神经节苷脂抗体在相关免疫性神经疾病发病中作用机制的研究以及IVIg对此类疾病的保护作用及评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
格林巴利综合征(GBS)是目前世界上由自身免疫性神经肌肉疾病导致软瘫首要的病因。神经节苷脂,一种携带唾液酸基的鞘糖脂,在脊椎动物的神经系统中含量丰富。拮抗神经节苷脂的抗体与多种神经系统疾病有关目前,有充足的证据证明抗神经节苷脂抗体与某些GBS的亚型有重要的关联。但是,仍有很多与神经节苷脂抗体在此类疾病中作用有关的重要议题有待证明。诸如,有关神经节苷脂抗体的目标抗原本质问题,提供进一步的与补体作用有关的实验证据等。充分理解上述有关神经节苷脂抗体诱导损伤的分子和细胞水平的作用机制可以帮助我们更有效地开发相关的免疫疗法。为达到这一目的,一个很重要的步骤就是建立一种可模拟此类损伤的体外模型。这是由于目前我们还缺乏一种稳定而显著的小鼠GBS动物模型。因此,我们建立了两种相关的体外模型:(1)抗神经节苷脂抗体诱导的神经细胞毒模型,(2)一种由神经节苷脂抗体导致了运动神经损伤的脊髓培养模型。
     另外,正是由于目前缺乏一种行之有效的GBS被动免疫模型,因此有关神经节苷脂抗体在GBS中所起作用还有争议。我们最近培育出一些具有相对高亲和力的单克隆抗神经节苷脂抗体。我们尝试了通过腹腔移植分泌这些抗体的杂交瘤的方法,将抗体被动转移至小鼠体内。而后,我们通过此模型研究了诸多在神经病变产生过程中可能有关联的因素。
     虽然IVIg已通过临床研究被证明为一种有效的治疗急慢性免疫介导的神经病变(包括格林巴利综合征)的一线疗法。但是,目前还不曾系统地检验过不同品种,或同一品种但不同批次的IVIg,是否具有相同或相似的治疗效果。为了验证这一议题,我们利用了一种体外神经节苷脂抗体诱导的细胞毒模型,分析和比较了8种品牌的IVIg,以及来自其中两种品牌的不同批次IVIg在此模型中的保护作用。
     第一部分:神经节苷脂抗体诱导的神经细胞细胞毒模型,及IVIg保护作用的相关研究
     目的:探讨两类与神经节苷脂抗体所导致的神经损伤相关的基本问题:(1)有些神经节苷脂抗体与糖蛋白有交叉反应,因此此类抗体的目标抗原尚待进一步阐明。(2)虽然,目前病理学研究已提示补体激活在GBS发病中的作用,但依旧缺乏这方面的实验学依据。
     方法:一种建立在NG108-15和NG-CR-72细胞上的由不同抗神经节苷脂单克隆抗体或含有抗神经节苷脂抗体的GBS患者血清诱导的神经细胞细胞毒模型被在此研究中使用。另外,人静脉免疫球蛋白(Human Intravenous Immunoglobulin,IVIg)也被用于此模型来检验其可能存在的保护作用。
     结果:(1)无论是抗神经节苷脂单克隆抗体,还是含有神经节苷脂抗体的GBS病人血清,均可通过细胞表面相应的特异神经节苷脂而导致神经细胞溶解;(2)这类细胞溶解还是补体依赖性的。此外,在本实验模型中,GD1a的膜聚集区较GM1的聚集区对特异性神经节苷脂抗体诱导的损伤具有更高的敏感性。(3)IVIg可有效地抑制此模型中由神经节苷脂抗体诱导的细胞毒作用。IVIg在此模型中的保护作用机制可归结于:抗个体基因型抗体作用,以及其对补体激活的抑制作用。
     结论:此实验模型因此可被应用于鉴别由免疫介导的神经疾病患者体内的致病神经节苷酯抗体,同时还可被用来筛选新的或实验性的用于防治神经节苷酯抗体诱导神经损伤的治疗方法。
     第二部分:神经节苷脂抗体分泌型杂交瘤导致的小鼠神经病
     目的:目前由于缺乏被动免疫动物模型,对于神经节苷脂抗体在GBS发病中所起的作用仍存在争议。因此,本研究具体探讨了可影响神经节苷脂抗体对神经损伤的一些因素,并希望进而对以后成功开发出被动免疫动物模型起到抛砖引玉的作用。
     方法:我们在以往的研究中培养出多种单克隆神经节苷脂抗体。某些此类抗体被通过腹腔神经节苷脂抗体分泌型杂交瘤移植术,或系统性全身施药法而被动转移到小鼠体内。实验结束后,上述动物接受了系统地病理学检验,以观察其神经损伤状况。同时,比较了两组间血-神经屏障通透性的差异。
     结果:大约一半接受腹腔杂交瘤移植术的小鼠出现了影响到部分神经纤维的,散在的轴索病变。与之形成对比的是,被动系统性地接受抗神经节苷脂抗体的动物,尽管血循环中抗体滴度很高,但并未发生神经纤维退变。通过对血-神经屏障通透性的研究发现,接受腹腔杂交瘤移植术的动物有着较高的血-神经屏障通透性。
     结论:我们的实验结果表明神经病变的形成除了需要循环中的致病抗体外,其他诸如,抗体的可达性及神经纤维对抗体介导损伤的耐受性等因素均可发挥作用。
     第三部分:一种具有高亲和力单克隆抗体导致的体外运动神经退行性病变
     目的:评估神经节苷脂抗体对运动神经损伤的作用。
     方法:近期我们培养出两种含有高亲和性的抗GD1a的单克隆抗体,这两种抗体对大鼠脊髓体外培养中运动神经的损伤被在此研究中得以评估。
     结果:一种具有补体激活能力的抗GD1a单克隆抗体不仅导致脊髓体外培养中运动神经元数目的明显下降,并引起运动神经纤维Wallerian变性。与此同时,抗体亚型匹配的对照抗体及拮抗GD1a的非补体激活性抗体均不能造成明显的运动神经病变。
     结论:本研究证实此体外脊髓培养模型对研究运动神经元及神经纤维的免疫性损伤是非常有意义的。抗神经节苷脂抗体对运动神经体外损伤的发现有力地支持了神经节苷脂抗体在GBS运动轴索亚型发病过程中起到重要作用的这一理念。
     第四部分:多种IVIg在一种体外免疫神经疾病模型中的评估
     目的:分析和比较不同品牌及不同批号的静脉免疫球蛋白IVIg的保护作用。
     方法:我们利用了一种免疫神经疾病的细胞模型,由神经节苷脂抗体诱导的神经细胞(NG108-15)细胞毒模型,分析比较了八种经FDA批准的可在美国使用的不同品牌,以及其中两种品牌不同批号的IVIg在此细胞毒模型中的保护功效。
     结果:这些不同品牌或不同批号的产品具有非常相似的对此模型中由神经节苷脂抗体引导细胞损伤的保护作用。
     结论:这说明不同的IVIg在格式化模型中所展示的作用是具有可比性的。
Guillain-Barrésyndromes (GBS) currently are the world's leading causeof acute autoimmune neuromuscular paralysis. Gangliosides, sialicacid-bearing glycosphingolipids, are highly enriched in the vertebrate nervoussystem. Anti-ganglioside antibodies are associated with various humanneuropathies. Different lines of investigation have found strong evidence ofthe pathogenic role of anti-ganglioside antibodies in some forms of GBS.However, there're still plenty of important issues related with the role ofanti-ganglioside antibody remain unproven. For example, the nature ofantigens targeted by anti-ganglioside Abs has not been fully addressed, whichis crucial to any autoimmune disease; the experimental data for the role ofcomplement also remain inconclusive, etc. Understanding those cellular andmolecular mechanisms involved in the pathogenesis of anti-gangliosideantibody mediated injury is crucial to the development of specificimmunotherapies. A critical step in this regard is the generation of in vitromodels of such injury. Currently, lack of a robust mouse model of GBSprecludes addressing this question in vivo. To address these issues wedeveloped two ex-vitro models: (ⅰ) anti-ganglioside Ab-mediated neuronalcytotoxicity assay; (2) Organotypic spinal cord cultures system, in whichanti-ganglioside antibody caused motor nerves degeneration.
