电力系统机网动态分析与安全评估研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
国内外电力系统多次发生机网相互作用导致的发电机组损坏或者电网失去稳定。随着我国“西电东送”战略的实施,发电机组经电网远距离大功率送电成为一种普遍模式。随之带来的问题一是系统中多次发生机理不明的低频功率振荡,二是为了提高输电能力采用串补或高压直流输电使得次同步振荡问题突出。在我国电力体制改革实施厂网分开以后,发电机组和电网隶属于不同的电力集团。因此,保障发电机组的安全与保证电网稳定运行的矛盾亟需解决。深入分析与评估电力系统机网动态过程是保证大机组与大电网安全稳定的基础。
     本论文从刚体运动稳定性角度分析电力系统机网动态过程。首先根据单刚体运动稳定性理论,通过建立机网耦合模型与数字仿真平台,分析了调速系统扰动对电力系统小信号稳定性的影响。仿真结果表明,当调速系统扰动频率与电力系统自然振荡频率接近时将导致系统出现等幅值的低频功率振荡。然后从多刚体运动稳定性理论出发,采用机组作用系数法和复转矩系数法分析了HVDC引起的次同步振荡,并设计了次同步振荡阻尼控制器,通过仿真验证了SSDC抑制次同步振荡的有效性。对多刚体运动稳定性边界进行了研究,改进了多刚体轴系模型。应用互补群群际能量壁垒准则分析了我国漳泽发电厂的轴系扭断事故。研究表明互补群群际能量壁垒准则能够计及故障后机网间的能量交换,适用于非自治轴系扭振的稳定性分析。
     针对发电机组轴系参数不准确的问题,采用不确定参数的简单集中质量模型来描述汽轮发电机组轴系。计算了特征值对轴系参数的灵敏度,灵敏度大的轴系参数的改变对次同步振荡的仿真结果具有显著影响。应用概率分配法简化了轴系参数不确定性与轴系各质量块之间扭矩的关系。研究表明,轴系参数的不确定性引起了次同步谐振较大的不确定度;本文设计的SSDC在轴系参数不确定性情况下仍然能有效地抑制次同步振荡。
     从材料力学出发分析轴系失稳的机理,提出了一套次同步振荡对轴系作用的评估方法:当轴系所受到的最大剪切应力超过强度极限时,轴系将被破坏;当剪切应力低于强度极限而高于疲劳极限时进行疲劳损伤计算。对于变幅值的次同步振荡通过雨流法将其分解为一系列等幅值的振荡波形,再根据轴系S~N曲线计算疲劳损伤。当疲劳累积利用系数达到1时,轴系消耗100%的寿命,将以疲劳失效而被损坏。通过IEEE第一基准模型的SSR算例和HVDC引起的SSO算例,表明了本论文提出的次同步振荡对轴系作用的评估方法的有效性。
The generating unit damage or instability of power grid resulting from the interaction of generating unit and power grid often occurs in domestic and overseas power system. The long-distance high-power transmission of generating unit through power grid has become a prevalent mode as the implementation of "West Electricity East Transmission" policy in China. As a result, one problem is low frequency oscillation of inexplicit mechanism often occurs, the other is subsynchronous oscillations (SSO) stand out as the application of series capacity compensation and HVDC transmission line. The generating unit and power grid belong to different power group after the innovation of power system in China. So the inconsistency between protecting generating unit from damage and ensuing power grid stability desiderates to be solved. Analyzing thoroughly and evaluating the Unit-Grid dynamic process of power system is the foundation of ensuing the security and stability of large generating unit and power gird.
     The Unit-Grid dynamic process is analyzed from the rigid body motion stability point of view in this paper. Firstly, according to the theory of single-rigid body motion stability, the effect of governor system disturbance on power system small signal stability was analyzed through putting up the Unit-Grid coupling model and digital simulation platform. Simulation results indicate that the constant amplitude low frequency oscillation will occur when the frequency of disturbance from governor system is near to the natural frequency of power system low frequency oscillation. Whereafter, according to the theory of multi-rigid body motion stability, the subsynchronous oscillation was analyzed by complex torque coefficient method. The subsynchronous damping controller (SSDC) was designed and the validation of SSDC was proved by simulation. The stability boundary of multi-rigid body motion was researched and the turbine-generator shaft model was improved. Shaft damage of Zhangze power plant was analyzed using Complementary Cluster Energy Base Criteria (CCEBC). Simulation result indicates that CCEBC is an effective method on stability analysis of heteronomy shaft torsional vibration because it can consider the Unit-Grid energy exchange after fault.
