用户名: 密码: 验证码:
温室环境下土壤—植物系统水热动态与模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国西北旱区水资源严重匮乏,但光热资源丰富,适合日光温室产业的发展。近年来,调整农业结构,发展日光温室已成为该地区节水与农民增益的重要措施。温室环境下土壤-植物系统水热动态与模拟研究对于认识温室环境下物质与能量交换和指导温室作物高效用水具有重要的理论意义和实际价值。
     本文以日光温室辣椒和西红柿为研究对象,于2008-2012年进行了不同小区对比试验,采用包裹式茎流计、自动气象站、净辐射仪、红外测温仪、热线式风速计等仪器定位观测及定量模拟的方法,对不同灌水技术条件下的水热传输动态、耗水规律及控制因子、耗水估算模型、根系分布特征和根系吸水等方面进行了系统的试验研究,取得以下成果:
     (1)温室沟灌及滴灌辣椒和沟灌西红柿全生育期白天感热通量占净辐射的比例为52.4-62.5%,潜热通量占净辐射的比例为32.4-40.7%,土壤热通量占净辐射的比例仅为3.6-7.9%。与滴灌辣椒相比,除初期外,沟灌辣椒白天净辐射、潜热通量和感热通量分别提高了5-44%、39-70%和26-33%,而土壤热通量降低了7-15%。沟灌辣椒和西红柿潜热通量占净辐射的比例与叶面积指数(LAI)呈线性增加关系,而感热通量占净辐射的比例与LAI呈线性降低关系,土壤热通量占净辐射的比例与LAI呈e指数降低关系。
     (2)温室沟灌和滴灌辣椒全生育期总耗水量(ETc)分别为519.3-559.8mm口361.6-412.7mm;温室沟灌西红柿全生育期总ETc为341.0-562.3mm。沟灌辣椒和西红柿日均ETc均随着太阳辐射、气温、水汽压差和叶面积指数的增加而线性增加,累积ETc与积温为二次抛物线关系。
     (3)与充分供水处理相比,2/3充分供水和1/2充分供水处理西红柿平均日均茎秆液流分别降低了22.1%和42.8%。当地推荐施氮量处理和2/3当地推荐施氮量处理的西红柿日均茎秆液流量接近,但均高于1/2当地推荐施氮量处理约30%。不同水分和氮素处理西红柿夜间液流量占总液流量的比例分别为12.6-14.8%和11.8-21.2%。
     (4)温室内71-88%的时间为混合对流,且主要在白天,其余时间为纯自由对流,纯强迫对流没有发生。纯自由对流条件下,热传输系数(h)用McAdams公式计算时,Penman-Monteith (P-M)模型显著低估了辣椒和西红柿的耗水量,且与h用Stanghellini公式计算时P-M模型估算值接近;混合对流条件下,h用Stanghellini公式计算时P-M模型能较好预测辣椒和西红柿的耗水量。因此,可不区分对流条件,采用h用Stanghellini公式计算时的P-M模型模拟日光温室辣椒和西红柿的瞬时耗水量。双作物系数法能较好的模拟温室覆膜条件下辣椒和西红柿的日均耗水量,模型估算误差较小,沟灌及滴灌辣椒和沟灌西红柿平均标准误差分别为0.54mmd-1、0.21mm d-1和0.55mm d-1,平均绝对误差分别为0.44mmd-1、0.17mm d-1和0.44mmd-1。
     (5)温室西红柿根系主要分布在深度0-50cm,水平径向为沟侧0-18cm,垄侧0-30cm范围内,所占比例为72.3%,其根系密度在垂向和径向均呈e指数衰减。采用Hydrus2D软件能较好的模拟西红柿根区土壤水分分布,模拟值与测定值回归方程的斜率为0.987,决定系数为0.89。根系分布较少的底层土壤含水量模拟值与实测值的误差稍大。
Water resourse is shortage in northwest China, but the region has abundant light resource and is highly suited for developing solar greenhouse industry. Adjustment of agriculture structure and developing solar greenhouse industry have become more and more important for water saving and increasing farmers' income in this region in recently years. The study on dynamics and simulation of water and heat transfer in soil-plant system in greenhouse is of great importance and can help to recognize water and heat transfer mechanism and provide basic information for improving crop water use.
     This paper mainly studied the dynamics of water and heat transfer under different irrigation method, evapotranspiration patten and control factors, evapotranspiration models, root distribution character and root water uptake using stem sap flow meters, automatic wheather station, net radiometer, infrared radiation pyrometer and air velocity meter in2008-2012. The main results were shown as follows:
     (1) The ratio of daytime sensible heat flux to net radiation of hot pepper under drip and furrow irrigation and tomato under furrow irrigation over the whole growth stage was52.4-62.5%. The ratio of daytime latent heat flux to net radiation was32.440.7%. And the ratio of daytime soil heat flux to net radiation was only3.5-7.9%. Compared to drip irrigation, except for initial stage, the daytime net radiation, latent heat flux and sensible heat flux was increased by5-44%,39-70%and26-33%, respectively. While the daytime soil heat flux was decreasd by7-15%. The ratio of daytime latent heat flux to net radiation increasd linearly, while the ratio of daytime sensible heat flux to net radiation decreased linearly, with the leaf area index. The relationship between the ratio of daytime soil heat flux to net radiation and leaf area index was minus exponent.
     (2) The total seasonal evapotranspiration (ETC) of hot pepper under furrow and drip irrigation was519.3-559.8mm and361.6-412.7mm, respectively. The total seasonal ETC of tomato under furrow irrigation was341.0-562.3mm. The dairy average ETC of hot pepper and tomato was increased as solar radiation, air temperature, vapour pressure deficit and leaf area index increased. The relationship between the accumulated ETC and accumulated temperature was quadratic parabola.
     (3) Compared to sufficient water supply treatement, the average daily stem sap flow decreased by22.1%and42.8%, respectively, for2/3sufficient water supply and1/2sufficient water supply. The average daily stem sap flow between typical nitrogen application rate treatement and2/3typical nitrogen application rate treatment was similar, and both were about30%higher than that of1/2typical nitrogen application rate treatment. The nighttime stem sap flow of tomato under different water and nitrogen treatments accounted for12.6-14.8%and11.8-21.2%, respectively, of daily total stem sap flow.
