视觉注意计算模型的研究及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
视觉注意是人类信息加工中一项重要的心理调节机制,是人类从外界输入的大量信息中选择和保持有用信息,拒绝无用信息的意识活动,是人类视感知过程中高效性和可靠性的保障。视觉注意计算模型的研究,不但有助于探索人类视觉信息处理的工作机理,而且对于解决数据筛选问题和提高计算机的信息处理效率有着重要的意义,在图像分析与图像理解领域、目标检测、信息检索、机器人视觉、视频通讯等领域也有重要的应用价值。
     本文对视觉注意机制及其计算方法进行了深入而细致的研究:分析总结了视觉注意机制的认知神经学理论和神经加工机制;以人类视觉加工的生理学理论为依据,紧密结合计算机视觉计算的要求,构建了一个由特征加工、注意集中和注意控制三部分组成的动态视觉注意计算模型的体系结构。提出了一种双通路和层次化的特征加工结构;提出了一种深度特征和运动特征度量方法,以反映场景时空特性对视觉注意的影响;通过IFNN神经网络模拟双通路的特征整合过程,实现注意的集中;提出了一种具有注意保持和唤醒功能的注意控制方式。在此基础上,实现了一个基于客体选择的动态视觉注意计算模型。实验表明:本文所提出的计算方法是富有成效的。
     本文首先总结了视觉注意机制的认知神经科学及心理学理论,从生物视觉领域找出计算机视觉可借鉴的神经生理学依据,并以之为出发点,寻找认知心理学中注意机制与计算机科学的结合点,构建一个动态视觉注意计算模型的体系结构,并将视觉注意计算划分为特征加工、注意集中和注意控制三个模块,实现认知神经科学与视觉计算的结合。
     在特征加工的过程中,解决了特征的选择,特征的显著性度量和特征加工的层次三个方面的问题。在特征选择方面,将特征分为空间特征与非空间特征两类,空间特征的提取是通过提出一种深度特征与运动特征的计算方法来实现的,用以反映场景的时空特性对视觉注意的影响;非空间特征通过提取亮度、颜色和方向特征得到。各类特征的显著性度量依据视觉反差计算实现。根据生物视觉中特征加工层次和功能的差异,空间特征与非空间特征通过模拟what和where双通路理论进行加工,各类特征的显著图由子特征之间相互竞争和整合得到。
     在注意集中方面,以视觉通路理论为指导,通过使用亮度特征、颜色特征和方向特征等非空间特征来描述物体的感受,模拟what通路的主要功能;运动特征和深度特征等空间特征用来描述场景的运动和空间信息,模拟where通路的功能。两个通路的整合通过带有自学习和可调节机制的IFNN神经网络实现。根据神经网络的脉冲发放时间进行注意焦点的选择,当两个通路的输入相关联的时候,神经网络产生最大的增益,输出单元的脉冲发放时间会比非相关单元的发放时间更短。
     在注意控制方面,根据视觉注意的神经控制特点,提出了一种动态视觉注意模型的注意控制方式。通过一个唤醒信号来描述视野中新异刺激的强度,根据唤醒信号的大小开启或屏蔽阈值来控制注意保持与注意唤醒状态的转换。采用注意焦点跟踪算法来实现动态场景的注意保持;并提出了一种位置增强方法,以提高新异刺激所在位置的视觉显著性。
     本文的研究比较完整地给出了视觉注意计算的思想与方法,实现了一个适用性较强的动态视觉注意计算模型,并提高了该计算模型的理论价值和应用价值。实验表明,本文提出的模型较好地运用了视觉认知规律,使视觉注意处理结果更加符合人类视觉感知的基本特征。
Visual attention is regarded as an essential cognitive process of human visual system. Human vision relies on visual attention mechanism to select the relevant parts of scene, on which higher level tasks can be processed. Since information from only a small region of the visual field can progress through the cortical visual hierarchy, visual tasks can be effectively dealt with by limited processing resources. Visual attention models are based on the biological model of visual attention, which mimic the ability of a visual system. Researching on computational model of visual attention is not only helpful in understanding the working mechanism of human visual system, but also has important application in image analysis and understanding, object detection, information retrieval, robot vision, video communication, and etc.