     For the inaccurateness problem of shaft parameter, the uncertainty shaft parameter model was adopted to describe turbine generator shaft. The shaft parameter sensitivity for eigenvalue was calculated. The change of shaft parameter with large sensitivity has distinct influence on simulating subsynchronous oscillation. The Probabilistic Collocation Method (PCM) was adopted to simplify the relationship between the uncertainty in shaft parameter and the oscillations of shaft system. Shaft parameter uncertainty will result in high uncertain degree and the SSDC designed in this paper can effectively damp SSO even if the shaft parameter is uncertain.
     The mechanism of shaft damage was analyzed basing on material mechanics theory. The evaluation method about the effect of SSO on turbine generator shaft was put forward. If the cut stress exceeds intensity limit, the shaft will be destroyed. If the cut stress is between intensity and fatigue limit, the fatigue damnification should be calculated. By applying rainflow algorithm, the SSO of variational amplitude was decomposed into a series of costant amplitude SSO. And then, the fatigue damnification was calculated according to the shaft S-N curve. If the fatigue comulation coefficient is equal tol, the 100 percent life of shaft will be used up. Consequently, the shaft will be destroyed due to fatigue invalidation. The validity of the evaluation method about the effect of SSO on turbine generator shaft was shown through the subsynchronous resonance of IEEE first benchmark model and subsynchronous oscillation induced by HVDC examples.
引文
[1]李丹,苏为民,张晶,等.“9.1”内蒙古西部电网振荡的仿真研究.电网技术,2006,30(6):41~47.
    [2]胡飞雄,李建设,曾勇刚.南方交直流混合电网稳定若干问题及其控制措施.电网技术,2007,31(2):103~106
    [3]王铁强.电力系统低频振荡共振机理的研究.北京:华北电力大学,2001:1~2
    [4]周孝信,郭建波,胡学浩,等.提高交流500kV线路输电能力的实用化技术和措施.电网技术,2001,25(3):1~6
    [5]刘世宇,谢小荣,王仲鸿.我国火电基地串补输电系统的次同步谐振问题.电网技术,2008,32(1):5~8
    [6]徐政,张帆.托克托电厂串补送出方案次同步谐振问题的计算和分析.中国电力,2006,39(11):21~26.
    [7]杨煜,陈陈. 伊敏-大庆500 kV输电系统次同步谐振分析.电网技术,2000,24(5):10~12.
    [8]薛禹胜.EEAC与直接法的机理比较(一)受扰程度函数.电力系统自动化,2001,25(11):6~11
    [9]薛禹胜.运动稳定性量化理论—非自治非线性多刚体系统的稳定性分析.南京:江苏科学技术出版社,1999:3~4
    [10]J.W. Butler, C. Concordia. Analysis of series capacitors application problem. AIEE Transactions,1937,56(1):975~988
    [11]G.K. Carter, C. Concordia. Negtive damping of electrical machinery. AIEE Transactions,1941,60(1):116~119
    [12]H.M. Rustebakke, C. Concordia. Self-excited oscillations in a transmission system using series capacitors. IEEE Transactions on Power Apparatus and System,1970, 89(7):1504~1512
    [13]J.W. Ballance, S. Goldberg, Subsynchronous resonance in series compensated transmission lines. IEEE Transactions on Power Apparatus and System,1973,92(1): 1649~1658
    [14]D.N. Walker, C.E. Bowler, R.L. Jackson, et al. Results of subsynchronous resonance test at Mohave. IEEE Transactions on Power Apparatus and System, 1975,94(5):1878~1889
    [15]R.G. Farmer, A.L. Schwalb, E.Katz. Navajo project report on subsynchronous resonance analysis and solutions. IEEE Transactions on Power Apparatus and System,1977,96(4):1226~1232
    [16]IEEE Subsynchronous Resonance Task Force of the Dynamic Performance Working Group Power System Engineering committee. First Benchmark Model for computer simulation of subsynchronous resonance. IEEE Transactions on Power Apparatus and Systems,1977,96(5):1565~1572
    [17]J.S. Joyce, T. Kulig, D. Lambrecht. Torsional fatigue of turbine-generator shafts caused by different electrical system faults and switching operations. IEEE Transactions on Power Apparatus and System,1978,97(1):1965~1977
    [18]IEEE Subsynchronous resonance working group. Second benchmark model for computer simulation of subsynchronous resonance. IEEE Transactions on Power Apparatus and Systems,1985,104(5):1057~1066.