     (4) Heat transfer in the greenhouses was conducted through mixed convection during about71-88%of study periods, while the rest was pure free convection (no pure forced convection occurred). Under pure free convection, the Penman-Monteith (P-M) model substantially underestimated the evapotranspiration of hot pepper with heat transfer coefficient (h) calculated by the McAdams equation and the model with h calculated by the Stanghellini equation performed similar to the ones by McAdams equation. Under mixed convection, the P-M model can accurately estimate the evapotranspiration of hot pepper with h calculated by the Stanghellini equation. To sum up, the P-M model with h calculated by the Stanghellini equation can well estimate the evapotranspiration rates of hot peppers and tomatoes grown in the solar greenhouses over short-time interval in northwest China without distinguishing the convection types. Dual crop coefficient model can accurate estimate daily evapotranspiration of hot pepper and tomato grown in solar greenhouse under plastic mulch condition. The average root mean square error was0.54mmd-1,0.21mmd-1and0.54mm d-1, respectively, for hot pepper under furrow and drip irrigation and tomato under furrow irrigation. And the average mean absolute error was0.44mm d-1,0.17mm d-1and0.44mm d-1, respectively.
     (5) The root of tomato in greenhouse centralized in the depth between0-50cm, and radial space between0-18cm at furrow side and0-30cm at bed side. And the amount of the roots accounted for over72.3%of total roots. The horizontal and vertical distributions of root density of tomao were minus exponent. The soil water distribution of tomato can be better simulated by Hydrrus2D. The slope of simulated and measured soil water content was0.987and the determine coefficient was0.89. The difference between estimated and measured soil water content was higher in the bottom layer due to the less root.
引文
[1]沈振荣,苏人琼.中国农业水危机对策研究,1998,北京:中国农业科技出版社
    [2]冯绍元,陈绍军,霍再林等.我国水资源承载力研究现状及展望.东华理工学院学报,2006,29(4):301-306
    [3]马建堂.2011中国统计年鉴,2012,北京:中国统计出版社
    [4]康绍忠,李永杰.21世纪我国节水农业发展趋势及其对策.农业工程学报,1997,13(4):1-7
    [5]甘肃省水利厅.石羊河流域重点治理规划.2007
    [6]康绍忠,粟晓玲,沈清林等.石羊河流域水资源利用与节水农业发展模式的战略思考.水资源与水工程学报,2004,15(4):1-8
    [7]王峰.温室番茄产量与品质对水分亏缺的响应及节水调质灌溉指标:[博士学位论文].北京:中国农业大学,2011
    [8]陈其兵,刘兴成.武威市日光温室产业发展的现状与对策.甘肃科技,2011,27(14):9-12
    [9]Stanghellini, C. Evapotranspiration in greenhouses with special reference to Mediterranean conditions. International Symposium on Irrigation of Horticultural Crops,1993,335:295-304
    [10]Orgaz, F., Fernandez, M.D., Bonachela, S., et al. Evapotranspiration of horticultural crops in an unheated plastic greenhouse. Agricultural Water Management,2005,72(2):81-96
    [11]Montero, J.I., Castilla, N., Gutierrez De Rave, E., et al. Climate under plastic in the Almeria area. Greenhouse Construction and Covering Materials,1984,170:227-234
    [12]Rosenberg, N.J., McKenney, M.S., Martin, P. Evapotranspiration in a greenhouse-warmed world:a review and a simulation. Agricultural and Forest Meteorology,1989,47(2):303-320
    [13]Tiwari, G.N. Greenhouse Technology for Controlled Environment.2003:Narosa Publishing House, New Delhi
    [14]Soria, T., Cuartero, J. Tomato fruit yield and water consumption with salty water irrigation. Acta Horticulturae,1993:215-220
    [15]Harmanto, Salokhe, V.M., Babel, M.S., et al. Water requirement of drip irrigated tomatoes grown in greenhouse in tropical environment. Agricultural Water Management,2005,71(3):225-242
    [16]Chartzoulakis, K., Drosos, N. Water use and yield of greenhouse grown eggplant under drip irrigation. Agricultural Water Management,1995,28(2):113-120
    [17]徐淑贞,张双宝,鲁俊奇等.日光温室滴灌番茄需水规律及水分生产函数的研究与应用.节水灌溉,2001,4:26-28
    [18]王聪聪.日光温室番茄优质高效灌溉控制指标研究:[硕士学位论文].邯郸:河北工程大学,2011
    [19]Yuan, B.Z., Kang, Y., Nishiyama, S. Drip irrigation scheduling for tomatoes in unheated greenhouses. Irrigation Science,2001,20(3):149-154
    [20]Wang, Z.Y., Liu, Z.X., Zhang, Z.K., et al. Subsurface drip irrigation scheduling for cucumber (Cucumis sativus L.) grown in solar greenhouse based on 20 cm standard pan evaporation in Northeast China. Scientia Horticulturae,2009,123(1):51-57
    [21]Blanco, F.F., Folegatti, M.V. Evapotranspiration and crop coefficient of cucumber in greenhouse. Revista Brasileira de Engenharia Agricola e Ambiental,2003,7(2):285-291
    [22]彭致功,段爱旺,刘祖贵等.日光温室条件下茄子植株蒸腾规律的研究.灌溉排水,2002,2(21):47-50
    [23]刘浩.温室番茄需水规律与优质高效灌溉指标研究:[博士学位论文].新乡:农田灌溉研究所,2010
    [24]Jolliet, O., Bailey, B.J. The effect of climate on tomato transpiration in greenhouses:measurements and models comparison. Agricultural and Forest Meteorology,1992,58(1-2):43-62
    [25]Baille, A., Kittas, C., Katsoulas, N. Influence of whitening on greenhouse microclimate and crop energy partitioning. Agricultural and Forest Meteorology,2001,107(4):293-306
    [26]Katsoulas, N., Baille, A., Kittas, C. Effect of misting on transpiration and conductances of a greenhouse rose canopy. Agricultural and Forest Meteorology,2001,106(3):233-247
    [27]Fuchs, M., Dayan, E., Shmuel, D., et al. Effects of ventilation on the energy balance of a greenhouse with bare soil. Agricultural and Forest Meteorology,1997,86(3-4):273-282
    [28]Baille, A., Lopez, J.C., Bonachela, S., et al. Night energy balance in a heated low-cost plastic greenhouse. Agricultural and Forest Meteorology,2006,137(1):107-118
    [29]左大康,谢贤群.农田蒸发研究.1991,北京:气象出版社
    [30]魏天兴,朱金兆,张学培.林分蒸散耗水量测定方法述评.北京林业大学学报,1999,21(3):85-91
    [31]Allen, R.G., Pereira, L.S., Howell, T.A., et al. Evapotranspiration information reporting:I. Factors governing measurement accuracy. Agricultural Water Management,2011,98(6):899-920
    [32]Allen, R.G., Dickey, G., Wright, J.L., et al. Error analysis of bulk density measurements for neutron moisture gauge calibration. In:Proceedings of the ASCE National Conference on Irrigation and Drainage Engineering.1993:Park City, UT, USA.1120-1127