     The dissertation addresses the research on visual attention mechanism and its computational methods. The cognitive neuroscience theories and the neural mechanism of visual attention are analyzed. According to the requirement on computer vision, architecture of dynamic visual attention model based on the biophysics and neurophysiology theories of human visual processing is established. This architecture is mainly composed of three parts: feature processing, attentional capture and attentional control. A system of two-pathway based hierarchical feature process is proposed. The extraction of depth features and motion features is realized to measure the third spatial dimension and the time-scale of the complex environments. The integration between the two pathways in brain is simulated by an integrate-and-fire neural network (IFNN), which is employed to compute the focus of attention. The approach of attentional control for dynamic visual attention model is developed to mimic the sustained attention mechanism. According to the theories and techniques, a visual attention model for dynamic scenes based on object selection is implemented.
     The cognitive neuroscience theories and neural mechanism of visual attention are analyzed. To meet the requirement of computer image processing by summarizing the latest study of the biological vision, the biological enlightenment for computer vision is provided. Under the idea of bionics, the architecture of dynamic visual attention model is established, which relates computer image information processing with biophysics and neurophysiology. The model is mainly composed of three parts: feature processing, attentional capture and attentional control.
     Three major problems are solved in feature processing: feature selection, saliency computation and the hierarchical processing of feature. On feature selection, the features are classified into two types: spatial features and non-spatial features. The extraction of spatial features which include depth features and motion features are realized to measure the third spatial dimension and the time-scale of complex environments. The non-spatial stimulus features include intensity, color, orientation, and etc. Saliency computation depends on the computation of feature contrast. According to the differences in hierarchy and function of different features, the processing of spatial features and non-spatial features simulates the two pathways processing in brain. The saliency map of each feature is created by the competition or integration of the sub-features.
     On attentional capture, the approaches of feature integration and attention focus are developed based on the two-pathway theory. We use the non-spatial features (including intensity, color and orientation) as the perceptual information about object, which are transmitted in "what" pathway. The perception of spatial and motion information related to "where" pathway are presented by depth features and motion features. An integrate-and-fire neural network (IFNN) is employed to simulate the three-way relationship between the two inputs and response to achieve a dynamic and modulatory property. The correlation between two input sets is implemented by the IFNN, which produces a certain amount of gain when two inputs are consistent. In the case that the stimuli from two pathways are correlated, the interspike interval will be shortened. The focus of attention is allocated at the possible target position in the original image after the interspike interval is calculated.
     According to neural mechanism of visual attention, the approach of attentional control for dynamic visual attention model is developed. An arousal signal is used to measure the strength of the new stimuli in scenes. The arousal signal is defined as parameters for sustained attention judgment. A tracking algorithm is proposed to mimic the sustained attention mechanism in dynamic scenes. If the arousal signal cannot over the threshold, the movement of the focus of attention has to be related to the tracking process. If the arousal signal over the threshold, a method of location enhancement is developed to enhance the saliency of the new stimuli.
     The computational model of visual attention for dynamic scenes is the target of the research. The theories and approaches are combined to implement the model, which has a strong applicability and important applied value. The experiment results also show that our computational theories and techniques applied in the system are valid and effective.
引文
[1]Anllo-Vento L,Hillyard S A.Selective attention to the color and direction of moving stimuli:Electrophysiological correlates of hierarchical feature selection.Perception and Psychophysics,1996,58,191-206.
    [2]Backer G,Mertsching B.Integrating depth and motion into the attentional control of an active vision system,in:G.Baratoff,H.Neumann,(Eds.),Dynamische Perzeption,St.Augustin(Infix),2000,pp.69-74.
    [3]Behrmann M,Zemel R S,Mozer M C.Occlusion,symmetry,and object-based attention:Reply to Saiki(2000),J.Exp.Psych.:Hum.Percept.Perf.2000,26(4),1497-1505.
    [4]Bleyer M,Gelautz M.Graph-based surfacc reconstruction from stereo pairs using image segmentation.In SPIE,pages vol.5665:288-299,January 2005.
    [5]Bourque E,Dudek G.Ciaravola P.Robotic Sightseeing:a Method for Automatically Creating Virtual Environments,in Proc.of the IEEE International Conference on Robotics and Automation,Leuven,Belgium,1998:3186-3191.
    [6]Broadbent D E.Perception and communication.London:Pergamon Press.1958.
