo. Active vibration control system for the driver's seat for off-road vehicles[J]. Vehicle system dynamics, 1991(20): 57-78
    24 G.J. Stein. Results of investigation of an eletro-pneumatic active vibration control system for a driver's seat[A]. In: MEP. Proceedings of the institution of mechanical engineers, part D: Journal of automobile engineering[C]. 1995, 209(3): 227-234
    25 G. J. Stein. A Driver's seat with active suspension of electro-pneumatic type[J]. Journal of Vibration and Acoustics, 1997, 119(2): 230-235
    26 G.J. Stein. Active electro-pneumatic suspension system [A]. In: ISMA. Proceedings of the 23rd international conference on noise and vibration engineering[C]. Belgium: Katholieke Universiteit Leuven, 1998, 1435-1442
    27 G.J. Stein. New results on an electro-pneumatic active seat suspension system[A]. Proceedings of the institution of mechanical engineers, Part D[C], 2000(214): 533-544
    28 I. Ballo. Power requirement of active vibration control systems[J]. Vehicle System Dynamics, 1995, 24(9): 683-691
    29 A.W. McCormac, R.T. Burton and J. N. Wilson. Dual-axis active seat suspension system[A]. In: Am. Soc. Agricultural Eng., Meeting Presentation, Paper No. 89-7542[C], 1989: 1-15
    30 C.C. Johnson. Active seat suspension to control low back injuries[J]. PB Rep., PB-94-158482, 1993: 1-29
    31 Masaaki Kawana and taro Shimogo. Active suspension of truck seat[J]. Shock and vibration, 1998(5): 35-41
    32 S.J. Mcmanus, K.A. St.Clair and P.E. Boileau etc. Evaluation of vibration and shock attenuation performance of a suspension seat with a semi-active magnetorheological fluid damper[J]. Journal of sound and vibration, 2002, 253(1):313-327
    33 Philippe Alessandrini, Serge Kassardjian and Xavier D. Merlin. MR Fluids in Seats: Design Document[C].Department of Mechanical Engineering, Design Division School of Engineering, Stanford University, 2002, Dec. 9:1-87
    34 Xubin Song and Mehdi Ahmadian. Study of semi-active adptive control algorithms with magneto-rheological seat suspension[J]. SAE International, 2004(1):1648-1661
    35 M. Kolich. Predicting automobile seat comfort using a neural network[J]. International journal of industrial ergonomics, 2004(33):285-293
    36 S. B. Choi, J. H. Choi, Y. S. Lee and M. S. Han. Vibration Control of an ER Seat Suspension for a Commercial Vehicle[J]. Journal of Dynamic Systems, Measurement, and Control, 2003, 125(1):60-68
    37 Nevala Kalervw and Jarviluoma Markku. Active vibration damping system of a driver's seat for off-road vehicles[A]. In: IEEE. Proceedings of the annual conference on mechatronics and machine vision in Practice, MVIP[C]. Toowoomba: IEEE, 1997, 38-43
    38 J. Perisse, P. Perrard and L. Jezequel etc. Improvement of road vehicles ride comfort with active vibratory isolation of a car seat suspension— Modelisation aspects and experimental results[A]. In: ISMA. Proceedings of the 23rd international conference on noise and vibration engineering[C]. Belgium: Katholieke Universiteit Leuven, 1998, 1443-1451
    39 R. Kashani and J. E. Strelow. Fuzzy logic active and semi-active control of off-road vehicle suspensions[J]. Vehicle system dynamics, 1999, 32(4):409-420
    40 X. Liu and J. Wagner. Design of a vibration isolation actuator for automotive seating system — part I : modeling and passive isolation performance[J]. International journal of vehicle design, 2002, 29(4):335-356