     Also, because of lack of a passive transfer model, the role ofanti-ganglioside antibodies in GBS continues to be debated. We recently haveraised several high-affinity monoclonal IgG anti-ganglioside antibodies. Inthis study, we try passively transfer these antibodies by intraperitonealhybridoma implantation in mice. Then, we studied the possible factors whichcould play role in the development of neuropathy.
     Finally, in controlled clinical studies, intravenous immunoglobulin (IVIg) has been shown to be effective as first-line therapy for both acute and chronicimmune neuropathies that include Guillain-Barre' syndrome (GBS). Whetheror not, the efficacy of different IVIg brands, or different lots of the same brand,can affect the beneficial response differently in patients remain unclear. And, ithas never been systematically examined before. To address this question, weexamined the protective efficacy of different brands of IVIg and different lotsof the two brands in the in vitro anti-ganglioside Ab-mediated neuronalcytotoxicity model.
     PartⅠ: Anti-ganglioside antibody-mediated neuronal cytotoxicity and itsprotection by intravenous immunoglobulin: implications for immuneneuropathies
     Purpose:Study two basic issues related to antigangliosideantibody-mediated neural injury: (1) some anti-ganglioside antibodies cancross-react with glycoproteins and therefore the nature of antigens targeted bythese antibodies is not well established; and (2) although pathological studiessuggest that complement activation occurs in GBS, experimental data for therole of complement remain inconclusive.
     Method: we developed and characterized a simple anti-gangliosideantibody mediated cytotoxicity assay, which is based on two neuronal cell line:NG108-15 and it's mutant cell line, NG-CR-72 cell. In this assay, weadministrate both anti-gangliosides monoclonal antibodies and GBS patients'sera having anti-ganglioside activity. IVIg's (human intravenousimmunoglobulin) protection effect was also being tested in this model.
     Results: Our results demonstrate first, that both GBS sera containinganti-ganglioside antibodies and monoclonal anti-ganglioside antibodies causeneuronal cell lysis by targeting specific cell surface gangliosides, and secondly,that this cell lysis is complement dependent. In this assay, the GD1a cellmembrane pool appears to be more susceptible to antigangliosideantibody-mediated injury than the GM1 pool. Further, IVIg significantlydecreased cytotoxicity in this assay. Our data indicate that the mechanisms ofIVIg-mediated protection in this assay include anti-idiotypic antibodies, and down-regulation of complement activation.
     Conclusion: This simple cytotoxicity assay can potentially be used forscreening of (ⅰ) pathogenic anti-ganglioside antibodies in patients withimmune-mediated neuropathies; and (ⅱ) new/experimental therapies toprevent anti-ganglioside antibody-mediated neural injury.
     PartⅡ: An Anti-ganglioside Antibody-Secreting Hybridoma InducesNeuropathy in Mice
     Purpose: Currently, the role of anti-ganglioside antibodies in GBScontinues to be debated because of lack of a passive transfer model. Severalpossible factors which could affect the role of anti-ganglioside antibody innerve injury were discussed in this study. We hope it can help developing thesuccessful in-vivo animal passive transfer model.
     Methods:We recently have raised several monoclonal IgGanti-ganglioside antibodies. We passively transfer these antibodies byintraperitoneal hybridoma implantation and by systemic administration ofpurified anti-ganglioside antibodies in mice. Finally, the pathological studywas done on those animals, and the nerve injury was evaluated. Theblood-nerve barrier in these animals was also being studied.
     Results:Approximately half the animals implanted with anintraperitoneal clone of anti-ganglioside antibody-secreting hybridomadeveloped a patchy, predominantly axonal neuropathy affecting a smallproportion of nerve fibers. In contrast to hybridoma implantation, passivetransfer with systemically administered anti-ganglioside antibodies did notcause nerve fiber degeneration despite high titre circulating antibodies.Blood-nerve barrier studies indicate that animals implanted with hybridomahad leaky blood-nerve barrier compared to mice that received systemicallyadministered anti-ganglioside antibodies.
     Conclusion: Our findings suggest that in addition to circulatingantibodies, factors such as antibody accessibility and nerve fiber resistance toantibody-mediated injury play a role in the development of neuropathy.
     PartⅢ: A high-affinity monoclonal anti-ganglioside antibody causes degeneration of motor nerves in vitro
     Purpose: To study the anti-ganglioside's role in the motor nerve injury.
     Methods: Recently we generated two high affinity IgG anti-GD1amonoclonal antibodies whose toxic effect on motor nerves in organotypic ratspinal cord cultures was studied.
     Results: Organotypic spinal cord cultures incubated with acomplement-fixing monoclonal anti-GD1a-related antibody demonstrated asignificant drop in motor neuron numbers and showed evidence ofWallerian-like degeneration of nerves. Isotype-matched sham antibody andnon-complement-fixing anti-GD1a antibody did not induce significantdegeneration of motor nerves.
     Conclusion: Our results indicate that the spinal cord culture system is auseful in vitro model for studying immune injury to motor neurons and nerves.The observation of in vitro cytotoxicity of anti-ganglioside antibody to motornerves supports the pathogenic role of anti-ganglioside antibodies found in theAMAN variant of GBS.
     PartⅣ: Comparison of different brands of IVIg in an in vitro model ofimmune neuropathy
     Purpose: To analyze and compare the protection efficacy of differentbrands or different lots of Intravenous immunoglobulin's (IVIg).
     Methods: we compared the efficacy of eight FDA approved brandsand/or lots of two brands of IVIg in a cell culture model of immuneneuropathy.
     Results: We report that products examined were equally effective andthere was no lot-to-lot variability in our experimental model.
     Conclusion: These findings support the notion that efficacy of differentIVIg products is comparable in a standardized model.
引文
1 Hartung HP, Willison H, Jung S, et al. Autoimmune responses in peripheral nerve. Springer Semin Immunopathol 1996; 18: 97-123.
    2 Hughes RA, Hadden RD, Gregson NA, et al. Pathogenesis of Guillain Barre syndrome. J Neuroimmunol 1999; 100: 74-97.
    3 Quarles RH, Weiss MD. Autoantibodies associated with peripheral neuropathy. Muscle Nerve 1999; 22: 800-22.
    4 Kusunoki S. Antiglycolipid antibodies in Guillain-Barre syndrome and autoimmune neuropathies. Am J Med Sci 2000; 319: 234-9.
    5 Ariga T, Miyatake T, Yu RK. Recent studies on the roles of antiglycosphingolipids in the pathogenesis of neurological disorders. J Neurosci Res 2001; 65:363-70
    6 Willison HJ, Yuki N. Peripheral neuropathies and anti-glycolipid antibodies. Brain 2002; 125: 2591-625.
    7 Ilyas AA, Willison HJ, Quarles RH, et al. Serum antibodies to gangliosides in Guillain Barre syndrome.Ann Neurol 1988; 23:440-7.
    8 Yuki N, Yoshino H, Sato S, et al. Acute axonal polyneuropathy associated with anti-GM1 antibodies following Campylobacter enteritis. Neurology 1990; 40: 1900-2.
    9 Yuki N, Sato S, Tsuji S, et al. Frequent presence of anti-GQlb antibody in Fisher's syndrome. Neurology 1993a; 43: 414-7.
    10 Yuki N, Ho TW, Tagawa Y, et al. Autoantibodies to GM1b and GalNAc-GD1a: relationship to Campylobacter jejuni infection and acute motor axonal neuropathy in China. J Neurol Sci 1999; 164: 134-8.
    11 Chiba A, Kusunoki S, Shimizu T, et al. Serum IgG antibody to ganglioside GQ1b is a possible marker of Miller Fisher syndrome. Ann Neurol 1992; 31: 677-9.