    [33]Evett, S.R., Tolk, J.A., Howell, T.A. A depth control stand for improved accuracy with the neutron probe. Vadose Zone Journal,2003,2(4):642-649
    [34]Young, M.H., Wierenga, P.J., Mancino, C.F. Monitoring near-surface soil water storage in turfgrass using time domain reflectometry and weighing lysimetry. Soil Science Society of America Journal,1997, 61(4):1138-1146
    [35]Allen, R.G., Pereira, L.S., Raes, D., et al. Crop Evapotranspiration:Guidelines for Computing Crop Water Requirements. FAO Irrigation and Drainage Paper 56. FAO, Rome, Italy,1998
    [36]丁日升.干旱内陆区玉米田水热传输机理与蒸散发模型研究:[博士学位论文].北京:中国农业大学,2012
    [37]Medrano, E., Lorenzo, P., Sanchez-Guerrero, M.C., et al. Evaluation and modelling of greenhouse cucumber-crop transpiration under high and low radiation conditions. Scientia Horticulturae,2005,105(2): 163-175
    [38]Medrano, E., Alonso, F.J., Sanchez-Guerrero, M.C., et al. A Simplified P-M Model for Improving Irrigation Management of Strawberries in a Semi-Closed Hydroponic System. XXVIII International Horticultural Congress on Science and Horticulture for People (IHC2010):International Symposium on 927,2010:361-366
    [39]Baas, R., van Rijssel, E. Transpiration of glasshouse rose crops:evaluation of regression models. EH International Symposium on Models for Plant Growth, Environmental Control and Farm Management in Protected Cultivation 718,2006:547-556
    [40]Bailey, B.J., Montero, J.I., Biel, C., et al. Transpiration of Ficus benjamina:comparison of measurements with predictions of the Penman-Monteith model and a simplified version. Agricultural and Forest Meteorology,1993,65(3-4):229-243
    [41]Rouphael, Y., Colla, G. Modelling the transpiration of a greenhouse zucchini crop grown under a Mediterranean climate using the Penman-Monteith equation and its simplified version. Australian Journal of Agricultural Research,2004,55(9):931-937
    [42]Zhang, L., Lemeur, R. Effect of aerodynamic resistance on energy balance and Penman-Monteith estimates of evapotranspiration in greenhouse conditions. Agricultural and Forest Meteorology,1992, 58(3-4):209-228
    [43]Carmassi, G., Bacci, L., Bronzini, M., et al. Modelling transpiration of greenhouse gerbera (Gerbera jamesonii H. Bolus) grown in substrate with saline water in a Mediterranean climate. Scientia Horticulturae, 2013,156:9-18
    [44]De Graaf, R., De Gelder, A., Blok, C. Advanced weighing equipment for water, crop growth and climate control management. Acta Horticulturae,2003:163-167
    [45]Shin, J.H., Ahn, T.I., Son, J.E. Modeling of transpiration of paprika (Capsicum annuum L.) plants based on radiation and leaf area index in soilless culture. Horticulture, Environment, and Biotechnology, 2011,52(3):265-269
    [46]Shin, J.H., Park, J.S., Son, J.E. Estimating the actual transpiration rate with compensated levels of accumulated radiation for the efficient irrigation of soilless cultures of paprika plants. Agricultural Water Management,2014,135:9-18
    [47]Zolnier, S., Lyra, G.B., Gates, R.S. Evapotranspiration estimates for greenhouse lettuce using an intermittent nutrient film technique. Transactions American Society of Agricultrual Engineers,2004,47(1): 271-284
    [48]Baldocchi, D., Falge, E., Gu, L., et al. FLUXNET:A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bulletin of the American Meteorological Society,2001,82(11):2415-2434
    [49]Wilson, K., Goldstein, A., Falge, E., et al. Energy balance closure at FLUXNET sites. Agricultural and Forest Meteorology,2002,113(1):223-243
    [50]Moller, M., Tanny, J., Li, Y., et al. Measuring and predicting evapotranspiration in an insect-proof screenhouse. Agricultural and Forest Meteorology,2004,127(1):35-51
    [51]Yang, X. Greenhouse micrometeorology and estimation of heat and water vapour fluxes. Journal of Agricultural Engineering Research,1995,61(4):227-238
    [52]张劲松,孟平.植物蒸散耗水量计算方法综述.世界林业研究,2001,14(2):23-28
    [53]孙鹏森,马履一.水源保护树种耗水特性研究与应用.2002:中国环境科学出版社
    [54]Angus. D.E., Watts. P.J. Evapotranspiration-How good is the Bowen ratio method? Agricultural Water Management,1984,8(1):133-150
    [55]Villarreal-Guerrero, F., Kacira. M., Fitz-Rodriguez, E., et al. Comparison of three evapotranspiration models for a greenhouse cooling strategy with natural ventilation and variable high pressure fogging. Scientia Horticulturae.2012,134:210-221
    [56]Takakura, T., Kubota, C., Sase, S., et al. Measurement of evapotranspiration rate in a single-span greenhouse using the energy-balance equation. Biosystems Engineering,2009,102(3):298-304
    [57]刘浩,孙景生,段爱旺等.温室滴灌条件下番茄植株茎流变化规律试验.农业工程学报,2010,26(10):77-82
    [58]Peramaki. M., Vesala, T., Nikinmaa, E. Analysing the applicability of the heat balance method for estimating sap flow in boreal forest conditions. Boreal Environment Research.2001.6(1):29-44
    [59]孙宁宁,董斌.罗金耀.大棚温室作物需水量计算模型研究进展.节水灌溉,2006.(2):16-19
    [60]Fernandez. M.D., Baeza. E.. Cespedes, A., et al. Validation of on-farm crop water requirements (PrHo) model for horticultural crops in an unheated plastic greenhouse. International Symposium on Strategies Towards Sustainability of Protected Cultivation in Mild Winter Climate 807.2008:295-300
    [61]Doorenbos, J.. Pruitt, W.O. Guidelines for Predicting Crop Water Requirements. Irrigation and Drainage Paper 24. FAO.1975. Rome
    [62]Gallardo, M., Gimenez, C., Martinez-Gaitan, C., et al. Evaluation of the VegSyst model with muskmelon to simulate crop growth, nitrogen uptake and evapotranspiration. Agricultural Water Management,2011,101(1):107-117
    [63]Lake, J.V., Postlethwaite, J.D., Slack, G., et al. Seasonal variation in the transpiration of glasshouse plants. Agricultural Meteorology,1966,3(3):187-196
    [64]Kirda, C., Cevik, B., Tulucu, K. A simple method to estimate the irrigation water requirement of greenhouse grown tomato. Symposium on Protected Cultivation of Solanacea in Mild Winter Climates 366, 1993:373-380