    41 X. Liu and J. Wagner. Design of a vibration isolation actuator for automotive seating system—part II -.controller design and actuator performance [J]. International journal of vehicle design, 2002, 29(4):357-375
    42 X. Wu and M. J. Griffin. A semi-active control policy to reduce the occurrence and severity of end-stop impacts in a suspension seat with an electrorheological fluid damper[J]. Journal of sound and vibration, 1997, 203(5):781-793
    43 Han, Y. , Jung, J. and Choi, S. Ride quality investigation of an electrorheological seat suspension to minimize human body vibrations. Proceedings of the I MECH E Part D Journal of Automobile Engineering[C], 2006, 220(2):139-150
    44 Rahmi GUCLU. Active control of seat vibrations of a vehicle model using various suspension alternatives[J]. Turkish J. Eng. Env. Sci, 2003(27): 361-373
    45 Jian-Da Wu and Rong-Jun Chen. Application of an active controller for reducing small-amplitude vertical vibration in a vehicle seat[J]. Journal of sound and vibration, 2004(274): 939-951
    46 Yasuo Oshinoya, Hajime Arai and Kazuhisa Ishibashi. Experimental study on active seat suspension for a small vehicle[J]. International journal of applied electromagnetics and mechanics, 2004(19): 437-443
    47 J. PERISSE and L. JEZEQUEL. An original feedback control with a reversible electromechanicat actuator used as an active isolation system for a seat suspension. Part Ⅰ: Theoretical study[J]. Vehicle system dynamics, 2000(34): 305-331
    48 J. PERISSE and L. JEZEQUEL. An original feedback control with a reversible electromechanicaI actuator used as an active isolation system for aseat suspension. PartⅡ: Experimental study[J]. Vehicle system dynamics, 2000(34): 381-399
    49 I. Hostens, K. Deprez and H. Ramon. An improved design of air suspension for seats of mobile agricultural machines[J]. Journal of sound and vibration, 2004(276): 141-156
    50 Thomas Gunston. Annex G. An investigation of suspension seat damping using a theoretical model[A]. A paper presented to the 35th meeting of the U. K. Group on human response to vibration[C], 2000: 137-149
    51 A. Marsili, L. Ragni, G. Santoro and P. Servadio. Innovative systems to reduce vibrations on agricultural tractors: comparative analysis of acceleration transmitted through the driving seat[J]. Biosystems engineering, 2002, 81(1): 35-47
    52 张莹,朱思洪.汽车阻尼可调减振器比较分析[J].中国制造业信息化,2006,35(7):56-61
    53 任继英.工程机械司机座椅振动舒适性测度与改进[J].林业机械,1990(3):12-16
    54 麻文焱,王羽,于向军.货车座椅动态参数优化设计试验研究[J].汽车技术,2003(7):17-18
    55 吴国梁.座椅垂直振动传递特性的试验研究[J].建筑机械,1991,000(008):27-30
    56 吴国梁.驾驶座椅动态优化设计中关于人体系统的建模问题[J].建筑机械,1996(1):23-26
    57 徐国宇,梅雪松,吴序堂.人体上体系统振动生物力学模型研究[J].应用力学学报,2000,17(1):127-132
    58 徐中明,黄勤练.汽车座椅系统的动力分析[J].重型汽车,1994(5):11-13
    59 周德成,杜文靖,王国强.振动压路机驾驶员全身振动模型研究[J].建筑机械,2003(5):50-53
    60 陈朝阳,邵仁玉.汽车平顺性研究中“人-椅”系统模型再探[J].安徽工学院学报,1992,11(1):72-79
    61 陈朝阳.用座椅传递率分析汽车“人-椅”系统模型简化的可行性[J].安徽工学院学报,1996,15(3):12-16
    62 K. Ebe. Predicting overall seat discomfort from their static and dynamic characteristics[D]. England, University of Southampton, 1998
    63 K. Ebe and M.J. Griffin. Qualitative models of seat discomfort including static and dynamic factors[J]. Ergonomics, 2000, 43(6): 771-790
    64 M. Kolich and S. Taboun. Ergonomics modeling and evaluation of automobile seat comfort[J]. Ergonomics, 2004, 47(8): 841-863
    65 Yasunao Matsumoto and Michael J. Griffin. Non-linear Characteristics in the dynamic responses of seated subjects exposed to vertical whole-body vibration[J]. Journal of biomechanical engineering, 2002, 124(5): 527-532