    12 Willison HJ, Veitch J, Paterson G, et al. Miller Fisher syndrome is associated with serum antibodies to GQ1b ganglioside. J Neurol Neurosurg Psychiatry 1993; 56: 204-6.
    13 Ho TW, Mishu B, Li CY, et al. Guillain Barre syndrome in northern China: relationship to Campylobacter jejuni infection and anti-glycolipid antibodies. Brain 1995; 118: 597-605.
    14 Ho TW, Willison HJ, Nachamkin I, et al. Anti-GDla antibody is associated with axonal but not demyelinating forms of Guillain Barre syndrome. Ann Neurol 1999; 45: 168-73.
    15 Lugaresi A, Ragno M, Torrieri F, et al. Acute motor axonal neuropathy with high titer IgG and IgA anti-GD1a antibodies following Campylobacter enteritis. J Neurol Sci 1997; 147:193-200.
    16 Kaida K, Kusunoki S, Kamakura K, et al. Guillain Barre syndrome with antibody to a ganglioside, N-acetylgalactosaminyl GDla. Brain 2000; 123: 116-24.
    17 Ogawara K, Kuwabara S, Mori M, et al. Axonal Guillain Barre syndrome: relation to anti-ganglioside antibodies and Campylobacter jejuni infection in Japan. Ann Neurol 2000; 48:624-31.
    18 Willison HJ, Veitch J. Immunoglobulin subclass distribution and binding characteristics of anti-GQ1b antibodies in Miller Fisher syndrome. J Neuroimmunol 1994; 50: 159-65.
    19 Ogino M, Orazio N, Latov N. IgG anti-GM1 antibodies from patients with acute motor neuropathy are predominantly of the IgG1 and IgG3 subclasses. J Neuroimmunol 1995; 58: 77-80.
    20 Yuki N, Ichihashi Y, Taki T. Subclass of IgG antibody to GM1 epitopebearing lipopolysaccharide of Campylobacter jejuni in patients with Guillain Barre syndrome. J Neuroimmunol 1995; 60: 161-4.
    21 Roberts M, Willison H, Vincent A, et al. Serum factor in Miller-Fisher variant of Guillain Barre syndrome and neurotransmitter release. Lancet 1994; 343: 454-5.
    22 Roberts M, Willison HJ, Vincent A, et al. Multifocal motor neuropathy human sera block distal motor nerve conduction in mice. Ann Neurol 1995; 38:111-8.
    23 Kusunoki S, Shimizu J, Chiba A, et al. Experimental sensory neuropathy induced by sensitization with ganglioside GDlb. Ann Neurol 1996; 39: 424-31.
    24 Goodyear CS, O'Hanlon GM, Plomp JJ, et al. Monoclonal antibodies raised against Guillain Barre syndromeassociated Campylobacter jejuni lipopolysaccharides react with neuronal gangliosides and paralyze musclenerve preparations. J Clin Invest 1999; 104: 697-708.
    25 Paparounas K, O'Hanlon GM, O'Leary CP, et al. Antiganglioside antibodies can bind peripheral nerve nodes of Ranvier and activate the complement cascade without inducing acute conduction block in vitro. Brain 1999; 122: 807-16.
    26 Plomp JJ, Molenaar PC, O'Hanlon GM, et al. Miller Fisher anti-GQ1b antibodies: alpha-latrotoxin-like effects on motor end plates. Ann Neurol 1999; 45: 189-99.
    27 Buchwald B, Toyka KV, Zielasek J, et al. Neuromuscular blockade by IgG antibodies from patients with Guillain Barre syndrome: a macro-patchclamp study. Ann Neurol 1998a; 44: 913-22.
    28 Yuki N, Yamada M, Koga M, et al. Animal model of axonal Guillain-Barre syndrome induced by sensitization with GM1 ganglioside. Ann Neurol 2001; 49: 712-20.
    29 Thomas FP, Lee AM, Romas SN, et al. Monoclonal IgMs with antiGal(beta 1-3) GalNAc activity in lower motor neuron disease; identification of glycoprotein antigens in neural tissue and crossreactivity with serum immunoglobulins. J Neuroimmunol 1989; 23:167-74.
    30 Apostolski S, Sadiq SA, Hays A, et al. Identification of Gal(betal-3)GalNAc bearing glycoproteins at the nodes of Ranvier in peripheral nerve. J Neurosci Res 1994; 38: 134-41.
    31 Kieber-Emmons T, Monzavi-Karbassi B, Wang B, et al. Cutting edge: DNA immunization with minigenes of carbohydrate mimotopes induce functional anti-carbohydrate antibody response. J Immunol 2000; 165: 623-7.
    32 Meloen RH, Puijk WC, Slootstra JW. Mimotopes: realization of an unlikely concept. J Mol Recognit 2000; 13: 352-9.
    33 Beenhouwer DO, May RJ, Valadon P, et al. High affinity mimotope of the polysaccharide capsule of Cryptococcus neoformans identified from an evolutionary phage peptide library. J Immunol 2002; 169: 6992-9.
    34 Hafer-Macko C, Hsieh S-T, Li CY, et al. Acute motor axonal neuropathy: an antibody-mediated attack on axolemma. Ann Neurol 1996a; 40:635-44.
    35 Hafer-Macko C, Sheikh KA, Li CY, et al. Immune attack on the Schwann cell surface in acute inflammatory demyelinating polyneuropathy. Ann Neurol 1996b; 39: 625-35.
    36 Dahms NM, Schnaar RL. Ganglioside composition is regulated during differentiation in the neuroblastoma & glioma hybrid cell line NG 108-15. J Neurosci 1983; 3: 806-17.
    37 Wu G, Lu ZH, Xie X, et al. Comparison of ganglioside profiles in nuclei and whole cells of NG108-15 and NG-CR72 lines: changes in response to different neuritogenic stimuli. Brain Res Dev Brain Res 2001a; 126: 183-90.
    38 Wu G, Lu ZH, Xie X, et al. Mutant NG108-15 cells (NGCR72) deficient in GM1 synthase respond aberrantly to axonogenic stimuli and are vulnerable to calcium-induced apoptosis: they are rescued with LIGA-20. J Neurochem 2001b; 76: 690-702.
    39 Lunn MP, Johnson LA, Fromholt SE, et al. High-affinity anti-ganglioside IgG antibodies raised in complex ganglioside knockout mice: reexamination of GDla immunolocalization. J Neurochem 2000; 75: 404-12.
    40 Gong Y, Tagawa Y, Lunn MP, et al. Localization of major gangliosides in the PNS: implications for immune neuropathies. Brain 2002; 125: 2491-506.
    41 Schnaar RL, Fromholt SE, Gong Y, et al. Immunoglobulin G-class mouse monoclonal antibodies to major brain gangliosides. Anal Biochem 2002; 302: 276-84.
    42 Schnaar RL. Isolation of glycosphingolipids. Methods Enzymol 1994; 230: 348-70.
    43 Schnaar RL, Needham LK. Thin-layer chromatography of glyosphingolipids. Methods Enzymol 1994; 230: 371-89.
    44 Abe A, Radin NS, Shayman JA, Wotring LL, et al. Structural and stereochemical studies of potent inhibitors of glucosylceramide synthase and tumor cell growth. J Lipid Res 1995;36:611-21.
    45 Vyas AA, Patel HV, Fromholt SE, et al. Gangliosides are functional nerve cell ligands for myelin-associated glycoprotein (MAG), an inhibitor of nerve regeneration. Proc Natl Acad Sci USA 2002; 99: 8412-7.
    46 Sekul EA, Cupler EJ, Dalakas MC. Aseptic meningitis associated with highdose intravenous immunoglobulin therapy: frequency and risk factors. Ann Intern Med 1994; 121: 259-62.
    47 Lopez PH, Irazoqui F J, Nores GA. Normal human plasma contains antibodies that specifically block neuropathy-associated human anti-GM1 IgG-antibodies. J Neuroimmunol 2000; 105:179-83.