    [19]W. Watson, M.E. Coultes. Static exciter stability signal on large generator-mechanical problems. IEEE Transations on Power Apparatus and Systems,1973,92(1):205~212
    [20]K. Mortensen, E.V. Larsen, R.J. Piwko. Field test and analysis of torsional interaction between the Coal Greek turbine-generators and CU HVDC system. IEEE Transactions on Power Apparatus and System,1981,100(1):336~344.
    [21]M. Baharman, E.V. Larsen, R.J. Piwko, H.S.Patel. Experience with HVDC-turbine generator torsional interaction at Square Butte. IEEE Transactions on Power Apparatus and System,1980,99(1):966~975.
    [22]D.C. Lee, R.E. Beaulied, G.J. Rogers. Effects of governor characteristics on turbo-geneartor shaft torsionals. IEEE Transations on Power Apparatus and Systems,1985,104(6):1255~1261
    [23]F. P. DeMello, C. Corcordia. Concept of synchronous machine stability as affected by excitation control. IEEE Transations on Power Apparatus and Systems,1969, 88(1):316~329
    [24]Magdy M A, Coowar F. Frequency domain analysis of power system forced oscillations. IEE Proceedings,1990,7(1):261~268.
    [25]Vournas C D, Krassas N, Papadias B C. Analysis of forced oscillations in a multimachine power system. IEE Conference Publication, British,1991,1(1): 443~448
    [26]汤涌.电力系统强迫功率振荡分析.电网技术,1995,19(12):6~10
    [27]汤涌.电力系统强迫功率振荡的基础理论.电网技术,2006,30(10):29~33
    [28]王铁强,贺仁睦,徐东杰,等.电力系统低频振荡机理的研究.中国电机工程学报,2002,22(2):21~25.
    [29]韩志勇,贺仁睦,徐衍会.由汽轮机压力脉动引发的电力系统共振机理低频振荡. 中国电机工程学报,2005,25(21):14~18.
    [30]L.A. Kilgore, D.G. Ramey, M.C. Hall. Simplified transmission and generation system analysis procedures for subsynchronous resonance. IEEE Transactions on Power Apparatus and Systems,1977,96(1):1840~1846
    [31]B. L. Agrawal, R. G. Farmer. Use of frequency scanning techniques for subsynchronous resonance analysis. IEEE Transactions on Power Apparatus and Systems,1979,98 (2):341~349
    [32]R.J. Piwko, E.V. Larsen. HVDC system control for damping of subsynchronous oscillations. IEEE Transactions on Power Apparatus and Systems,1982,101(7): 2203~2210
    [33]C.T. Wu, K.J. Peterson, R.J. Piwko, et al. The intermoutain power project commissioning subsynchronous torsional interaction tests. IEEE Transactions on Power Delivery,1988,3(4):2030~2036
    [34]Canay IM. A novel approach to the torsional interaction and electrical damping of the synchronous machine Part I:Theory. IEEE Transactions on Power Apparatus and Systems,1982,101 (10):3630~3638
    [35]Canay IM. A novel approach to the torsional interaction and electrical damping of the synchronous machine Part II:Application to an arbitrary network. IEEE Transactions on Power Apparatus and Systems,1982,101 (10):3639~3647
    [36]江全元,程时杰,曹一家,罗成.基于Lyapunov分解聚合法的汽轮发电机组轴系扭振稳定性分析.电力系统自动化,2002,26(13):47~51
    [37]吴俊勇,程时杰,陈德树.用李雅普诺夫函数法判定汽轮发电机组轴系扭振的稳定性.电力系统自动化,1997,21(7):42~44
    [38]江全元,程时杰,曹一家,廖晓听,罗成.基于鲁里叶型Lyapunov函数的电力系统次同步谐振稳定运行域的分析.中国电机工程学报,2002,22(8):1~5
    [39]张保会,余颖辉.电气操作对机组轴系扭振的影响机理.中国电机工程学报,2001,21(8):24~28.