    66 T. Gunston and M. J. Griffin. Annex E. The isolation performance of a suspension seat over a range of vibration magnitudes tested with an anthropodynamic dummy and human subjects[A]. A paper presented to inter-noise' 99, Florida[C], USA: 121-125
    67 P.E. Boileau and S. Rakheja. Whole-body vertical biodynamic response characteristics of the seated vehicle driver measurement and model development[J]. International journal of industrial ergonomics, 1998(22): 449-472
    68 Wlodzimierz Choromanski and Jerzy Kisilowski. Human-vehicle system modeling-focus on heuristic modeling of driver-operator reactions and mechatronic suspension[J]. Vehicle system dynamics supplement, 2004(41): 262-271
    69 卫良保,陶元芳.叉车座椅的振动特性[J].工程机械,2001(8):9-11
    70 陆森林,刘红光.农用三轮运输车座椅振动分析[J].拖拉机与农用运输车,1995(4):7-10
    71 许其春,兰风崇.林用车辆座椅动态特性的确定和测试分析[J].林业机械,1992(2):14-19
    72 白胜勇,靳晓雄.工程机械悬置式座椅动态参数设计研究[J].同济大学学报,1999,27(1):74-77
    73 李华,戴锦轩.改善拖拉机乘坐舒适性的研究[J].农业机械学报,1985(4):13-23
    74 袁清珂.拖拉机座椅悬架系统的研究及应用[J].农业机械学报,1995,26(4):31-35
    75 叶元瑜.拖拉机乘坐振动理论分析[J].农业机械学报,1982(1):19-31
    76 于跃荣,安相太等.刚度一阻尼机械自动调节式拖拉机座椅悬架系统的研究[J].吉林工业大学学报,1990(3):37-41
    77 胡阳辉,张仲甫.动力可调性汽车座椅模型及其特性分析[J].武汉工学院学报,1995,17(1):29-35
    78 T.P. Gunston, J. Rebelle and M.J. Griffin. A comparison of two methods of simulating seat suspension dynamic performance[J]. Journal of sound and vibration, 2004(278): 117-134
    79 S. Rakheja, Y. Afework and S. Sankar. An analytical and experimental investigation of the driver seat suspension system[J]. Vehicle system dynamics, 1994(23): 501-524
    80 S. Rakheja, P. E. Boileau and Z. Wang etc. Performance analysis of suspension seats under high magnitude vibration excitations: part Ⅰ: model development and validation[J]. Journal of low frequency noise, vibration and active control, 2003, 22(4): 225-252
    81 S. Rakheja, P.E. Boileau and Z. Wang. Performance analysis of suspension seats under high magnitude vibration excitations: part Ⅱ: design parameter study[J]. Journal of low frequency noise, vibration and active control, 2004, 23(1): 7-26
    82 F. Amirouche, L. Palkovics and J. Woodrooffe. Optimal driver seat suspension design for heavy trucks[J]. Heavy vehicle system, International journal of vehicle design, 1995(2): 18-45
    83 Kevin E. Hill and Anoop K. Dhingra. Modeling, analysis and optimization of a scissors linkage seat suspension[J]. Eng. Opt., 2003, 35(4): 341-357
    84 张士勇.磁悬浮技术的应用现状与展望[J].工业仪表与自动化装置,2003(3):63-65
    85 张金平,张奕黄.磁悬浮列车的原理及现状[J].交通科技,2002(6):81-84
    86 程建峰,苏晓峰.磁悬浮列车的发展及应用[J].铁道车辆,2003,41(11):14-16
    87 汪希平.电磁轴承系统的刚度阻尼特性分析[J].应用力学学报,1997,14(3):95-100
    88 赵雷,张德魁,杨作兴等.电磁轴承最优刚度与系统结构参数关系的研究[J].机械工程学报,2000,36(12):62-64
    89 张德魁,赵雷,赵鸿宾.电流响应速度及力响应速度对磁轴承系统性能的影响[J].清华大学学报(自然科学版),2001,41(6):23-26
    90 赵韩,杨志轶,王忠臣.磁力轴承电磁力计算的两种建模方法与比较[J].农业机械学报,2002,33(4):84-87
    91 宋方臻,宋波,刘鲁宁.电磁悬浮轴承刚度和阻尼设计[J].济南大学学报(自然科学版),2002,16(2):121-123
    92 龙志强,罗昆.电磁型磁轴承的动态模型建立与分析[J].磁性材料及器件,2003,34(2):20-22
    93 Kosuke Nagaya and Masashi Ishikawa. A non-contact permanent magnet levitation table with electromagnetic control and its vibration isolation method using direct disturbance cancellation combining optimal regulators[J]. IEEE transactions on magnetics, 1995, 31(1): 885-896
    94 K.B. Choi, Y.G. Cho and T. Shinshi etc. Stabilization of one degree of freedom control type levitation table with permanent magnet repulsive forces[J]. Mechatronics, 2003, 13 (6): 587-603
    95 毛军红,高琳,李黎川.采用实心铁磁体的磁悬浮工作台的系统辨识[J].微细加工技术,2004(1):62-68.