    [7]Busse L,Katzner S,Treue S.Temporal dynamics of neuronal modulation during exogenous and endogenous shifts of visual attention in macaque area MT.PNAS,2008,105:16380-16385.
    [8]Cave K R,Wolfe J M.Modeling the role of parallel processing in visual search.Cognit.Psychol,1990,22:225-271.
    [9]Comaniciu D,Meer P.Mean shift:A robust approach toward feature spacc analysis.IEEE:PAMI,2002,24(5):603-619.
    [10]Comaniciu D,Ramesh V,Meer P.Kernel-Based Object Tracking.IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25,05,P 564-577
    [11]Culhane S M,Tsotsos J K.An Attentional Prototype for Early Vision,in Proc.of the Second European Conference on Computer Vision,Santa Margherita Ligure,Italy,1992:551-560.
    [12]Culhane S M,Tsotsos J K.A Prototype for Data-driven Visual Attention,International Conference on Pattern Recognition,vol.1,1992:36-40.
    [13]Czigler S,Balazs L.Object-related Attention:An Event-related Potential Study.Brain and Cognition,1998,38,113-124.
    [14]David C,Van Essen,Edgar A Deyoe.Concurrent Processing in the Primate Visual Cortex.In The Cognitive Neurosciences,Ⅲ Sensory System,M.S.Gazzaniga,ed.London:The MIT Press,1995.
    [15]DeGangi G,Porges S,Neuroscience Foundations of Human Performance.Rockville,MD.American Occupational Therapy Association Inc.1990.
    [16]Desimone R,Duncan J.Neural mechanisms of selective visual attention.Annual Review of Neuroscience,1995,18:193-222.
    [17]Desimone R.Neural mechanisms for visual memory and their role in attention.Proceedings of the National Academy of Science USA,1996,93,13494-13499.
    [18]Deutsch J A.Attention:Some theoretical considerations.Psychological Review,1963,70,80-90.
    [19]Dobkins K R,Albright T D.What happens if if changes color when it moves:The nature of chromatic inprt to macapre misual Area MT.Journal of Neuroscience,1994,14(8):4854-4870.
    [20]Dimai A.Assessment of Effectiveness of Content Based Image Retrieval Systems,in Proc.of the Visual'99,Amsterdam,Netherlands,1999:525-532.
    [21]Driver J,Baylis G C.Attention and visual object segmentation,In R.Parasuraman(Ed.),The Attentive Brain,pp.299-25,Cambridge,MA:MIT Press,1998.
    [22]Duncan J.Selective attention and the organization of visual information,J.Exp.Psychol.1984,113,501-517.
    [23]Duncan J,Humphreys G W.Visual search and stimulus similarity,Psychological Rev.1989,96,433-458.
    [24]Duncan J,Target and non-target grouping in visual search,Perception and Psychophysics 1995,57(1)117-120.
    [25]Duncan J.Coordinated brain systems in selective perception and action,in:T.Iaui,J.L.McClelland(Eds.),Attention and Performance XVI,MIT Press,Cambridge,MA,1996,pp.549-578.
    [26]Duncan J.Integrated mechanisms of selective attention,Curr.Opin.Biol.1997,7,255-261.
    [27]Duncan J.Converging levels of analysis in the cognitive neuroscience of visual attention.Philosophical Transactions of the Royal Society of London B,1998,353:1307-1317.
    [28]Eriksen C W,Yeh Y Y.Allocation of attention in the visual field,J.Exp.Psychol.:Hum.Percept.Perf.1985,11(5)583-597.
    [29]Eriksen C W,James J D St,Visual attention within and around the field of focal attention:A zoom lens model,Perception and Psychophysics,1986,40(4),225-240.
    [30]Farah M J,et al.“What” and “where” in visual attention:Evidence from the neglect syndrome,in:Unilateral Neglect:Clinical and Experimental,1993,pp.123-138.
    [31]Felzenszwalb P F,Huttenlocher D P.Efficient belief propagation for early vision.In CVPR,pages I:261-268,2004.
    [32]Feng J F,Brown D.Impact of correlated inputs on the output of the integrate-and-fire models.Neural Computation,2000,12:671-692.
    [33]Feng J F,Sun Y L,Wei G,Buxton H.Training the integrate-and-fire neurons with the informax principle Ⅱ.IEEE Transactions on Neural Networks,2003,14(2).