    [40]邓集祥,刘广生,边二曼.低频振荡的Hopf分歧研究.中国电机工程学报,1997,17(6):391~394.
    [41]贾宏杰,余贻鑫,王成山.电力系统混沌现象及相关研究.中国电机工程学报,2001,21(7):26~30.
    [42]傅卫平,徐健学,张新华.应用非线性模态方法分析机电耦合次同步扭振系统的Hopf分岔.中国电机工程学报,1997,17(3):175~178
    [43]Yasunori Mitani, Kiichiro Tsuji, Matthew Varghese, et al. Bifurcations associated with subsynchronous resonance. IEEE Transactions on Power System,1998,13(1): 139~141
    [44]周长春,徐政.由直流输电引起的次同步振荡的阻尼特性分析.中国电机工程学报,2003,23(10):6~10
    [45]杨秀,陈陈,王西田.HVDC控制系统对汽轮发电机组次同步振荡的影响.电网技术,2004,28(5):5~8
    [46]徐政,祝瑞金,罗惠群.华东电网次同步振荡特性研究.电网技术,1999,23(7):20~23
    [47]杨煜,胡蓉,洪潮,任成林.兴安直流输电工程单极投运后次同步振荡问题及抑 制措施.南方电网技术,2007,1(2):25~30
    [48]李立涅,洪潮.贵广二回直流输电系统次同步振荡问题分析.电力系统自动化,2007,31(7):90~93
    [49]宋述波,袁鹏.贵广直流次同步振荡抑制原理.继电器,2007,35(5):21~24
    [50]Hafner Y J, Duchen H, Linden K, et al. Improvement of subsynchronous torsional damping using VSC HVDC. International Conference on Power System Technology,2002,2(1):998~1003
    [51]郑超,汤涌,马世英,盛灿辉,魏强,盛浩.基于等效仿真模型的VSC-HVDC次同步振荡阻尼特性分析.中国电机工程学报,2007,27(31):33~39
    [52]Piwko R J, Wagner C A, Kinney S J, et al. Subsynchronous resonance performance tests of the slatt thyristor-controlled series capacitor. IEEE Transactions on Power Delivery,1996,11 (2):1112~1119
    [53]Hauer J F, Mittelstadt W A, Piwko R J, et al. Modulation and SSR tests performed on the BPA 500 kV thyristor controlled series capacitor unit at Slatt substation. IEEE Transactions on Power Systems,1996,11 (2):801~806
    [54]Othman H A, Angquist L. Analytical modeling of thyristor-controlled series capacitors for SSR studies. IEEE Transactions on Power Systems,1996,11 (1):119~127
    [55]Rajaraman R, Dobson I, Lasseter R H, et al. Computing the damping of subsynchronous oscillations due to a thyristor-controlled series capacitor. IEEE Transactions on Power Delivery,1996,11 (2):1920~1927
    [56]Perkins B K, Iravani M R. Dynamic modeling of a TCSC with application to SSR analysis. IEEE Transactions on Power Systems,1997,12 (4):1619~1625
    [57]Pilotto L A S, Bianco A, LongWF, et al. Impact of TCSC control methodologies on subsynchronous oscillations. IEEE Transactions on Power Delivery,2003, 18(1):243~252.