    96 李黎川,丁玉成,卢秉恒.超精密磁悬浮工作台的一种低功耗磁悬浮设计[J].微细加工技术,2003(12):45-50,56
    97 王延风,卢志山等.磁悬浮纳米级步进扫描工作台CAD/CAE设计研究[J].机械设计与研究,2004,20(1):77-80
    98 汪韶杰.磁悬浮工作台机床的研究和展望[J].机械制造,2003,41(471):27-28
    99 崔瑞意,申仲翰,刘玉标.磁悬浮隔振装置的研制及基本机理研究[J].力学与实践,1999,21(4):54-56
    100 王福强,马履中,沈春根.磁悬浮式隔振技术的特性分析与研究[J].机械设计与研究,2003,19(1):44-45
    101 刘尚举,晏巨,陈虬.电磁永磁混合悬浮隔振系统控制研究[J].西南交通大学学报,1999,34(3):279-283
    102 钱坤喜,吕利昌,茹伟民等.一种新颖的磁力弹簧及其弹性[J].机械工程学报,1998,34(3):57-59
    103 吕利昌,马履中,钱坤喜等.一种新型磁悬浮装置的研究[J].机械设计与研究,1998(1):53-54
    104 杨红,赵韩.稀土永磁弹簧的力学特性研究[J].农业机械学报,2003,34(1):111-113,117
    105 刘雪菁,白志红,熊光煜.永磁弹簧的设计与计算分析[J].太原理工大学学报,2004,35(3):349-351
    106 朱美玲,袁世峰,颜景平.主动振动控制系统中电磁弹簧的理论研究[J].东南大学学报,1993,23(suppl.):97-101
    107 K. Nagaya and N. Arai. Analysis of a permanent magnet levitation actuator with electromagnetic control[J]. Journal of dynamic systems, measurement, and control, 1991, 113(9): 472-478
    108 Kosuke Nagaya and Mitsunori Sugiura. A method for obtaining a linear spring for permanent magnet levitation system using electromagnetic control[J]. IEEE Transactions on magnetics, 1995, 31(3): 2332-2337
    109 Etsunori Fujita, Noritoshi Nakagawa etc. Vibration characteristics of vertical suspension using magneto-spring[J]. Society of automotive engineers, 1999(1): 2893-2908
    110 Ben Cazzolato and Anthony Zander. Design of a non-contact magnetic spring for vibration isolation[J]. Research proposal. The university of Adelaide, 2003.11
    111 李辉,何锃.磁悬浮减振器的研究[J].汽车工艺与材料,1999(5):34-37
    112 陈渝光,李太福,肖蕙蕙等.基于磁悬浮刚度控制器与可调阻尼器的智能减振器研究[J].重庆工学院学报,2001(2):62-64
    113 黄伟,吕伟军.基于永磁体的磁力减振器的应用研究[J].湖南理工学院学报(自然科学版),2004,17(1):68-70
    114 K. Ohmata AND I. Yamakawa. Ball screw type damper using rare-earth magnets[A]. Proc. 10th International Workshop on Rare-Earth Magnets an Their Applications[C], 1989, Ⅱ: 65-73
    115 K. Ohmata, Y. Nakahara AND O. Noguchi. Hybrid damper using a magnetostrictive actuator and rare-earth magnets[A]. Proc. 1st International Conf. on Motion and Vibration Control[C], 1992(2): 645-650
    116 K. Seto. Vibration control method using magnetic damping, Trans[J]. JSME(in Japanese), 1990, 525C(56): 1079-1086
    117 H. Kobayashi ANDS. Aida. Development of a house damper using magnetic damping[A]. Proc. Vibration Isolation, Acoustics and Damping in Mechanical Systems, ASME[C], 1993, 62: 25-29
    118 Taichi Matsuoka and Kenichiro Ohmata. A study of a magnetic damper using rare-earth magnets and a pinned displacement magnifying mechanism[J]. International Journal of Applied Electromagnetics and Mechanics, 2002(13): 263-270
    119 Yeou-Kuang Tzeng and Tsih C. Wang. Optimal design of the electromagnetic levitation with permanent and electromagnets[J]. IEEE Transactions on magnetics, 1994, 30(6): 4731-4733
    120 Y-B Kim, W-G Hwang and C-D Kee etc. Active vibration control of a suspension system using an electromagnetic damper[J]. Active vibration control of a suspension system, 2001(215): 865-873
    121 D.I. Jones and R.G. Owen. A magnetically levitated anti vibration mount[J]. IEEE transactions on magnetics, 1984, 20(5): 1687-1689