    [34]Fink G R,et al.Space-based and object-based visual attention:Shared and specific neural domains,Brain 1997,120,2013-2028.
    [35]Frintrop Simone,Backer Gerriet,Rome Erich.Goal-directed search with a top-down modulated computational attention system,Lecture Notes in Computer Science,v 3663,Pattern Recognition:27th DAGM Symposium:Proceedings,2005,p 117-124.
    [36]Frintrop S,Rome E,Nuchter A,Surmann H.A bimodal laser-based attention system.CVIU,2005,100(1-2):124-151.
    [37]Gesu V Di,Valenti C,Strinati L.Local Operators to Detect Regions of Interest,Pattern Recognition Letters,1997,18(11):177-181.
    [38]Grossberg S,Raizada R.Contrast-sensitive perceptual grouping and object-based attention in the laminar circuits of primary visual cortex,Vision Res.2000,40,1413-1432.
    [39]Grossberg S,Kuhlmann L,Mingolla E.A neural model of 3D shape-from-texture:Multiplescale filtering,boundary grouping,and surfacc fillingin.Vision Research,2007,47, 634-672.
    [40]Gotlieb C C,Kreyszig H E.Texture descriptors based on co-occurrence matrices,Computer Vision,Graphics,and Image Processing 51,1990.
    [41]Grove T D,Fisher R B.Attention in iconic object matching,in:Proc.BMVC96,Edinburgh,1996,pp.293-302.
    [42]Hamker F H,Zirnsak M,Calow D,et al.The spatial reentry hypothesis of perisaccadic visual perception,Journal Of Psychophysiology 2005,19(2):121-121.
    [43]Hamker F H.The reentry hypothesis:The putative interaction of the frontal eye field,ventrolateral prefrontal cortex,and areas V4.IT for attention and eye movement,Cerebral Cortex 2005,15(4):431-447 APR.
    [44]Hang Shi,Yu Yang.A computational model of visual attention based on saliency maps,Applied Mathematics and Computation,2007,188:1671-1677.
    [45]Herzog G,Wazinski Pr.Visual TRAnslator:linking perceptions and natural language descriptions.Artificial Intelligence Review,1994,8(2-3):175-187.
    [46]Heinke D,Humphreys G W.SAIM:A model of visual attention and neglect,in:Proc.International Conference on Artificial Neural Networks,New York,1997,pp.913-918.
    [47]Heinze H J,Mangun G R,Burchert W.Combined spatial and temporal imaging of brain activity during visual selective attention in humans.Nature,1994,372,543546.
    [48]Hillyard S A,Anllo-Vento L.Event-related brain potentials in the study of visual selective attention.Proceedings of the National Academy of Science USA,1998,95,781787.
    [49]Hong L,Chen G,Segment-based stereo matching using graph cuts.In CVPR,pages I:74-81,2004.
    [50]Huang J,Kumar S R.Spatial Color Indexing and Applications,International Journal of Computer Vision,1999,35(3):245-268.
    [51]Hubel D H,Wiesel T N.Receptive fields of single neurones in the cat's striate cortex.J.Physiol.1959,148,574-591.
    [52]Hubel D H,Wiesel T N.Receptive fields of optic nerve fibres in the spider monkey.J.Physiol.1960,154,572-580.
    [53]Hubel D H,Wiesel TN.Receptive fields,binocular interaction and functional architecture in the cat's visual cortex.J.Physiol.1962,160,106-154.
    [54]Hubel D H,Wiesel T N.Shape and arrangement of columns in cat's striate cortex.J.Physiol.1963,165,559-568.
    [55]Hubel D H,Wiesel T N.Receptive fields and functional architecture in two non-striate visual areas(18 and 19)of the cat.J.Neurophysiol.1965,28,229-289.
    [56]Hubel D H,Wiesel T N.Binocular interaction in striate cortex of kittens reared with artificial squint.J.Neurophysiol.1965,28,1041-1059.
    [57]Hubel D H,Wiesel T N,Laminar and columnar distribution of geniculo-cortical fibers in the macaque monkey,Journal of Computational Neurology,1972,146:421-450.
    [58]Humphreys G W.Search via recursive rejection(SERR):A connectionist model of visual search,Cognitive Psychology 1993,25,43-110.