    [65]Kim, J., van lersel, M.W., Burnett, S.E. Estimating daily water use of two petunia cultivars based on plant and environmental factors. HortScience,2011,46(9):1287-1293
    [66]Pivetta, C.R., Heldwein, A.B., Maldaner, I.C., et al. Maximum evapotranspiration of sweet pepper grown in plastic greenhouse based upon meteorological and fenometrical variables. Revista Brasileira de Engenharia Agricola e Ambiental,2010,14(7):768-775
    [67]Bakker, J.C. Measurement of canopy transpiration or evapotranspiration in greenhouses by means of a simple vapour balance model. Agricultural and Forest Meteorology,1986,37(2):133-141
    [68]Yang, X., Short, T.H.. Fox, R.D., et al. Transpiration, leaf temperature and stomatal resistance of a greenhouse cucumber crop. Agricultural and Forest Meteorology.1990.51(3):197-209
    [69]Stanghellini, C. Transpiration of greenhouse crops; an aid to climate management.1987, Agricultural University Wageningen:The Netherlands
    [70]Montero, J.I., Anton, A., Munoz, P., et al. Transpiration from geranium grown under high temperatures and low humidities in greenhouses. Agricultural and Forest Meteorology,2001,107(4): 323-332
    [71]汪小旵,罗卫红,丁为民等.南方现代化温室黄瓜夏季蒸腾研究.中国农业科学,2002,11(35):1390-1395
    [72]Kitano, M., Eguchi, H. Buoyancy effect on forced convection in the leaf boundary layer. Plant, Cell & Environment,1990,13(9):965-970
    [73]Roy, J.C., Boulard, T., Kittas, C., et al. PA-precision agriculture:convective and ventilation transfers in greenhouses, Part 1:the greenhouse considered as a perfectly stirred tank. Biosystems Engineering,2002, 83(1):1-20
    [74]Boulard, T., Mermier, M., Fargues, J., et al. Tomato leaf boundary layer climate:implications for microbiological whitefly control in greenhouses. Agricultural and Forest Meteorology,2002,110(3): 159-176
    [75]Boulard, T., Wang, S. Greenhouse crop transpiration simulation from external climate conditions. Agricultural and Forest Meteorology,2000,100(1):25-34
    [76]戴剑锋,金亮,罗卫红等.长江中下游/enlo型温室番茄蒸腾模拟研究.农业工程学报,2006,22(3):99-103
    [77]Fynn, R.P., Al-Shooshan, A., Short, T.H., et al. Evapotranspiration measurement and modeling for a potted chrysanthemum crop. Transactions of American Society of Agricultural Engineers,1993: 1907-1913
    [78]Fuchs, M., Dayan, E. Transpiration and foliage temperature in a greenhouse. International Workshop on Systems for Greenhouses,1993:89-98
    [79]Zamarripa, J.R., Cruz, I.L.L., Salazar, J.A.C., et al. A comparison of three transpiration models in a tomato crop grown under greenhouse conditions. Terra Latinoamericana,2013,31(1):9-21
    [80]Stanhill, G., Albers, J.S. Solar radiation and water loss from glasshouse roses. Journal of the American Society for Horticultural Science,1974,99:107-110
    [81]Morris, L.G., Neale, F.E., Postlethwaite, J.D. The transpiration of glasshouse crops and its relationship to the incoming solar radiation. Journal of Agricultural Engineering Research,1957,2(2):111-122
    [82]Carmassi, G., Incrocci, L., Maggini, R, et al. An aggregated model for water requirements of greenhouse tomato grown in closed rockwool culture with saline water. Agricultural Water Management, 2007,88(1):73-82
    [83]Zhang, Z.K., Liu, S.Q., Liu, S.H., et al. Estimation of Cucumber Evapotranspiration in Solar Greenhouse in Northeast China. Agricultural Sciences in China,2010,9(4):512-518
    [84]张宝忠.干旱荒漠绿洲葡萄园水热传输机制与蒸发蒸腾估算方法研究:[博士学位论文].北京:中国农业大学,2009
    [85]Baille, M., Baille, A., Laury, J.C. A simplified model for predicting evapotranspiration rate of nine ornamental species vs. climate factors and leaf area. Scientia Horticulturae,1994,59(3):217-232
    [86]G&zquez, J.C., Lopez, J.C., Baeza, E., et al. Effects of vapour pressure deficit and radiation on the transpiration rate of a greenhouse sweet pepper crop. International Workshop on Greenhouse Environmental Control and Crop Production in Semi-Arid Regions,2008:259-265
    [87]Valdes-Gomez, H., Ortega-Farias, S., Argote, M. Evaluation of water requirements for a greenhouse tomato crop using the Priestley-Taylor method. Chilean Journal of Agricultural Research,2009,69(1): 3-11
    [88]Eslamian, S., Abedi Koupai, J., Zareian, M.J. Measurement and modelling of the water requirement of some greenhouse crops with artificial neural networks and genetic algorithm. International Journal of Hydrology Science and Technology,2012,2(3):237-251
    [89]Gardner, W.R. Relation of root distribution to water uptake and availability. Agronomy Journal,1964, 56(1):41-45
    [90]Molz, F.J. Models of water transport in the soil-plant system:A review. Water Resources Research, 1981,17(5):1245-1260
    [91]Nimah, M.N., Hanks, R.J. Model for estimating soil water, plant, and atmospheric interrelations:II. Field test of model. Soil Science Society of America Journal,1973,37(4):528-532
    [92]Herkelrath, W.N., Miller, E.E., Gardner, W.R. Water uptake by plants:I. Divided root experiments. Soil Science Society of America Journal,1977,41(6):1033-1038
    [93]Chandra, S., Amaresh, K. Nonlinear root-water uptake model. Journal of Irrigation and Drainage Engineering,1996,122(4):198-202
    [94]姚立民.苹果树根系吸水模型研究:[硕士学位论文].杨凌:西北农林科技大学,2004
    [95]康绍忠,刘晓明,熊运章.冬小麦根系吸水模式的研究.西北农林科技大学学报(自然科学版),1992,20(2):5-12
    [96]姚建文.作物生长条件下土壤含水量预测的数学模型.水利学报,1989,9:32-38
    [97]雷志栋,杨诗秀,谢森传.土壤水动力学.1988,北京:清华大学出版社
    [98]邵爱军,李会昌.野外条件下作物根系吸水模型的建立.水利学报,1997,(2):68-72
    [99]左强,王东.反求根系吸水速率方法的检验与应用.农业工程学报,2003,19(2):28-33
    [100]左强,王数.反求根系吸水速率方法的探讨.农业工程学报,2001,17(4):17-21
    [101]张喜英,袁小良.冬小麦根系吸水与土壤水分条件关系的田间试验研究.华北农学报,1995,10(4):99-104
    [102]龚道枝.苹果园土壤一植物-大气系统水分传输动力学机制与模拟:[博士学位论文].杨凌:西北农林科技大学,2005
    [103]姚立民.幼龄梭梭根系吸水对土壤水盐胁迫的响应机理及其模拟研究:[博士学位论文].杨凌:西北农林科技大学,2011
    [104]罗毅,于强,欧阳竹等.利用精确的田间实验资料对几个常用根系吸水模型的评价与改进.水利学报,2000,4:73-80
    [105]杨培岭,郝仲勇.植物根系吸水模型的发展动态.中国农业大学学报,1999,4(2):67-73
    [106]姚立民,康绍忠,龚道枝等.苹果树根系吸水模型研究.灌溉排水学报,2005,23(6):67-70
    [107]Elmaloglou, S.T., Malamos, N. A method to estimate soil-water movement under a trickle surface line source, with water extraction by roots. Irrigation and Drainage,2003,52(3):273-284