    48 Lopez PH, Villa AM, Sica RE, et al. High affinity as a disease determinant factor in anti-GM(1) antibodies: comparative characterization of experimentally induced vs. disease-associated antibodies. J Neuroimmunol 2002; 128: 69-76.
    49 Yan WX, Taylor J, Andrias-Kauba S, et al. Passive transfer of demyelination by serum or IgG from chronic inflammatory demyelinating polyneuropathy patients. Ann Neurol 2000; 47: 765-75.
    50 Jacobs BC, O'Hanlon GM, Bullens RW, et al. Immunoglobulins inhibit pathophysiological effects of anti-GQlbpositive sera at motor nerve terminals through inhibition of antibody binding. Brain 2003; 126: 2220-34.
    51 Kuwabara S, Yuki N, Koga M, et al. IgG anti-GM1 antibody is associated with reversible conduction failure and axonal degeneration in Guillain-Barre syndrome. Ann Neurol 1998; 44: 202-8.
    52 Mizutamari RK, Wiegandt H, Nores GA. Characterization of anti ganglioside antibodies present in normal human plasma. J Neuroimmunol 1994; 50: 215-20.
    53 O'Hanlon GM, Veitch J, Gallardo E, et al. Peripheral neuropathy associated with anti-GM2 ganglioside antibodies: clinical and immunopathological studies. Autoimmunity 2000; 32: 133-44.
    54 Cavanna B, Jiang H, Allaria S, et al. Anti-GM(2) IgM antibody-induced complement-mediated cytotoxicity in patients with dysimmune neuropathies. J Neuroimmunol 2001; 114:226-31.
    55 Bullens RW, O'Hanlon GM, Wagner E, et al. Complex gangliosides at the neuromuscular junction are membrane receptors for autoantibodies and botulinum neurotoxin but redundant for normal synaptic function. J Neurosci 2002; 22: 6876-84.
    56 Buchwald B, Weishaupt A, Toyka KV, et al. Pre- and postsynaptic blockade of neuromuscular transmission by Miller-Fisher syndrome IgG at mouse motor nerve terminals. Eur J Neurosci 1998b; 10:281-90.
    57 O'Hanlon GM, Plomp JJ, Chakrabarti M, et al. Anti-GQ1b ganglioside antibodies mediate complementdependent destruction of the motor nerve terminal. Brain 2001; 124: 893-906.
    58 Young-Rodenchuk JM, Gyenes L. Differences in the sensitivity of tumor Cells and normal lymphocytes toward lysis by alloantibodies and guinea pig or rabbit complement. Transplantation 1975; 20: 20-5.
    59 Grant CK. Complement origin determines lytic activity of antibodies to nucleated target cells. Comparison of common complement sources. Transplantation 1976; 21: 323-30.
    60 Ong GL, Shah PB, Mattes MJ. Rabbit complement lyses tumor cells without massive C3 deposition. Immunol Invest 1996; 25:215-29.
    61 Rollins SA, Zhao J, Ninomiya H, et al. Inhibition of homologous complement by CD59 is mediated by a species-selective recognition conferred through binding to C8 within C5b-8 or C9 within C5b-9. J Immunol 1991; 146: 2345-51.
    62 White RV, Kaufman KM, Letson CS, et al. Characterization of rabbit complement component C8. Functional evidence for the species-selective recognition of C8 alpha by homologous restriction factor (CD59). J Immunol 1994; 152: 2501-8.
    63 Malik U, Oleksowicz L, Latov N, et al. Intravenous gamma-globulin inhibits binding of anti-GM1 to its target antigen. Ann Neurol 1996; 39: 136-9.
    64 Yuki N, Miyagi F. Possible mechanism of intravenous immunoglobulin treatment on anti-GM1 antibody-mediated neuropathies. J Neurol Sci 1996; 139: 160-2.
    65 Buchwald B, Ahangari R, Weishaupt A, et al. Intravenous immunoglobulins neutralize blocking antibodies in Guillain Barre syndrome. Ann Neurol 2002; 51: 673-80.
    66 Tankersley DL, Preston MS, Finlayson JS. Immunoglobulin G dimer: an idiotype-anti-idiotype complex. Mol Immunol 1988; 25:41-8.
    67 Teeling JL, Jansen-Hendriks T, Kuijpers TW, et al. Therapeutic efficacy of intravenous immunoglobulin preparations depends on the immunoglobulin G dimers: studies in experimental immune thrombocytopenia. Blood 2001; 98: 1095-9.
    68 Dalakas MC. Blockade of blocking antibodies in Guillain Barre syndromes: "unblocking' the mystery of action of intravenous immunoglobulin. Ann Neurol 2002a; 51: 667-9.
    69 Dalakas MC. Mechanisms of action of ⅣIg and therapeutic considerations in the treatment of acute and chronic demyelinating neuropathies. Neurology 2002b; 59 (12 Suppl 6): S13-21.
    70 Basta M, Fries LF, Frank MM. High doses of intravenous immunoglobulin do not affect the recognition phase of the classical complement pathway. Blood 1991; 78: 700-2.
    71 Basta M, Illa I, Dalakas MC. Increased in vitro uptake of the complement C3b in the serum of patients with Guillain-Barre syndrome, myasthenia gravis and dermatomyositis. J Neuroimmunol 1996; 71: 227-9.
    72 Basta M, Dalakas MC. High-dose intravenous immunoglobulin exerts its bene(?)Ecial effect in patients with dermatomyositis by blocking endomysial deposition of activated complement fragments. J Clin Invest 1994; 94:1729-35.
    1 Hughes RA, Hadden RD, Gregson NA, et al. Pathogenesis of Guillain-Barre syndrome. J Neuroimmunol 1999; 100:74-97.
    2 Willison HJ, Yuki N. Peripheral neuropathies and antiglycolipid antibodies. Brain 2002;125:2591 2625.
    3 Yuki N. Current cases in which epitope mimicry is considered a component cause of autoimmune disease: GuillainBarre syndrome. Cell Mol Life Sci 2000;57:527 533.
    4 Yuki N, Yoshino H, Sato S, et al. Acute axonal polyneuropathy associated with anti-GM1 antibodies following Campylobacter enteritis. Neurology 1990;40:1900-1902.
    5 Ho TW, Mishu B, Li CY, et al. Guillain-Barre syndrome in northern China: relationship to Campylobacter jejuni infection and anti-glycolipid antibodies. Brain 1995;118:597 605.
    6 Yuki N, Takahashi M, Tagawa Y, et al. Association of Campylobacter jejunni serotype with antiganglioside antibody in Guillain-Barre syndrome and Fisher's syndrome. Ann Neurol 1997;42:28-33.
    7 Yuki N, Yamada M, Sato S, et al. Association of IgG anti- GD1a antibody with severe Guillain-Barre syndrome. Muscle Nerve 1993; 16:642 647.
    8 Ho TW, Willison HJ, Nachamkin I, et al. Anti-GD 1 a antibody is associated with axonal but not demyelinating forms of Guillain-Barre syndrome. Ann Neurol 1999;45:168-173.
    9 Yuki N, Taki T, Handa S. Antibody to GalNAc-GDla and GalNAc-GM1b in Guillain-Barre syndrome subsequent to Campylobacter jejuni enteritis. J Neuroimmunol 1996;71:155 161.
    10 Kaida K, Kusunoki S, Kamakura K, et al. Guillain-Barre syndrome with antibody to a ganglioside, N-acetylgalactosaminyl GD1a. Brain 2000;123:116-124.
    11 Kusunoki S, Iwamori M, Chiba A, et al. GM1b is a new member of antigen for serum antibody in Guillain-Barre'syndrome. Neurology 1996;47:237 242.
    12 Kusunoki S, Chiba A, Kon K, et al. N-acetylgalactosaminyl GDla is a target molecule for serum antibody in GuiUain-Barre syndrome. Ann Neurol 1994;35:570-576.
    13 Chiba A, Kusunoki S, Shimizu T, et al. Serum IgG antibody to ganglioside GQlb is a possible marker of Miller Fisher syndrome. Ann Neurol 1992;31:677 679.