    [59]Itti L,Koch C,Niebur E.A model of saliency-based visual attention for rapid scene analysis,IEEE Transactions On Pattern Analysis And Machine Intelligence 1998,20(11):1254-1259.
    [60]Itti L,Koch C.saliency-based search mechanism for overt and covert shifts of visual attention,Vision Research 2000,40(10-12):1489-1506.
    [61]Itti L.Models of bottom-up and top-down visual attention.Pasadena:California Institute of Technology,2000.
    [62]Itti L,Koch.Computational Modeling of Visual Attention.Nature Reviews Neuroscience,2001,2(3):194-203.
    [63]Itti L.Models of bottom-up attention and saliency.Neurobiology of Attention.San Diego,CA:Elsevier,2005,576-582.
    [64]Itti L,Baldi P,A principled approach to detecting surprising events in video,Proc.IEEE Conference on Computer Vision and Pattern Recognition,2005,pp.631-637.
    [65]Jain A K,Farroknia F.Unsupervised texture Segmentation using Gabor Filters,Pattern Recognition,1991,24(12):1167-1186.
    [66]Johnston W A,Heinz S P.Flexibility and capacity demands of attention.Journal of Experimental Psychology:General,1978.
    [67]Kadir T,Brady M.Saliency,Scale and Image Description,International Journal of Computer Vision,2001,45(2):83-105.
    [68]Koch C,Ullman S.Shifts in selective visual attention:towards the underlying neural circuitry,Human Neurobiology,1985,4,219-227.
    [69]Koch C,Luo J,Mead C,Hutchinson J.Computing Motion Using Resistive Networks,in Proc.of the Neural Information Processing Systems,Denver,Colorado,1987:422-431.
    [70]Kohonen,Teuvo.A Computational Model of Visual Attention,Proceedings of the International Joint Conference on Neural Networks,2003,v 4,3238-3243.
    [71]Kosslyn S M,Flynn R A,Amsterdam J B,Wang G.Components of high-level vision:a cognitive neuroscience analysis and account of neurological syndromes.Cognition,1990,34:203-77.
    [72]Kronauer R E,Zeevi Y Y.Reorganization and diversification of signals in vision.IEEE Trans.SMC,1985,15(1):91-101.
    [73]Kuffler S W.Discharge Patterns and Functional Organization of Mammalian Retina Neurophysiol,1953,16:37-68.
    [74]Kunde W,Wuhr P,Sequential modulations of correspondence effects across spatial dimensions and tasks.Memory & Cognition,2006,34,356-367.
    [75]Laar van de P,Heskes T,Gielen S.Task-dependent learning of attention.Neural Networks,1997,10(6):981-992.
    [76]LaBerge,D,Networks of attention.In M.S.Gazzaniga(Ed.).The New Cognitive Neurosciences.Cambridge,MA:MIT Press.2000,711-724.
    [77]Lee K W,Buxton H,Feng J F.Cue-guided search:A computational model of selective attention.IEEE Transactions on Neural Networks,2005,16(4):910-924
    [78]Le Meur O,Le Callet P,Barba D,Thoreau D.A coherent computational approach to model bottom-up visual attention”,IEEE PAMI,2005.
    [79]Livingstone M S,Hubel D H.Psychophysical evidence for separate channels for the perception of form,color,movement,and depth.Journal of Neuroscience,1987,7,3416-3468.
    [80]Logan G D.The CODE theory of visual attention:An integration of space-based and object-based attention,Psychological Rev.1996,103(4),603-649.
    [81]Lopez M T,Fernandez M A,Fernandez-Caballero A,Mira J,Delgado A E.Dynamic visual attention model in image sequences,Image and Vision Computing,2007,25(5),597-613.
    [82]Luo J,Singhal A,Etz S P,Gray R T.Normalized Kemeny and Snell Distance:A Novel Metric for Quantitative Evaluation of Rank-Order Similarity of Images,IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(8):1147-1151.
    [83]Luo J,Singhal A,Etz S P,Gray R T.A computational approach to determination of main subject regions in photographic images,Image Vision Compute,2004,22(3):227-241.
    [84]Maki A,Nordlund R,Eklundh J O.Attentional scene segmentation:integrating depth and motion,Comput.Vision Image Understand.2000,78(3),351-373.