    [108]Simunek, J., Van Genuchten, M.T., Sejna, M. The HYDRUS Software Package for Simulating the Two-and Three-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media. User Manual, Version 1.0, PC Progress, Prague, Czech Republic,2007
    [109]Mmolawa, K., Or, D. Experimental and numerical evaluation of analytical volume balance model for soil water dynamics under drip irrigation. Soil Science Society of America Journal,2003,67(6): 1657-1671
    [110]Ebrahimian, H., Liaghat, A., Parsinejad, M., et al. Comparison of one-and two-dimensional models to simulate alternate and conventional furrow fertigation. Journal of Irrigation and Drainage Engineering, 2012,138(10):929-938
    [111]Abbasi, F., Feyen, J., Van Genuchten, M.T. Two-dimensional simulation of water flow and solute transport below furrows:model calibration and validation. Journal of Hydrology,2004,290(1):63-79
    [112]Van Genuchten, M.T. A close-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal,1980,44:892-898
    [113]康绍忠,刘晓明,熊运章.土壤-植物-大气连续体水分传输理论及其应用.1994,北京:水利电力出版社
    [114]Fernandez, M.D., Bonachela, S., Orgaz, F., et al. Measurement and estimation of plastic greenhouse reference evapotranspiration in a Mediterranean climate. Irrigation Science,2010,28(6):497-509
    [115]Fernandez, M.D., Bonachela, S., Orgaz, F., et al. Erratum to:Measurement and estimation of plastic greenhouse reference evapotranspiration in a Mediterranean climate greenhouse. Irrigation Science,2011, 29(1):91-92
    [116]邱扬,傅伯杰,王军等.黄土丘陵小流域土壤水分空间预测的统计模型.地理研究,2001,20(6):739-751
    [117]Willmott, C.J., Matsuura, K. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Climate Research,2005,30(1):79-82
    [118]Moriasi, D.N., Arnold, J.G., Van Liew, M.W., et al. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the American Society of Agricultural and Biological Engineers,2007,50(3):885-900
    [119]郭家选,梅旭荣,林琪等.冬小麦农田暂时水分胁迫状况下水、热通量日变化.生态学报,2006,26(1):130-137
    [120]Li, S.E., Tong, L., Li, F.S., et al. Variability in energy partitioning and resistance parameters for a vineyard in northwest China Agricultural Water Management,2009,96(6):955-962
    [121]Shen, Y., Zhang, Y., Kondoh, A., et al. Seasonal variation of energy partitioning in irrigated lands. Hydrological Processes,2004,18(12):2223-2234
    [122]Kang, S.Z., Gu, B.J., Du, T.S., et al. Crop coefficient and ratio of transpiration to evapotranspiration of winter wheat and maize in a semi-humid region. Agricultural Water Management,2003,59(3):239-254
    [123]Baldocchi, D. A comparative study of mass and energy exchange rates over a closed C3 (wheat) and an open C4 (corn) crop:II. CO2 exchange and water use efficiency. Agricultural and Forest Meteorology, 1994,67(3):291-321
    [124]Oue, H. Influences of meteorological and vegetational factors on the partitioning of the energy of a rice paddy field. Hydrological Processes,2005,19(8):1567-1583
    [125]Trambouze, W., Bertuzzi, P., Voltz, M. Comparison of methods for estimating actual evapotranspiration in a row-cropped vineyard. Agricultural and Forest Meteorology,1998,91(3-4): 193-208
    [126]Yunusa, I., Walker, R.R., Guy, J.R. Partitioning of seasonal evapotranspiration from a commercial furrow-irrigated Sultana vineyard. Irrigation Science,1997,18(1):45-54
    [127]Zhang, B.Z., Kang, S.Z., Zhang, L., et al. Estimation of seasonal crop water consumption in a vineyard using Bowen ratio-energy balance method. Hydrological Processes,2007,21(26):3635-3641
    [128]Spano, D., Duce, P., Snyder, R.L. Estimate of mass and energy fluxes over grapevine using eddy covariance technique. International Society for Horticultural Science,2003:631-638
    [129]Zhang, Y., Liu, C., Yu, Q., et al. Energy fluxes and the Priestley-Taylor parameter over winter wheat and maize in the North China Plain. Hydrological Processes,2004,18(12):2235-2246
    [130]Bello, R.L. Evapotranspiration in greenhouses.1982, McMaster University:Hamilton
    [131]Kittas, C., Baille, A., Giaglaras, P. Influence of covering material and shading on the spectral distribution of light in greenhouses. Journal of Agricultural Engineering Research,1999,73(4):341-351
    [132]Moller, M., Assouline, S. Effects of a shading screen on microclimate and crop water requirements. Irrigation Science,2007,25(2):171-181
    [133]Yunusa, I., Walker, R.R., Lu, P. Evapotranspiration components from energy balance, sapflow and microlysimetry techniques for an irrigated vineyard in inland Australia. Agricultural and Forest Meteorology,2004,127(1-2):93-107
    [134]Wang, F.X., Feng, S.Y., Hou, X.Y., et al. Potato growth with and without plastic mulch in two typical regions of Northern China. Field Crops Research,2009,110(2):123-129
    [135]Howell, T.A., Tolk, J.A., Schneider, A.D., et al. Evapotranspiration, yield, and water use efficiency of corn hybrids differing in maturity. Agronomy Journal,1998,90(1):3-9
    [136]Kittas, C., Katsoulas, N., Bailie, A. Influence of greenhouse ventilation regime on the microclimate and energy partitioning of a rose canopy during summer conditions. Journal of Agricultural Engineering Research,2001,79(3):349-360
    [137]张亚红,李建设.日光温室空气湿度环境及除湿技术研究ⅡI.地膜覆盖,稻草覆盖及膜下滴灌的降湿效果和效应.宁夏农学院学报,2000,21(3):32-38
    [138]乔立文,陈友,齐红岩等.温室大棚蔬菜生产中滴灌带灌溉应用效果分析.农业工程学报,1996,12(2):34-39
    [139]Ritchie, J.T. Dryland evaporative flux in a subhumid climate:I. Micrometeorological influences. Agronomy Journal,1971,63(1):51-55
    [140]Fritschen, L.J. Net and solar radiation relations over irrigated field crops. Agricultural Meteorology, 1967,4(1):55-62
    [141]Li, S.G., Eugster, W., Asanuma, J., et al. Energy partitioning and its biophysical controls above a grazing steppe in central Mongolia. Agricultural and Forest Meteorology,2006,137(1-2):89-106
    [142]Rosset, M., Montani, M., Tanner, M., et al. Effects of abandonment on the energy balance and evapotranspiration of wet subalpine grassland. Agriculture, Ecosystems & Environment,2001,86(3): 277-286