    [58]Luiz A.S. Pilotto, Andre Bianco, W.F. Long, Abdel-Aty Edris. Impact of TCSC control methodologies on subsynchronous oscillations. IEEE Transactions On Power Delivery,2003,18(1):63~63
    [59]R.K. Varma, S. Auddy, Y. Semsedini. Mitigation of subsynchronous resonance in a series-compensated wind farm using FACTS controllers. IEEE Transactions On Power Delivery,2008,23(3):1645~1654
    [60]F.D. De Jesus, E.H.Watanabe, L.F.W. de Souza, J.E.R. Alves. SSR and power oscillation damping using gate-controlled series capacitors (GCSC). IEEE Transactions On Power Delivery,2007,22(3):1806~1812
    [61]唐勇,李乃湖,田立军,陈珩.可控串联电容次同步谐振现象的动态模拟研究.电网技术,1998,22(11):22~25
    [62]江振华,程时杰,傅予力,廖晓昕.含有可控串联补偿电容的电力系统次同步谐 振研究.中国电机工程学报,2000,20(6):47~52
    [63]吕世荣,刘晓鹏,郭强,夏道止.TCSC对抑制次同步谐振的机理分析.电力系统自动化,1999,23(6):14~18
    [64]吕世荣,刘晓鹏,郭强,夏道止.含TCSC的电力系统次同步谐振的复转矩系数分析法.电力系统自动化,1999,23(12):16~20
    [65]徐政.复转矩系数法的适用性分析及其时域仿真实现.中国电机工程学报,2000,20(6):1~4.
    [66]刘晓冬,杨煜,陈陈.基于采样-数据模型方法的可控串联补偿系统对次同步振荡抑制作用的计算分析.中国电机工程学报,2001,21(2):1~5
    [67]黄胜利,宋瑞华,赵宏图,周孝信.应用动态相量模型分析高压直流输电引起的次同步振荡现象.中国电机工程学报,2003,23(7):1~4
    [68]Li Wang, Yuan-Yih Hsu. Damping of subsynchronous resonance using excitation controllers and static VAR compensators:a comparative study. IEEE Trans. on energy conversion,1988,3(1):6~13
    [69]张帆,徐政.励磁系统及电力系统稳定器对发电机组次同步谐振阻尼特性的影响.电网技术,2006,30(18):14~19
    [70]张帆,徐政.电力系统稳定器抑制次同步谐振的效果.电工技术学报,2007,22(6):121~127
    [71]Y. Y. Hsu, L. Wang. Modal control of an HVDC control system for damping of subsynchronous oscillations. IEE Proceedings,1989,136(2):78~86
    [72]江全元,程时杰,曹一家.基于遗传算法的HVDC附加次同步阻尼控制器的设计.中国电机工程学报,2002,22(11):87~91
    [73]杨秀,王西田,陈陈.基于H_∞鲁棒控制理论的高压直流输电系统附加次同步阻尼控制器设计.电网技术,2006,30(9):57~61
    [74]伍凌云,李兴源,龚勋,杨煜,等.基于模糊免疫方法的次同步阻尼控制器设计.电力系统自动化,2007,31(11):12~16
    [75]张帆,徐政.直流输电次同步阻尼控制器的设计.电网技术,2008,32(11):13~17
    [76]周长春,刘前进,Lennart Angquist,Staffan Rudin.抑制次同步谐振的TCSC主动阻尼控制.中国电机工程学报,2008,28(10):130~135
    [77]葛俊,童陆园,耿俊成,陈全世,韩光.TCSC抑制次同步谐振的机理研究及其参数设计.中国电机工程学报,2002,22(6):25~29
    [78]韩光,童陆园,葛俊,耿俊成.TCSC抑制次同步谐振的机理分析.电力系统自动化,2002,1(25):18~21
    [79]李亚健,周孝信,武守远,蒋卫平.以可控串补抑制次同步谐振的物理模拟试验研究.中国电机工程学报,2001,21(6):1~4
    [80]曹路,陈珩.可控串联补偿抑制次同步谐振的机理.电力系统自动化,2001,2(25):25~30
    [81]张昊,石铁洪,刘沛.基于双正交小波和复小波的次同步谐振检测方法.中国电机工程学报,2001,21(3):12~15
    [82]袁永强,潘家成.空冷600MW汽轮发电机组轴系扭振特性分析.热力透平,2006,1(14):257~261
    [83]徐志强,范轶,郭钰峰.考虑量化效应的扭振观测器设计.中国电机工程学报,2009,29(8):70~74
    [84]何青,杜冬梅.机组轴系扭振智能测量系统研究.仪器仪表学报,2007,128(4):708~712
    [85]袁越,左潞,李光琦.一种简单可靠的轴系扭振监测方法的研究.西安交通大学学报,1997,31(11):29~34
    [86]鲍文,王西田,于达仁,杨昆.汽轮发电机组轴系扭振研究综述,汽轮机技术,1998,40(4):193~203
    [87]F. P. DeMello. Boiler models for system dynamic performance studies. IEEE Transactions on Power Systems.1991,6(1):66~74.