    [85]Mangun G R,Hillyard S A,Luck S J.Electrocortical substrates of visual selective attention.In D.Meyer&Kornblum(Eds.),Attention and Performance ⅩⅣ Cambridge,MA:MIT Press,1993,219243.
    [86]Mancas M,Mancas-Thillou C,Gosselin B,Macq B.A rarity-based visual attention map application to texture description,Proc.IEEE ICIR 2006.
    [87]Matlin M W,Foley H J.Sensation and Perception.3rd edition,Allyn and Bacon,1992.
    [88]McLeod P,Driver J,Dienes Z,Crisp J.Filtering by movement in visual search.Journal of Experimental Psychology:Human Perception and Performance,1991,17,55-64.
    [89]Milanese R,Bost J M,Pun T.A Bottom-Up Attention System for Active Vision,in Proc.of the 10th European Conference on Artificial Intelligence,Vienna,Austria,1992:808-810.
    [90]Milner A D,Goodale M A.The Visual Brain in Action.Oxford:Oxford University Press,1995.
    [91]Mishkin M,Ungerleider L G,Macko K A.Object vision and spatial vision:two cortical pathways.Trends Neurosci.1983,6:414-17
    [92]Moray N.Attention:Selective processes in vision and hearing.London:Hutchinson.1969.
    [93]Nakayama K,Silverman G H.Serial and parallel processing of visual feature conjunctions,Nature,1986,320,264-265.
    [94]Navalpakkam V,Itti L.A goal oriented attention guidance model.Lecture Notes in Computer Science,2002,2525:453-461.
    [95]Navalpakkam V,Itti L.An integrated model of top-down and bottom-up attention for optimal object detection,In:Proc.IEEE Conference on Computer Vision and Pattern Recognition(CVPR),2006,2049-2056.
    [96]Ning Zuowu,Zhang Zhaoyang,Liu Zhi.Visual attention based video object segmentation in MPEG compressed domain,IET Conference on Wireless,Mobile and Sensor Networks 2007,CP533:564-567.
    [97]Norman D A.Towards a theory of memory and attention.Psychological Review,1968,75,522-536.
    [98]O'Craven K M,Rosen B Rs,Kwong K K,et al.Voluntary attention modulates fMRI activity in human MT-MST.Neuron,1997,18,591-598.
    [99]Oliver N M,Rosario B,Pentland A.A bayesian computer vision system for modeling human interactions.IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(8):831-843.
    [100]Olshausen B A,et al.A neurobiologicai model of visual attention and invariant pattern recognition based on dynamic routing of information,J.Neurosci.1993,13(11),4700-4719.
    [101]Op de Beeck H,Wagemans J,Vogels,Rogels R.Can neuroimaging really tell us what the human brain is doing? The relevance of indirect measures of population activity.Acta Psychologica,2001,107,323-351
    [102]Osberger W,Bergmann N W,Maeder A J.An Automatic Image Quality Assessment Technique Incorporating Higher Level Perceptual Factors,in Proc.of the International Conference on Image Processing,Chicago,USA,1998:414-418.
    [103]Ouerhani N,Hugh H.Computing visual attention from scene depth,International Conference on Pattern Recognition(ICPR'00),IEEE Computer Society Press,Vol.1,2000,pp.375-378.
    [104]Ouerhani N,Hugh H.A Model of Dynamic Visual Attention for Object Tracking in Natural Image Sequences,Computational Methods in Neural Modeling,2003:2686.
    [105]Palmer S E.Vision Science-Photons to Phenomenology,MIT Press,Cambridge,MA,1999.
    [106]Peters R J,Itti L.Beyond bottom-up:Incorporating task-dependent influences into a computational model of spatial attention,in Proc.CVPR2007,2007,June:1-8.
    [107]Picard R W,Kabir T,Liu F.Real-time Recognition with the Entire Broads Texture Database,Computer Vision and Pattern Recognition,1993.
    [108]Privitera C M,Stark L W.Evaluating image processing algorithms that predict regions of interest,Pattern Recognition Letters,1998,19(11):1037-1043.
    [109]Privitera C M,Stark L W.Algorithms for Defining Visual Regions-of-Interest:Comparison with Eye Fixations.IEEE Trans,on Pattern Analysis and Machine Intelligence,2000,22(9):970-982.