    [143]Kustas, W.P., Daughtry, C., Van Oevelen, P.J. Analytical treatment of the relationships between soil heat flux/net radiation ratio and vegetation indices. Remote Sensing of Environment,1993,46(3):319-330
    [144]Yang, Z.L., Dai, Y., Dickinson, R.E., et al. Sensitivity of ground heat flux to vegetation cover fraction and leaf area index. Journal of Geophysical Research,1999,104(D16):19505-19514
    [145]Hammerle, A., Haslwanter, A., Tappeiner, U., et al. Leaf area controls on energy partitioning of a mountain grassland. Biogeosciences Discussions,2007,4(5):3607-3638
    [146]Iritz, Z., Lindroth, A. Energy partitioning in relation to leaf area development of short-rotation willow coppice. Agricultural and Forest Meteorology,1996,81(1-2):119-130
    [147]Burba, G.G., Verma, S.B. Seasonal and interannual variability in evapotranspiration of native tallgrass prairie and cultivated wheat ecosystems. Agricultural and Forest Meteorology,2005,135(1): 190-201
    [148]Mahajan, G., Singh, K.G. Response of Greenhouse tomato to irrigation and fertigatioa Agricultural Water Management,2006,84(1-2):202-206
    [149]Elings, A., Kempkes, F., Kaarsemaker, R.C., et al. The energy balance and energy-saving measures in greenhouse tomato cultivation. International Society for Horticultural Science,2004:67-74
    [150]Chapin, F.S., Walter, C.H., Clarkson, D.T. Growth response of barley and tomato to nitrogen stress and its control by abscisic acid, water relations and photosynthesis. Planta,1988,173(3):352-366
    [151]Claussen, W. Growth, water use efficiency, and proline content of hydroponically grown tomato plants as affected by nitrogen source and nutrient concentration. Plant and Soil,2002,247(2):199-209
    [152]Davies, W.J., Zhang, J. Root signals and the regulation of growth and development of plants in drying soil. Annual Review of Plant Biology,1991,42(1):55-76
    [153]Cohen, Y. Determination of orchard water requirement by a combined trunk sap flow and meteorological approach. Irrigation Science,1991,12(2):93-98
    [154]Fernandez, J.E., Palomo, M.J., Diaz-Espejo, A., et al. Heat-pulse measurements of sap flow in olives for automating irrigation:tests, root flow and diagnostics of water stress. Agricultural Water Management, 2001,51(2):99-123
    [155]Tognetti, R., D'Andria, R., Morelli, G., et al. Irrigation effects on daily and seasonal variations of trunk sap flow and leaf water relations in olive trees. Plant and Soil,2004,263(1):249-264
    [156]Ma, F.S., Kang, S.Z., Li, F.S., et al. Effect of water deficit in different growth stages on stem sap flux of greenhouse grown pear-jujube tree. Agricultural Water Management,2007,90(3):190-196
    [157]Orruno, M.F., Alarcon, J.J., Nicolas, E., et al. Sap flow and trunk diameter fluctuations of young lemon trees under water stress and rewatering. Environmental and Experimental Botany,2005,54(2): 155-162
    [158]龚道枝,王金平,康绍忠等.不同水分状况下桃树根茎液流变化规律研究.农业工程学报,2001,17(4):34-38
    [159]杨再强,张婷华,李永秀等.不同水分胁迫条件下温室番茄茎流和叶片水势的反应.中国农业气象,2012,33(3):382-387
    [160]Grey, S.N. Monitoring the simultaneous response of various water status indicators for use in the irrigation scheduling and drought stress detection of a greenhouse tomato crop.2010, University of Zimbabwe:Harare
    [161]Vermeulen, K., Steppe, K., Linh, N.S., et al. Simultaneous response of stem diameter, sap flow rate and leaf temperature of tomato plants to drought stress. International Symposium on High Technology for Greenhouse System Management,2007:1259-1266
    [162]张志亮,张富仓,郑彩霞等.不同水氮条件下桃树幼苗茎干液流变化规律研究.节水灌溉,2009,2:1-4
    [163]Guerin, V., Huche-Thelier, L., Charpentier, S. Mobilisation of nutrients and transport via the xylem sap in a shrub (Ligustrum ovalifolium) during spring growth:N and C compounds and interactions. Journal of Plant Physiology,2007,164(5):562-573
    [164]Guak, S., Neilsen, D., Millard, P., et al. Determining the role of N remobilization for growth of apple (Malus domestica Borkh.) trees by measuring xylem-sap N flux. Journal of Experimental Botany,2003, 54(390):2121-2131
    [165]Mpusia, P.T.O. Comparison of water consumption between greenhouse and outdoor cultivation.2006, International Institute for Geo-Information Science and Earth Observation:Enschede, The Netherlands
    [166]Dagdelen, N., Yilmaz, E., Sezgin, F., et al. Effects of water stress at different growth stages on processing pepper (Capsicum annum Cv. Kapija) yield water use and quality characteristics. Pakistan Journal of Biological Sciences,2004,7(12):2167-2172
    [167]Sezen, S.M., Yazar, A., Eker, S. Effect of drip irrigation regimes on yield and quality of field grown bell pepper. Agricultural Water Management,2006,81(1-2):115-131
    [168]Shukla, S., Jaber, F.H., Goswami, D., et al. Evapotranspiration losses for pepper under plastic mulch and shallow water table conditions. Irrigation Science,2013:1-14
    [169]Lazzara, P., Rana, G. The use of crop coefficient approach to estimate actual evapotranspiration:a critical review for major crops under Mediterranean climate. Italian Journal of Agrometeogololgy,2010, 15(2):25-39
    [170]Shao, G.C., Zhang, Z.Y., Liu, N., et al. Comparative effects of deficit irrigation (DI) and partial rootzone drying (PRD) on soil water distribution, water use, growth and yield in greenhouse grown hot pepper. Scientia Horticulturae,2008,119(1):11-16
    [171]Bernstein, L., Francois, L.E. Comparisons of drip, furrow, and sprinkler irrigation. Soil Science,1973, 115(1):73-86
    [172]Alemayehu, Y.A., Steyn, J.M., Annandale, J.G. FAO-type crop factor determination for irrigation scheduling of hot pepper (Capsicum annuum L.) cultivars. South African Journal of Plant and Soil,2009, 26(3):186-194
    [173]Miranda, F.D., Gondim, R.S., Costa, C. Evapotranspiration and crop coefficients for tabasco pepper (Capsicum frutescensL.). Agricultural Water Management,2006,82(1):237-246