    [88]M.E. Flynn, M.J. O'Malley. A drum boiler model for long term power system dynamic simulation. IEEE Transactions on Power Systems,1999,14(1):209~217.
    [89]田亮,曾德良,刘吉臻,等.简化的330MW机组非线性动态模型.中国电机工程学报,2004,24(8):180~184.
    [90]田亮,曾德良,刘鑫屏,等.500MW机组简化的非线性动态模型.动力工程,2004,24(4):522~525.
    [91]刘吉臻,田亮,曾德良,等.660MW机组负荷-压力非线性特性的分析.动力工程,2005,25(4):533~540.
    [92]曾德良,刘吉臻.汽包锅炉的动态模型结构与负荷/压力增量预测模型.中国电机工程学报,2000,20(12):75~79.
    [93]曾德良,赵征,陈彦桥,等.500MW机组锅炉模型及实验分析.中国电机工程学报,2003,23(5):149~152.
    [94]罗万金.电厂热工过程自动调节.北京:中国电力出版社,1991:201~202.
    [95]李颖,贺仁睦.负荷与PSS的相互作用对系统动态稳定的影响.电力系统自动化,2004,28(8):40~44
    [96]Prabha, Kundur.电力系统稳定与控制.北京:中国电力出版社,2002:283~284
    [97]田鹤年.汽轮机模拟电液式调节系统静特性数学模型. 汽轮机技术,2004,46(2):81~83.
    [98]刘全社.汽轮机调速系统速度变动率和迟缓率的探讨.汽轮机技术,2001,43(4):244~247.
    [99]彭小林.汽轮机高压调门晃动原因分析与对策. 华中电力,2004,17(4):41~43.
    [100]王永杰.汽轮机液压式调速系统摆动的原因分析及处理.电站系统工程,1999,15(6):29~33.
    [101]张宗军.汽轮机调速系统故障原因分析及处理.冶金动力,2005,4(1):51~56.
    [102]卓朝昕,禹宝宁.永安火电厂2号汽轮机调速系统串动的原因分析及处理.福建电力与电工,2003,23(1):5~6
    [103]邓庆松.汽轮机调节阀门波动原因及分析.中国电力,2004,37(7):69~70.
    [104]倪以信,陈寿孙,张宝霖.动态电力系统的理论和分析.北京:清华大学出版社,2002:295~296
    [105]姜求志,王金瑞等.火力发电厂金属材料手册.北京:中国电力出版社,2001:845~850,571.
    [106]程时杰,曹一家,江全元.电力系统次同步振荡的理论与方法.北京:科学出版社,2009:346~348.
    [107]Han Dong, Ma Jin, He Renmu, Dong Zhaoyang. A Real Application of Measurement-Based Load Modeling in Large-Scale Power Grids and its Validation. IEEE Trans, on Power Systems,2009,24(4):1756~1764.
    [108]Hockenberry J R, Lesieutre B C. Evaluation of uncertainty in dynamic simulations of power system models:the probabilistic collocation method. IEEE Trans, on Power Systems,2004,19(3):1483~1491.
    [109]韩冬,马进,贺仁睦,岳程燕,张进,C. Rehtanz.负荷模型不确定性对电力系统动态仿真的影响.中国电机工程学报,2008,28(19):69~74
    [110]赵少汴,王忠保.抗疲劳设计—方法与数据.北京:机械工业出版社,1997:58~59.
    [111]徐灏.机械设计手册.北京:机械工业出版社,1991:1158~1159.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700