    [110]Reisfeld D.Constrained Phase Congruency:Simultaneous Detection of Interest Points and of their Scales,in Proc.of the Computer Vision and Pattern Recognition,San Francisco,CA,1996:562-567.
    [111]Ribas-Corbera J,Neuhoff D L.On the optimal block size for block-based,motion compensated video coders,SPIE Proceedings of Visual Communications and Image Processing,Vol.3024,pp 1132-1143,February 1997.
    [112]Rimey R D,Brown C M.Selective attention as sequential behavior:modeling eye movements with an augmented hidden markov model,Proceedings: DARPA Image Understanding Workshop,1990,840-849.
    [113]Rodieck R W.Quantitative Analysis of Cat Retinal Ganglion Cell Response to Visual Stimuli,Vision Research,1965,5:583-601.
    [114]Rybak I A,Gusakova V I,Golovan A V,Podladchikova L N,Shevtsova N A.A model of attention-guided visual perception and recognition.Vision Research,1998,38:2387-2400.
    [115]Salah A A,Alpaydin E,Akarun L.A selective attention-based method for visual pattern recognition with application to handwritten digit recognition and facc recognition.IEEE Trans.on Pattern Analysis and Machine Intelligence,2002,24(3):420-425.
    [116]Satoh S,Miyake S.A model for selective visual attention based on discrete scale-spaces,Knowledge-Based Intellignet Information And Engineering Systems,PT 2,Proceedings Lecture Notes In Artificial Intelligence,2003 2774:147-154.
    [117]Schiller P H,Logothetis N K.The Color-opponent and Broadband Channels of the Primate Visual System.Trends Neurosci.1990,13:392-398.Scholl B J,Objects and attention:The state of the art,Cognition 2001,80,1-46.
    [118]Schneider W,Shiffrin R M.Controlled and Automatic Human Information Processing:Detection,Search and Attention,Psychological Review,1977,84:1-66.
    [119]Scholl B J.Objects and attention:the state of the art,Cognition,80,pp.1-46,2001.
    [120]Serences J T,Yantis S.Selective visual attention and perceptual coherence,Trends in Cognitive Sciences,2006,Volume 10,Issue 1:38-45.
    [121]Skinner J E,Yingling C D.Central gating mechanisms that regulate event-related potentials and behavior.In:Desmedt,J.E.(Ed.),Attention,Voluntary contraction and event-related cerebral potentials.Progress in clinical neurophysiology,1977,Vol.1,pp.30-69.
    [122]Stentiford F W M.An Evolutionary Programming Approach to the Simulation of Visual Attention,in Proc.of the Congress on Evolutionary Computation,Seoul,Korea,2001:851-858.
    [123]Stricker M,Orengo M.Similarity of Color Images,Proc.of the SPIE Conference on Storage and Retrieval for Image and Video Databases,San Jose,CA,1993.
    [124]Stromswold K.The Cognitive and Neural Bases of Language Acquisition.In The Cognitive Neurosciences,XⅡ LANGUAGE,M.S.Gazzaniga,ed.London:The MIT Press,1995.
    [125]Sun Y,Fisher R.Object-based visual attention for computer vision,Artif.Intell.2003,20(11),pp.77-123.
    [126]Swain M J,Ballard D H,Color Indexing,International Journal of Computer Vision,1991,7(1):11-32.
    [127]Tamura H,Mori S,Yamawaki T.Texture Features Corresponding to visual Perception,IEEE Trans,on SMC,1978,8(6):460-473.
    [128]Treisman A M.Contextual cues in selective listening.Quarterly Journal of Experimental Psychology,1960,12,242-248.
    [129]Treisman A M.Selective attention in man.British Medical Bulletin,1964 20,12-16.
    [130]Treisman A,Gelade G.A feature-integration theory of attention.Cognitive Psychology,1980,12(1):97—136.
    [131]Treisman A M.Preattentive processing in vision.Computer Vision,Graphics,and Image Processing,1985,31(2):156-177.
    [132]Treisman A.Features and objects:The fourteenth Bartlett Memorial lecture,Q.J.Experimental Psychology,1988,40A,201-237.
    [133]Treisman A.The perception of features and objects,in:A.Baddeley,L.Weiskrantz(Eds.),Attention:Selection,Awareness,and Control,Uarendon Press,Oxford,1993,pp.5-35.