    [174]Souza, A.P.D., Pereira, J.B.A., Silva, L.D.B.D., et al. Evapotranspiration, crop coefficients and water use efficiency of the bell pepper crop in different cropping systems. Acta Scientiarum. Agronomy,2011, 33(1):15-22
    [175]Gallardo, M., Bonachela, S., Orgaz, F., et al. Crop coefficients of a pepper crop grown in plastic greenhouses in Almeria, Spain. Ⅲ International Symposium on Irrigation of Horticultural Crops 537,1999: 461-469
    [176]Ramalan, A.A., Nwokeocha, C.U. Effects of furrow irrigation methods, mulching and soil water suction on the growth, yield and water use efficiency of tomato in the Nigerian Savanna. Agricultural Water Management,2000,45(3):317-330
    [177]Al-Omran, A.M., Mohammad, F.S., Al-Ghobari, H.M., et al. Determination of evapotranspiration of tomato and squash using lysimeters in central Saudi Arabia. International Agricultural Engineering Journal, 2004,13(1&2):27-36
    [178]Pruitt, W., Fereres, E., Henderson, D., et al. Evapotranspiration losses of tomatoes under drip and furrow irrigation. California Agriculture,1984,38(5):10-11
    [179]Hanson, B.R., May, D.M. Crop evapotranspiration of processing tomato in the San Joaquin Valley of California, USA. Irrigation Science,2006,24(4):211-221
    [180]Pruitt, W., Lourence, F., Von Oettingen, S. Water use by crops as affected by climate and plant factors. California Agriculture,1972,26(10):10-14
    [181]Phene, C.J., McCormick, R.L., Miyamoto, J.M., et al. Evapotranspiration and crop coefficient of trickle-irrigated tomatoes. In:Proceedings of the Third International Drip/Trickle Irrigation Congress, "Drip/Trickle Irrigation in Action".1985:Fresno, CA
    [182]Snyder, R.L., Lanini, B.J., Shaw, D.A., et al. Using reference evapotranspiration (ET。) and crop coefficients to estimate crop evapotranspiration (ETC) for agronomic crops, grasses, and vegetable crops. Leaflet-University of California, Cooperative Extension Service,1987
    [183]Bonachela, S., Gonzalez, A.M., Fernandez, M.D. Irrigation scheduling of plastic greenhouse vegetable crops based on historical weather data. Irrigation Science,2006,25(1):53-62
    [184]Abedi-Koupai, J., Eslamian, S.S., Zareian, M.J. Measurement and modeling of water requirement and crop coefficient for cucumber, tomato and pepper using microlysimeter in greenhouse. Journal of Science and Technology of Greenhouse Culture,2011,2(7):51-64
    [185]Rana, G., Katerji, N. A measurement based sensitivity analysis of the Penman-Monteith actual evapotranspiration model for crops of different height and in contrasting water status. Theoretical and Applied Climatology,1998,60(1-4):141-149
    [186]Jarvis, P.G., McNaughton, K.G. Stomatal control of transpiration:scaling up from leaf to region. Advances in Ecological Research,1986,15:1-49
    [187]Monteith, J.L., Unsworth, M.H. Principles of Environmental Physics, second edition.1990, London: Butterworth-Heinemann.286
    [188]Hsiao, T.C. Plant responses to water stress. Annual Review of Plant Physiology,1973,24(1): 519-570
    [189]肖浪涛,王三根.植物生理学.2004,北京:中国农业出版社
    [190]Torrecillas, A, Guillaume, C., Alarcon, J.J., et al. Water relations of two tomato species under water stress and recovery. Plant Science,1995,105(2):169-176
    [191]Sandoval Villa, M., Guertal, E.A., Wood, C.W. Tomato leaf chlorophyll meter readings as affected by variety, nitrogen form, and nighttime nutrient solution strength. Journal of Plant Nutrition,2000,23(5): 649-661
    [192]李灵芝,郭荣,李海平等.不同氮浓度对温室番茄生长发育和叶片光谱特性的影响.植物营养与肥料学报,2010,16(4):965-969
    [193]Caird, M.A., Richards, J.H., Donovan, L.A. Nighttime stomatal conductance and transpiration in C3 and C4 plants. Plant Physiology,2007,143(1):4-10
    [194]Caird, M.A., Richards, J.H., Hsiao, T.C. Significant transpirational water loss occurs throughout the night in field-grown tomato. Functional Plant Biology,2007,34(3):172-177
    [195]Seginer, I., Kantz, D., Levav, N., et al. Night-time transpiration in greenhouses. Scientia Horticulturae,1990,41(3):265-276
    [196]Snyder, K.A., Richards, J.H., Donovan, L.A. Night-time conductance in C3 and C4 species:do plants lose water at night? Journal of Experimental Botany,2003,54(383):861-865
    [197]Yoo, C.Y., Pence, H.E., Hasegawa, P.M., et al. Regulation of transpiration to improve crop water use. Critical Reviews in Plant Science,2009,28(6):410-431
    [198]Easlon, H.M., Richards, J.H. Drought response in self-compatible species of tomato (Solanaceae). American Journal of Botany,2009,96(3):605-611
    [199]Rana, G., Katerji, N. Measurement and estimation of actual evapotranspiration in the field under Mediterranean climate:a review. European Journal of Agronomy,2000,13(2-3):125-153
    [200]Kano, A., Shimaji, H. Greenhouse environmental control system with a crop model and an expert system. Symposium on High Technology in Protected Cultivation,1988,230:229-236
    [201]Jarvis, P.G. The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Biological Sciences,1976,273(927):593-610
    [202]Berryman, C.A., Eamus, D., Duff, G.A. Stomatal responses to a range of variables in two tropical tree species grown with CO2 enrichment. Journal of Experimental Botany,1994,45(5):539-546
    [203]Leuning, R. A critical appraisal of a combined stomatal-photosynthesis model for C3 plants. Plant, Cell & Environment,1995,18(4):339-355
    [204]Tardieu, F., Simonneau, T. Variability among species of stomatal control under fluctuating soil water status and evaporative demand:modelling isohydric and anisohydric behaviours. Journal of Experimental Botany,1998,49(Special Issue):419-432
    [205]Tuzet, A., Perrier, A., Leuning, R. A coupled model of stomatal conductance, photosynthesis and transpiration. Plant, Cell & Environment,2003,26(7):1097-1116
    [206]Brutsaert, W., Stricker, H. An advection-aridiry approach to estimate actual regional evapotranspiration. Water Resources Research,1979,15(2):443--450