    14 Willison HJ, Veitch J, Patterson G, et al. Miller Fisher syndrome is associated with serum antibodies to GQ 1 b ganglioside.J Neurol Neurosurg Psychiatry 1993;56:204-206.
    15 Yuki N, Sato S, Tsuji S, et al. Frequent presence of anti-GQlb antibody in Fisher's syndrome. Neurology 1993;43:414 417.
    16 Yuki N, Taki T, Inagaki F, et al. A bacterium lipopolysaccharide that elicits Guillain-Barre syndrome has a GM1 ganglioside-like structure. J Exp Med 1993;178:1771 1775.
    17 Yuki N, Taki T, Takahashi M, et al. Molecular mimicry between GQ1b ganglioside and lipopolysaccharides of Campylobacter jejuni isolated from patients with Fisher's syndrome. Ann Neurol 1994;36:791 793.
    18 Nachamkin I, Liu J, Li M, et al. Campylobacter jejuni from patients with Guillain-Barre syndrome preferentially expresses a GD(la)-like epitope. Infect Immun 2002;70:5299-5303.
    19 Sheikh KA, Nachamkin I, Ho TW, et al. Campylobacter jejuni lipopolysaccharides in Guillain-Barre syndrome: molecular mimicry and host susceptibility. Neurology 1998;51:371 378.
    20 Aspinall GO, McDonald AG, Raju TS, et al. Chemical structures of the core regions of Campylobacter jejuni serotypes O:1, 0:4, 0:23, and O:36 lipopolysaccharides. Eur J Biochem 1993; 213:1017 1027.
    21 Chiba A, Kusunoki S, Obata H, et al. Serum anti-GQlb IgG antibody is associated with ophthalmoplegia in Miller Fisher syndrome and Guillain- Barre syndrome: clinical and immunohistochemical studies. Neurology 1993;43:1911 1917.
    22 Sheikh KA, Deerinck TJ, Ellisman MH, et al. The distribution of ganglioside-like moieties in peripheral nerves. Brain 1999; 122:449 460.
    23 Gong Y, Tagawa Y, Lunn MP, et al. Localization of major gangliosides in the PNS: implications for immune neuropathies. Brain 2002;125:2491 2506.
    24 Hafer-Macko C, Hsieh S-T, Li CY, et al. Acute motor axonal neuropathy: an antibody-mediated attack on axolemma. Ann Neurol 1996;40:635 644.
    25 Ho T, Hsieh S, Nachamkin I, et al. Motor nerve terminal degeneration provides a potential mechanism for rapid recovery in acute motor axonal neuropathy after Campylobacter infection. Neurology 1997;48:717 724.
    26 Goodyear CS, O'Hanlon GM, Plomp JJ, et al. Monoclonal antibodies raised against Guillain-Barre syndrome-associated Campylobacter jejuni lipopolysaccharides react with neuronal gangliosides and paralyze musclenerve preparations. J Clin Invest 1999;104:697 708. Published erratum appears in J Clin Invest 1999; 104:1771.
    27 Lunn MP, Johnson LA, Fromholt SE, et al. High-affinity antiganglioside IgG antibodies raised in complex ganglioside knockout mice: reexamination of GD1 a immunolocalization. J Neurochem 2000;75:404 412.
    28 Bowes T, Wagner ER, Boffey J, et al. Tolerance to self gangliosides is the major factor restricting the antibody response to lipopolysaccharide core oligosaccharides in Campylobacter jejuni strains associated with Guillain-Barre syndrome. Infect Immun 2002;70:5008-5018.
    29 Ang CW, De Klerk MA, Endtz HP, et al. Guillain-Barre syndrome-and Miller Fisher syndrome-associated Campylobacter jejuni lipopolysaccharides induce anti-GM1 and anti-GQ1b antibodies in rabbits. Infect Immun 2001;69:2462 2469.
    30 Wirguin I, Briani C, Suturkova-Milosevic L, et al. Induction of anti-GM1 ganglioside antibodies by Campylobacter jejuni lipopolysaccharides. J Neuroimmunol 1997;78:138-142.
    31 Gregson NA, Hammer CT. Some immunological properties of antisera raised against the trisialoganglioside GT1B. Mol Immunol 1982;19:543 550.
    32 Saez-Torres I, Diaz-Villoslada P, Martinez-Caceres E, et al.Gangliosides do not elicit experimental autoimmune encephalomyelitis in Lewis rats and SJL mice. J Neuroimmunol 1998;84:24-29.
    33 Lopez PH, Villa AM, Sica RE, et al. High affinity as a disease determinant factor in anti-GM(1) antibodies: comparative characterization of experimentally induced vs. disease-associated antibodies. J Neuroimmunol 2002;128:69-76.
    34 Hadden RD, Gregson NA, Gold R, et al. Guillain-Barre syndrome serum and anti-Campylobacter antibody do not exacerbate experimental autoimmune neuritis. J Neuroimmunol 2001; 119:306-316.
    35 Kusunoki S, Shimizu J, Chiba A, et al. Experimental sensory neuropathy induced by sensitization with ganglioside GD1b.Ann Neurol 1996;39:424 431.
    36 Yuki N, Yamada M, Koga M, et al. Animal model of axonal Guillain-Barre syndrome induced by sensitization with GM1 ganglioside. Ann Neurol 2001;49:712 720.
    37 Kusunoki S, Hitoshi S, Kaida K, et al. Monospecific anti-GDlb IgG is required to induce rabbit ataxic neuropathy. Ann Neurol 1999;45:400 403.
    38 Kusunoki S, Hitoshi S, Kaida K, et al. Degeneration of rabbit sensory neurons induced by passive transfer of anti-GD 1 b antiserum. Neurosci Lett 1999;273:33 36.
    39 Liu Y, Wada R, Kawai H, et al. A genetic model of substrate deprivation therapy for a glycosphingolipid storage disorder. J Clin Invest 1999;103:497 505.
    40 Bamstable C J, Bodmer WF, Brown G, et al. Production of monoclonal antibodies to group A erythrocytes, HLA and other human cell surface antigens-new tools for genetic analysis. Cell 1978;14:9-20.
    41 Brodsky FM, Parham P. Monomorphic anti-HLA-A,B,C monoclonal antibodies detecting molecular subunits and combinatorial determinants. J Immunol 1982;128:129-135.
    42 Spatz LA, Williams M, Brender B, et al. DNA sequence analysis and comparison of the variable heavy and light chain regions of two IgM, monoclonal, anti-myelin associated glycoprotein antibodies. J Neuroimmunol 1992;36:29-39.
    43 O'Shannessy DJ, Willison HJ, Inuzuka T, et al. The species distribution of nervous system antigens that react with antimyelin-associated glycoprotein antibodies. J Neuroimmunol 1985;9:255 268.
    44 Schnaar RL, Fromholt SE, Gong Y, et al. IgG-class mouse monoclonal antibodies to major brain gangliosides. Anal Biochem 2002;302:276-284.
    45 Gillette RW. Alternatives to pristane priming for ascitic fluid and monoclonal antibody production. J Immunol Methods 1987;99:21 23.
    46 Tekolf WA, Shaw S. In vitro generation of cytotoxic cells specific for human minor histocompatibility antigens by lymphocytes from a normal donor potentially primed during pregnancy. J Exp Med 1983; 157:2172 2177.
    47 Tagawa Y, Yuki N, Hirata K. Anti-SGPG antibody in CIDP:nosological position of IgM anti-MAG/SGPG antibodyassociated neuropathy. Muscle Nerve 2000;23:895 899.
    48 Bao L, Lindgren JU, Zhu Y, et al. Exogenous soluble tumor necrosis factor receptor type Ⅰ ameliorates murine experimental autoimmune neuritis. Neurobiol Dis 2003;12:73 81.
    49 Sheikh KA, Lui Y, Kawai H, et al. Mice lacking complex gangliosides develop Wallerian degeneration and myelination defects. Proc Natl Acad Sci USA 1999;96:7532 7537.