    122 Izumo yamakawa, Sadahiko takeda and Hiroyuki kojima. Behavior of a new type dynamic vibration absorber consisting of three permanent magnets[J]. Bulletin of the JSME, 1977, 20(146): 947-954
    123 Yamashita, S. and K Seto. Vibration and Noise control using dual dynamic absorbers with magnetic damping, Electromagnetic Force and Application[J]. J. Tani and T. Takagi (editors), 1992, 489-492
    124 Wang K. W., and J. S. Lai. Control of an Adaptable Dynamic Absorber for Transient Vibration Suppression[A]. Proceedings of the Second Conference on Recent Advances in Active Control of Sound and Vibration[C], 1993, 506-515
    125 Y. Aida et al. Dynamic vibration absorber using magnetic spring and damper[J]. Seismic Engineering, ASME PVP, 1995, 312: 439-445
    126 Y. W. Lee and C. W. Lee. Dynamic analysis and control of an active engine mount system[A]. Proceedings of the institution of mechanical engineers, Part D: Journal of automobile engineering[C], 2002(216): 921-931
    127 龚余才.稀土磁弹簧吸振器特性的研究[J].南京航空航天大学学报,1995,27(3):376-381
    128 李奎年,陈悦霖.电磁式固有频率可控动力消振器[J].贵州工业大学学报,1997,26(Suppl.):123-127
    129 柳贵东,马国利,佘龙华.磁悬浮主动吸振器的研究[J].噪声与振动控制,2003(6):18-20
    130 刘小英,王凌,赵淑英等.汽车磁悬浮减振系统的结构分析与模型研究[J].武汉汽车工业大学学报,2000(3):14-17
    131 李云超,王良曦,张玉春.电磁主动悬架的建模及仿真研究[J].装甲兵工程学院学报,2004,18(1):66-69,78
    132 D. RYBA. Semi-active damping with an electromagnetic force generator[J]. Vehicle system dynamics, 1993(22): 79-95
    133 Nobuyuki Ueki, Jun Kubo and Toshio Takayama etc. Electromagnetic suspension systems[J]. Hitachi Review, 2004, 53(4): 225
    134 Matthies H J and Meier F. Jahrbuch agrartechnik[M]. Muenster: Landwirtschaftsverlag, 1999(11): 55-57
    135 邹剑林,钱志坚,周一鸣.小型拖拉机驾驶座椅结构的研究[J].北京农业工程大学学报,1989,9(1):13-18
    136 余志生.汽车理论[M].第三版.北京:机械工业出版社,2000
    137 屈维德,唐恒龄.机械振动手册[M].第二版.北京:机械工业出版社,2000
    138 李伟,张宝光.应用于工业设计的人体尺寸数据的分析处理.http://www.paper.edu.cn
    139 Wu X and Griffin MJ. Toward the standardization of a testing method for the end-stop impacts of suspension seats[J]. Journal of Sound and Vibration, 1996, 192(1): 307-319
    140 王宝龄.电磁电器设计基础[M].北京:国防工业出版社,1989
    141 张冠生.电磁铁与自动电磁元件[M].北京:机械工业出版社,1982
    142 张冠生.电器学:理论基础[M].北京:机械工业出版社,1980
    143 陈贵荣,常文森.磁悬浮隔振系统电磁铁的设计研究[J].噪声与振动控制,1994(6):14-16
    144 周小擎.直流电磁铁的优化设计[J].华南理工大学学报(自然科学版),1994,22(5):138-146
    145 杨祚新.电磁铁应用设计计算方法[J].机床电器,1996(1):44-46
    146 宋后定,陈培林.永磁材料及其应用[M].北京:机械工业出版社,1984
    147 张宝裕,刘恒基.磁场的产生[M].北京:机械工业出版社,1987
    148 Lawrence B. Tentor. Characterization of an electromagnetic tuned vibration absorber[D]. Blacksburg, Virginia: Faculty of Virginia Polytechnic Institute and State University, 2001
    149 Dusan Ryba. Semi-active suspension for a seat with a controlled electromagnetic damper[J]. Per. Pol. Trans. Eng., 1993, 21(3): 247-265
    150 Satoshi Kawazoe, Akio Yasuda and Shinji Yamaguchi. Development of magnet compound type seat-suspension[J]. Technical review, 2003(15): 77-80
    151 William H. Hayt, Jr. John A. Buck著,徐安士,周乐柱译.工程电磁学(第六版)[M].北京:电子工业出版社,2004
    152 W.R.smythe著,戴世强译.静电学和电动力学(下册)[M].北京:科学出版社,1982
    153 黄席椿.电磁能与电磁力[M].河北:人民教育出版社,1981

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700