    [134]Tsotsos J K,et al.Modelling visual attention via selective tuning,Artificial Intelligence,1995,78,507-545.
    [135]Ullman S.Object recognition and segmentation by a fragment-based hierarchy.Trends in Cognitive Sciences,2007,11(2):58-64.
    [136]Ungerleider L G,Mishkin M.Two cortical visual systems.In:Analysis of visual behavior,ed.D.J.Ingle,M.A.Goodale & R.W.J.Mansfield.MIT Press,1982.
    [137]Valdes-Sosa M,Bobes M A,Rodriguez V,et al.Switching attention without shifting the spotlight:Object-based attentional modulation of brain potentials.Journal of Cognitive Neuroscience,1998,10,137151.
    [138]Van Der Velde F,De Kamps M,Van Der Voort,Van Der Kleij GT.CLAM:Closed-loop attention model for visual search,Neurocomputing,2004,58-60:607-612.
    [139]Van Essen D.Functional organization of primate visual cortex.In:Peters A,hones E G,editors.Cerebral Cortex,New York:Plenum,1985:259-329
    [140]Wai W Y K,Tsotsos J K.Directing Attention to Onset and Offset of Image Events for Eye-head Movement Control,in Proc.of the International Association for Pattern Recognition,Vol.A,Washington,USA,1994:274-279.
    [141]Walker K N,Cootes T F.Taylor C J.Locating Salient Object Features,in Proc.of the British Machine Vision Conference,Southampton,UK,1998:557-566.
    [142]Ware C.Information Visualization Perception for Design.Morgan Kaufinann Publishers,2000.
    [143]Walther D,Rutishauser U,Koch C,Perona P.Selective visual attention enables learning and recognition of multiple objects in cluttered scenes,Computer Vision and Image Understanding,2005,Volume 100,Issues 1-2:41-63.
    [144]Wolfe J M,Cave K R,Franzel S L.Guided search:An alternative to the feature integration model for visual search.Journal of Experimental Psychology:Human Perception &Performance,1989,15,419-433.
    [145]Wolfe J W.Guided Search 2.0:A revised model of visual search,Psychonomic Bulletin and Review,1994,1,202-238.
    [146]Wolfe J M.Visual Search,in Attention,Harold Pashler,ed.East Sussex,UK:Psychology Press 1998.
    [147]Wolfe J M.Visual attention.In:De Valois KK,editor.Seeing.2nd ed.San Diego,CA:Academic Press;2000.p.335-386.
    [148]Wuhr P,Frings C.A Case for Inhibition:Visual Attention Suppresses the Processing of Irrelevant Objects,Journal of Experimental Psychology:General,2008,Vol.137,No.1,116-130.
    [149]Zeki S M,Watson J D,Lueck C J.A direct demonstration of functional specialization in human visual cortex,Journal of Neuroscience,1991,11:641-649.
    [150]Zhang D W,Ahmad I,Liou M.Adaptive motion search with elastic diamond for MPEG-4video encoding,Proceedings of International Conference on Image Processing,2001.
    [151]何克抗,创造性思维理论-DC模型的建构与论证,北京师范大学出版社,2000,11.
    [152]姜铁君,田彦涛,李金辉,基于连续模板的主动机器视觉注意力选择算法,吉林大学学报(工学版):2003,33,04.
    [153]罗彤,陈裕泉,视觉感知启发的图像分割系统研究,浙江大学,2008.
    [154]罗跃嘉,魏景汉,注意的认知神经科学研究,高等教育出版社,2004.
    [155]寿天德,视觉信息处理的脑机制,上海科技教育出版社,1997,12.
    [156]桑农,李正龙,张天序,人类视觉注意机制在目标检测中的应用,红外与激光工程,2004,33(2):38-42.
    [157]田媚,罗四维,模拟自顶向下视觉注意机制的感知模型研究,北京交通大学,2007.
    [158]汪云九等,神经信息学:神经系统得理论与模型,高等教育出版社,2006,6.
    [159]张鹏,王润生,图像信息处理中的选择性注意机制研究,国防科学技术大学,2004.
    [160]张鹏,王润生,基于视点转移和视区追踪的图像显著区域检测,软件学报,2004,15(6):891-898.
    [161]周昌乐,心脑计算举要,清华大学出版社,2003,5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700