    50 Salacinski PR, McLean C, Sykes JE, et al. Iodination of proteins, glycoproteins, and peptides using a solid-phase oxidizing agent, 1,3,4,6-tetrachloro-3 alpha,6 alpha-diphenyl glycoluril (Iodogen). Anal Biochem 1981;117:136-146.
    51 Hadden RD, Gregson NA, Gold R, et al. Accumulation of immunoglobulin across the "blood-nerve barrier" in spinal roots in adoptive transfer experimental autoimmune neuritis. Neuropathol Appl Neurobiol 2002;28:489 497.
    52 Roberts M, Willison HJ, Vincent A, et al. Multifocal motor neuropathy human sera block distal motor nerve conduction in mice. Ann Neurol 1995;38:111 118.
    53 Buchwald B, Toyka KV, Zielasek J, et al. Neuromuscular blockade by IgG antibodies from patients with Guillain-Barre syndrome: a macro-patchclamp study. Ann Neurol 1998;44:913 922.
    54 Plomp JJ, Molenaar PC, O'Hanlon GM, et al. Miller Fisher anti-GQ1b antibodies: alpha-latrotoxin-like effects on motor end plates. Ann Neurol 1999;45:189-199. Published erratum appears in Ann Neurol 1999;45:823.
    55 Pollard JD, Westland KW, Harvey GK, et al. Activated T cells of nonneural specificity open the blood-nerve barrier to circulating antibody. AnnNeurol 1995;37:467 475.
    56 Spies JM, Westland KW, Bonner JG, et al. Intraneural activated T cells cause focal breakdown of the blood-nerve barrier. Brain 1995;118:857 868.
    57 Spies JM, Pollard JD, Bonner JG, et al. Synergy between antibody and P2-reactive T cells in experimental allergic neuritis. J Neuroimmunol 1995;57:77 84.
    58 Bergman I, Basse PH, Barmada MA, et al. Comparison of in vitro antibody-targeted cytotoxicity using mouse, rat and human effectors. Cancer Immunol Immunother 2000;49:259 266.
    59 Ong GL, Mattes MJ. Mouse strains with typical mammalian levels of complement activity. J Immunol Methods 1989;125:147 158.
    60 Zhang G, Lopez PH, Li CY, et al. Anti-ganglioside antibodymediated neuronal cytotoxicity and its protection by intravenous immunoglobulin: implications for immune neuropathies. Brain 2004;127:1085 1100.
    61 Griffin JW, Li CY, Ho TW, et al. Pathology of the motorsensory axonal Guillain-Barre syndrome. Ann Neurol 1996;39:17 28.
    62 Griffin JW, Li CY, Ho TW, et al. Guillain-Barre syndrome in northern China: the spectrum of neuropathologic changes in clinically defined cases. Brain 1995;118:577 595.
    63 Marcus D, Latov N, Hsi B. Measurement and significance of antibodies against GM1 ganglioside. J Neuroimmunol 1989;25:255 259.
    64 Westland KW, Pollard JD, Sander S, et al. Activated nonneural specific T cells open the blood-brain barrier to circulating antibodies. Brain 1999;122:1283 1291.
    65 Yan WX, Taylor J, Andrias-Kauba S, et al. Passive transfer of demyelination by serum or IgG from chronic inflammatory demyelinating polyneuropathy patients. Ann Neurol 2000;47:765 775.
    66 Linington C, Bradi M, Lassmann H, et al. Augmentation of demyelination in rat acute allergic encephalomyelitis by circulating mouse monoclonal antibodies directed against a myelin/oligodendrocyte glycoprotein. Am J Pathol 1988;130:443 454.
    67 Litzenburger T, Fassler R, Bauer J, et al. B lymphocytes producing demyelinating autoantibodies: development and function in gene-targeted transgenic mice. J Exp Med 1998;188:169 180.
    68 Toyka KV, Drachman DB, Griffin DE, et al. Myasthenia gravis: study of humoral immune mechanisms by transfer to mice. N Engl J Med 1977;296:125 131.
    69 Fukunaga H, Engel AG, Lang B, et al. Passive transfer of Lambert-Eaton myasthenic syndrome with IgG from man to mouse depletes the presynaptic membrane active zones. Proc Natl Acad Sci USA 1983;80:7636-7640.
    70 Lang B, Newsom-Davis J, Prior C, et al. Antibodies to motor nerve terminals: an electrophysiological study of a human myasthenic syndrome transferred to mouse. J Physiol 1983; 344: 335 345.
    1 Asbury AK, Arnason BG, Adams RD. The inflammatory lesion in idiopathic polyneuritis. Medicine 1969; 48:173-215.
    2 Prineas JW. Acute idiopathic polyneuritis. An electron microscope study. Lab Invest 1972; 26:133-147.
    3 McKhann GM, Cornblath DR, Griffin JW, Ho TW, Li CY, Jiang Z et al. Acute motor axonal neuropathy: A frequent cause of acute flaccid paralysis in China. Ann Neurol 1993; 33:333-342.
    4 Griffin JW, Li CY, Ho TW, Xue P, Macko C, Cornblath DR et al. Guillain-Barre syndrome in northern China: The spectrum of neuropathologic changes in clinically defined cases. Brain 1995; 118:577-595.
    5 McKhann GM, Cornblath DR, Ho TW, Li CY, Bai AY, Wu HS et al. Clinical and electrophysiological aspects of acute paralytic disease of children and young adults in northern China. Lancet 1991; 338:593-597.
    6 Ho TW, Mishu B, Li CY, Gao CY, Cornblath DR, Griffin JW et al. Guillain-Barre syndrome in northern China: Relationship to Campylobacter jejuni infection and anti-glycolipid antibodies. Brain 1995; 118:597-605.
    7 Ogawara K, Kuwabara S, Mori M, Hattori T, Koga M, Yuki N. Axonal Guillain-Barre syndrome: relation to anti-ganglioside antibodies and Campylobacter jejuni infection in Japan. Ann Neurol 2000 Oct;48(4):624-31 2001; 48(4):624-31.
    8 Gupta SK, Taly AB, Suresh TG, Rao S, Nagaraja D. Acute idiopathic axonal neuropathy (AIAN): a clinical and electrophysiological observation. Acta Neurol Scand 1994; 89:220-224.
    9 Hartung H-P, Pollard JD, Harvey GK, Toyka KV. Immunopathogenesis and treatment of the Guillain-Barre syndrome—Part Ⅰ. Muscle Nerve 1995;18:137-153.
    10 Hartung H-P, Pollard JD, Harvey GK, Toyka KV. Immunopathogenesis and treatment of the Guillain-Barre syndrome—Part Ⅱ. Muscle Nerve 1995;18:154-164.
    11 Quarles RH, Weiss MD. Autoantibodies associated with peripheral neuropathy. Muscle Nerve 1999; 22(7):800-822.
    12 Hughes RA, Hadden RD, Gregson NA, Smith KJ. Pathogenesis of Guillain-Barre syndrome. J Neuroimmunol 1999; 100(1-2):74-97.
    13 Ho TW, Willison H J, Nachamkin I, Li CY, Veitch J, Ung H et al. Anti-GD1a antibody is associated with axonal but not demyelinating forms of Guillain-Barre syndrome. Ann Neurol 1999; 45(2): 168-173.
    14 Kuwabara S, Yuki N, Koga M, Hattori T, Matsuura D, Miyake Met al. IgG anti-GM1 antibody is associated with reversible conduction failure and axonal degeneration in Guillain-Barre syndrome. Ann Neurol 1998; 44(2):202-208.
    15 Kaida K, Kusunoki S, Kamakura K, Motoyoshi K, Kanazawa I. Guillain-Barre syndrome with antibody to a ganglioside, N-acetylgalactosaminyl GDla. Brain 2000 Jan;123 (Pt 1):116-24 2000; 123(Pt 1):116-124.