    [207]Thom, A.S. Momentum, mass and heat exchange of plant communities. In:Monteith, J.L. (Ed.), Vegetation and the Atmosphere.1975, London:Academic Press
    [208]Allen, R.G. Using the FAO-56 dual crop coefficient method over an irrigated region as part of an evapotranspiration intercomparison study. Journal of Hydrology,2000,229(1):27-41
    [209]Allen, R.G., Pereira, L.S., Smith, M., et al. FAO-56 dual crop coefficient method for estimating evaporation from soil and application extensions. Journal of Irrigation and Drainage Engineering,2005, 131(1):2-13
    [210]Liu, Y., Luo, Y. A consolidated evaluation of the FAO-56 dual crop coefficient approach using the lysimeter data in the North China Plain. Agricultural Water Management,2010,97(1):31-40
    [211]Ding, R.S., Kang, S.Z., Zhang, Y.Q., et al. Partitioning evapotranspiration into soil evaporation and transpiration using a modified dual crop coefficient model in irrigated maize field with ground-mulching. Agricultural Water Management,2013,127:85-96
    [212]Allen, R.G., Pereira, L.S. Estimating crop coefficients from fraction of ground cover and height. Irrigation Science,2009,28(1):17-34
    [213]Allen, R.G., Wright, J.L., Pruitt, W.O., et al. Water requirements. In:Hoffman, G.L., Evans, R.G, Jensen, M.E., Marin, D.L., Elliot, R.L.(Eds). Design and Operation of Farm Irrigation Systems.,2nd edition. ASABE,St Joseph MI,2007:208-288
    [214]Rosa, R.D., Paredes, P., Rodrigues, G.C., et al. Implementing the dual crop coefficient approach in interactive software:2. Model testing. Agricultural Water Management,2012,103:62-77
    [215]Lovelli, S., Perniola, M., Arcieri, M., et al. Water use assessment in muskmelon by the Penman-Monteith "one-step" approach. Agricultural Water Management,2008,95(10):1153-1160
    [216]Zhang, B.Z., Liu, Y., Xu, D., et al. The dual crop coefficient approach to estimate and partitioning evapotranspiration of the winter wheat-summer maize crop sequence in North China Plain. Irrigation Science,2013:1-14
    [217]Zhao, N.N., Liu, Y., Cai, J.B., et al. Dual crop coefficient modelling applied to the winter wheat-summer maize crop sequence in North China Plain:basal crop coefficients and soil evaporation component. Agricultural Water Management,2013,117:93-105
    [218]Paco, T.A., Ferreira, M.I., Rosa, R.D., et al. The dual crop coefficient approach using a density factor to simulate the evapotranspiration of a peach orchard:SIMDualKc model versus eddy covariance measurements. Irrigation Science,2012,30(2):115-126
    [219]Martins, J.D., Rodrigues, G.C., Paredes, P., et al. Dual crop coefficients for maize in southern Brazil: Model testing for sprinkler and drip irrigation and mulched soil. Biosystems Engineering,2013,115(3): 291-310
    [220]赵娜娜,刘钰,蔡甲冰.双作物系数模型SIMDual_Kc的验证及应用.农业工程学报,2011,27(2):89-95
    [221]赵娜娜,刘钰,蔡甲冰等.夏玉米棵间蒸发的田间试验与模拟.农业工程学报,2012,28(21):66-73
    [222]Martins, J.D., Rodrigues, G.C., Petry, M.T., et al. Dual crop coefficients for irrigated maize in southern brazil:model calibration and validation. International Conference on Agricultural Engineering, 2012:8-12
    [223]Goudriaan, J., Van Laar, H.H. Modelling potential crop growth processes:textbook with exercises. 1994, Dordrech:Kluwer Academic Publisher
    [224]刁明,戴剑锋,罗卫红等.温室甜椒生长与产量预测模型.农业工程学报,2009,(10):241-246
    [225]Gardiol, J.M., Serio, L.A., Della Maggiora, A.I. Modelling evapotranspiration of corn (Zea mays) under different plant densities. Journal of Hydrology,2003,271(1):188-196
    [226]Zhang, B.Z., Kang, S.Z., Li, F.S., et al. Comparison of three evapotranspiration models to Bowen ratio-energy balance method for a vineyard in an arid desert region of northwest China. Agricultural and Forest Meteorology,2008,148(10):1629-1640
    [227]Zhou, M.C., Ishidaira, H., Takeuchi, K. Comparative study of potential evapotranspiration and interception evaporation by land cover over Mekong basin. Hydrological Processes,2008,22(9): 1290-1309
    [228]McAdams, W.H. Heat Transmission.1954, New York:McGraw-Hill
    [229]Grober, H., Erk, S., Grigull, U. Fundamentals of Heat Transfer.1961, New York:McGraw-Hill
    [230]王厚华,周根明,李新禹.传热学.2006,重庆:重庆大学出版社
    [231]Dixon, M., Grace, J. Natural convection from leaves at realistic Grashof numbers. Plant, Cell& Environment,1983,6(8):665-670
    [232]Vogel, S. Convecutive cooling at low air speeds and the shapes of broad leaves. Journal of Experimental Botany,1970,21(1):91-101
    [233]Rosa, R.D., Paredes, P., Rodrigues, G.C., et al. Implementing the dual crop coefficient approach in interactive software.1. Background and computational strategy. Agricultural Water Management,2012, 103:8-24
    [234]Mahrer, Y., Naot, O., Rawitz, E., et al. Temperature and moisture regimes in soils mulched with transparent polyethylene. Soil Science Society of America Journal,1984,48(2):362-367
    [235]Rosa, R.D., Paredes, P. SIMDualKc_manual:The SIMDualKc Model:Software application for water balance computation and irrigation scheduling using the dual crop coefficient approach,2011
    [236]Chen, Y., Katan, J. Effect of solar heating of soils by transparent polyethylene mulching on their chemical properties. Soil Science,1980,130(5):271-277
    [237]Liu, Y., Pereira, L.S., Fernando, R.M. Fluxes through the bottom boundary of the root zone in silty soils:parametric approaches to estimate groundwater contribution and percolation. Agricultural Water Management,2006,84(1):27-40
    [238]Vrugt, J.A., Hopmans, J.W., Simunek, J. Calibration of a two-dimensional root water uptake model. Soil Science Society of America Journal,2001,65(4):1027-1037
    [239]Feddes, R.A., Kowalik, P.J., Zaradny, H. Simulation of Field Water Use and Crop Yield.1978, New York, NY:John Wiley & Sons
    [240]Zhang, Y.Y., Wu, P.T., Zhao, X.N., et al. Simulation of soil water dynamics for uncropped ridges and furrows under irrigation conditions. Canadian Journal of Soil Science,2013,93(1):85-98

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700