    16 Yuki N, Ho TW, Tagawa Y, Koga M, Li CY, Hirata K et al. Autoantibodies to GM1b and GalNAc-GDla: relationship to Campylobacter jejuni infection and acute motor axonal neuropathy in China. J Neurol Sci 1999; 164(2):134-138.
    17 Ang CW, Yuki N, Jacobs BC, Koga M, Van Doom PA, Schmitz PI et al. Rapidly progressive, predominantly motor Guillain-Barre syndrome with anti-GalNAc-GD1a antibodies. Neurology 1999; 53 (9):2122-2127.
    18 Chiba A, Kusunoki S, Shimizu T, Kanazawa I. Serum IgG antibody to ganglioside GQlb is a possible marker of Miller Fisher syndrome. Ann Neurol 1992; 31:677-679.
    19 Chiba A, Kusunoki S, Obata H, Machinami R, Kanazawa I. Serum anti-GQ1b IgG antibody is associated with ophthalmoplegia in Miller Fisher syndrome and Guillain-Barre syndrome: Clinical and immunohistochemical studies. Neurology 1993; 43:1911-1917.
    20 Willison HJ, Veitch J, Patterson G, Kennedy PGE. Miller Fisher syndrome is associated with serum antibodies to GQlb ganglioside. J Neurol Neurosurg Psychiatry 1993; 56:204-206.
    21 Yuki N, Sato S, Tsuji S, Ohsawa T, Miyatake T. Frequent presence of anti-GQ1b antibody in Fisher's syndrome. Neurology 1993; 43:414-417.
    22 Willison HJ, Veitch J. Immunoglobulin subclass distribution and binding characteristics of anti-GQ1b antibodies in Miller Fisher syndrome. J Neuroimmunol 1994; 50:159-165.
    23 Yuki N, Ichihashi Y, Taki T. Subclass of IgG antibody to GM1 epitopebearing lipopolysaccharide of Campylobacter jejuni in patients with Guillain-B arre syndrome. J Neuroimmunol 1995; 60(1-2): 161-4.
    24 Ogino M, Orazio N, Latov N. IgG anti-GM1 antibodies from patients with acute motor neuropathy are predominantly of the IgG1 and IgG3 subclasses. J Neuroimmunol 1995; 58(1):77-80.
    25 Yuki N, Taki T, Inagaki F, et al. A bacterium lipopolysaccharide that elicits Guillain-Barre syndrome has a GM1 ganglioside-like structure. J Exp Med 1993; 178:1771-1775.
    26 Aspinall GO, Fujimoto S, McDonald AG, et al. Lipopolysaccharides from Campylobacter jejuni associated with Guillain-Barre syndrome patients mimic human gangliosides in structure. Infect Immun 1994; 62:2122-2125.
    27 Sheikh KA, Nachamkin I, Ho TW, Willison HJ, Veitch J, Ung H et al. Campylobacter jejuni lipopolysaccharides in Guillain-Barre syndrome: molecular mimicry and host susceptibility. Neurology 1998; 51 (2):371-378.
    28 Prendergast MM, Willison HJ, Moran AP. Human monoclonal immunoglobulin M antibodies to ganglioside GM1 show diverse crossreactivities with lipopolysaccharides of Campylobacter jejuni strains associated with Guillain-Barre syndrome. Infect Immun 1999; 67(7):3698-3701.
    29 Roberts M, Willison H, Vincent A, Newsom-Davis J. Serum factor in Miller-Fisher variant of Guillain-Barre syndrome and neurotransmitter release. Lancet 1994; 343:454-455.
    30 Kusunoki S, Shimizu J, Chiba A, Ugawa Y, Hitoshi S, Kanazawa I. Experimental sensory neuropathy induced by sensitization with ganglioside GDlb. Ann Neurol 1996; 39(4):424-431.
    31 Goodyear CS, O'Hanlon GM, Plomp JJ, Wagner ER, Morrison I, Veitch J et al. Monoclonal antibodies raised against Guillain-Barre syndromeassociated Campylobacter jejuni lipopolysaccharides react with neuronal gangliosides and paralyze muscle-nerve preparations [published erratum appears in J Clin Invest 1999 Dec;104(12):1771]. J Clin Invest 1999; 104(6):697-708.
    32 Paparounas K, O'Hanlon GM, O'Leary CP, Rowan EG, Willison HJ. Antiganglioside antibodies can bind peripheral nerve nodes of Ranvier and activate the complement cascade without inducing acute conduction block in vitro [see comments]. Brain 1999; 122(Pt 5):807-816.
    33 Plomp JJ, Molenaar PC, O'Hanlon GM, Jacobs BC, Veitch J, Daha MR et al. Miller Fisher anti-GQlb antibodies: alpha-latrotoxin-like effects on motor end plates [published erratum appears in Ann Neurol 1999 Jun;45(6):823]. Ann Neurol 1999; 45(2): 189-199.
    34 Buchwald B, Toyka KV, Zielasek J, Weishaupt A, Schweiger S, Dudel J. Neuromuscular blockade by IgG antibodies from patients with Guillain-Barre syndrome: a macro-patch-clamp study. Ann Neurol 1998; 44(6):913-922.
    35 Yuki N, Yamada M, Koga M, Odaka M, Susuki K, Tagawa Y et al. Animal model of axonal Guillain-Barre syndrome induced by sensitization with GM1 ganglioside. Ann Neurol 2001 Jun;49(6):712-20 2001; 49(6):712-20.
    36 Mata S, Lolli F, Soderstrom M, Pinto F, Link H. Multiple sclerosis is associated with enhanced B cell responses to the ganglioside GDla. Mult Scler 1999; 5(6):379-388.
    37 Lunn MP, Johnson LA, Fromholt SE, Itonori S, Huang J, Vyas AA et al. High-affinity anti-ganglioside IgG antibodies raised in complex ganglioside knockout mice: reexamination of GD 1 a immunolocalization. J Neurochem 2000 Jul;75(1):404-12 2000; 75(1):404-412.
    38 Ilyas AA, Willison HJ, Quarles RH, Jungawala FB, Cornblath DR, Trapp BD et al. Serum antibodies to gangliosides in Guillain-Barre syndrome. Ann Neurol 1988; 23:440-447.
    39 Rothstein JD, Jin L, Dykes-Hoberg M, Kuncl RW. Chronic inhibition of glutamate uptake produces a model of slow neurotoxicity. Proc Natl Acad Sci U S A 1993; 90(14):6591-6595.
    40 Ho TW, Bristol LA, Coccia C, Li Y, Milbrandt J, Johnson E et al. TGFbeta trophic factors differentially modulate motor axon outgrowth and protection from excitotoxicity. Exp Neurol 2000 Feb;161(2):664-75 2000; 161(2):664-675.
    41 Schnaar RL. Isolation of glycosphingolipids. Methods Enzymol 1994; 230:348-370.
    42 Schnaar RL, Needham LK. Thin-layer chromatography of glyosphingolipids. Methods Enzymol 1994; 230:371-389.
    43 Hartung H-P, Hadding U. Synthesis of complement by macrophages. In: Muller-Eberhardt HJ, Miescher P, editors. Complement. Heidelberg: Springer, 1985: 279-322/-473-474.
    44 Speth C, Stockl G, Mohsenipour I, Wurzner R, Stoiber H, Lass-Florl C et al. Human immunodeficiency virus type 1 induces expression of complement factors in human astrocytes. J Virol 2001; 75(6):2604-2615.
    45 Schafer MK, Schwaeble WJ, Post C, Salvati P, Calabresi M, Sire RB et al. Complement C lq is dramatically up-regulated in brain microglia in response to transient global cerebral ischemia. J Immunol 2000; 164(10):5446-5452.
    46 Walker DG, Kim SU, McGeer PL. Expression of complement C4 and C9 genes by human astrocytes. Brain Res 1998; 809(1):31-38.
    47 Haga S, Aizawa T, Ishii T, Ikeda K. Complement gene expression in mouse microglia and astrocytes in culture: comparisons with mouse peritoneal macrophages. Neurosci Lett 1996; 216(3): 191-194.
    48 Tohgi H, Utsugisawa K, Nagane Y. Hypoxia-induced expression of C1q, a subcomponent of the complement system, in cultured rat PC12 cells. Neurosci Lett 2000; 291 (3): 151-154.
    49 Pratt JR, Abe K, Miyazaki M, Zhou W, Sacks SH. In situ localization of C3 synthesis in experimental acute renal allograft rejection. Am J Pathol 2000; 157(3):825-831.
    50 Dijkstra CD, Dopp EA, Joling P, et al. The heterogeneity of mononuclear phagocytes in lymphoid organs: distinct macrophage subpopulations in the rat recognized by the monoclonal antibodies ED1, ED2, and ED3. Immunology 1985; 54:589-599.
    51 Schnaar RL, Fromholt SE, Gong Y, Vyas AA, Laroy W, Wayman DM et al. IgG-class mouse monoclonal antibodies to major brain gangliosides. Anal Biochem 2002; 302:276-284.
    52 Banker GA. Trophic interactions between astroglial cells and hippocampal neurons in culture. Science 1980; 209(4458):809-810.
    53 Barde YA. Trophic factors and neuronal survival. Neuron 1989; 2(6): 1525-1534.
    54 Rothstein JD, Dykes-Hoberg M, Pardo CA, Bristol LA, Jin L, Kuncl RW et al. Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 1996; 16:675-686.
    55 Neuberger MS, Rajewsky K. Activation of mouse complement by monoclonal mouse antibodies. Eur J Immunol 1981; 11 (12): 1012-1016.
    56 Lamoyi E, Nisonoff A. Preparation of F(ab')2 fragments from mouse IgG of various subclasses. J Immunol Methods 1983; 56(2):235-243.
    57 Gorini G, Medgyesi GA, Doria G. Heterogeneity of mouse myeloma gamma G globulins as revealed by enzymatic proteolysis. J Immunol 1969; 103 (5): 1132-1142.
    58 Parham P. On the fragmentation of monoclonal IgG1, IgG2a, and IgG2b from BALB/c mice. J Immunol 1983; 131(6):2895-2902.
    1 van der Meche FGA, Schmitz PIM, Dutch Guillain-Barre Study Group. A randomized trial comparing intravenous immune globulin and plasma exchange in Guillain-Barre syndrome. N Engl J Med 1992; 326:1123-1129.
    2 Hahn AF, Bolton CF, Zochodne D, et al. Intravenous immunoglobulin treatment in chronic inflammatory demyelinating polyneuropathy: A double-blind, placebo-controlled, cross-over study. Brain 1996; 119:1067-1077.
    3 Van den Berg LH, Kerkhoff H, Oey PL, et al. Treatment of multifocal motor neuropathy with high dose intravenous immunoglobulins: a double blind, placebo controlled study. J Neurol Neurosurg Psychiatry 1995; 59:248-252.
    4 Randomised trial of plasma exchange, intravenous immunoglobulin, and combined treatments in Guillain-Barre syndrome. Plasma Exchange/Sandoglobulin Guillain-Barre Syndrome Trial Group [see comments]. Lancet 1997; 349:225-230.
    5 Hughes RA. Systematic reviews of treatment for inflammatory demyelinating neuropathy. J Anat 2002; 200:331-339.
    6 Dalakas MC. Mechanisms of action of ⅣIg and therapeutic considerations in the treatment of acute and chronic demyelinating neuropathies. Neurology 2002; 59:S13-S21.
    7 Toyka KV, Gold R. The pathogenesis of CIDP: rationale for treatment with immunomodulatory agents. Neurology 2003; 60: S2-S7.
    8 Dalakas MC. Intravenous immunoglobulin in autoimmune neuromuscular diseases. J A M A 2004; 291:2367-2375.
    9 Dalakas MC. The use of intravenous immunoglobulin in the treatment of autoimmune neuromuscular diseases: evidence-based indications and safety profile. Pharmacol Ther 2004; 102:177-193.
    10 Zhang G, Lopez PH, Li CY, et al. Anti-ganglioside antibody-mediated neuronal cytotoxicity and its protection by intravenous immunoglobulin: implications for immune neuropathies. Brain 2004; 127:1085-1100.
    11 Willison H J, Yuki N. Peripheral neuropathies and anti-glycolipid antibodies. Brain 2002; 125:2591-2625.
    12 Koller H, Kieseier BC, Jander S, et al. Chronic inflammatory demyelinating polyneuropathy. N Engl J Med 2005; 352:1343-1356.
    13 Hafer-Macko C, Hsieh S-T, Li CY, et al. Acute motor axonal neuropathy: an antibody-mediated attack on axolemma. Ann Neurol 1996; 40:635-644.
    14 Hafer-Macko C, Sheikh KA, Li CY, et al. Immune attack on the Schwann cell surface in acute inflammatory demyelinating polyneuropathy. Ann Neurol 1996; 39:625-635.
    15 Dalakas MC, Engel WK. Immunoglobulin and complement depositis in nerves of patients with chronic relapsing polyneuropathy. Arch Neurol 1980; 37:637-640.
    16 Willison HJ. The immunobiology of Guillain-Barre syndromes. J Peripher Nerv Syst 2005; 10:94-112.
    17 Lunn MP, Johnson LA, Fromholt SE, et al. High-affinity anti-ganglioside IgG antibodies raised in complex ganglioside knockout mice: reexamination of GD1 a immunolocalization. J Neurochem 2000; 75:404-412.
    18 Gong Y, Tagawa Y, Lunn MP, et al. Localization of major gangliosides in the PNS: implications for immune neuropathies. Brain 2002; 125:2491-2506.
    19 Ho TW, Willison HJ, Nachamkin I, et al. Anti-GDla antibody is associated with axonal but not demyelinating forms of Guillain-Barre syndrome. Ann Neurol 1999; 45:168-173.
    20 Buchwald B, Ahangari R, Weishaupt A, et al. Intravenous immunoglobulins neutralize blocking antibodies in Guillain-Barre syndrome. Ann Neurol 2002; 51:673-680.
    21 Jacobs, B.C., O'Hanlon, G.M., Bullens, R.W., Veitch, J., Plomp, J.J.,Willison, H.J. Immunoglobulins inhibit pathophysiological effects of anti-GQlb-positive sera at motor nerve terminals through inhibition of antibody binding. Brain 2003; 126: 2220- 2234.
    1 Lunn MP, Johnson LA, Fromholt SE, Itonori S, Huang J, Vyas AA, et al. High-affinity anti-ganglioside IgG antibodies raised in complex ganglioside knockout mice:reexamination of GDla immunolocalization. J Neurochem 2000;75:404-12.
    2 Asbury AK, Arnason BG, Adams RD. The inflammatory lesion in idiopathic polyneuritis: its role in pathogenesis. Medicine (Baltimore) 1969; 48: 173-215.
    3 McKhann GM, Cornblath DR, Griffin JW, Ho TW, Li CY, Jiang Z, et al. Acute motor axonal neuropathy: a frequent cause of acute faccid paralysis in China. Ann Neurol 1993; 33: 333-42.
    4 Griffin JW, Li CY, Ho TW, Tian M, Gao CY, Xue P, et al. Pathology of the motor-sensory axonal Guillain-Barre syndrome.Ann Neurol 1996; 39: 17-28.
    5 Kuwabara S, Yuki N, Koga M, Hattori T, Matsuura D, Miyake M, et al. IgG anti-GM1 antibody is associated with reversible conduction failure and axonal degeneration in Guillain-Barre syndrome. Ann Neurol 1998; 44: 202-8.
    6 Griffin JW, Li CY, Macko C, Ho TW, Hsieh S-T, Xue P, et al. Early nodal change in the acute motor axonal neuropathy pattern of the Guillain-Barre syndrome. J Neurocytol 1996; 25: 33-51.
    7 Hafer-Macko C, Hsieh S-T, Li CY, Ho TW, Sheikh K, Cornblath DR, et al. Acute motor axonal neuropathy: an antibody-mediated attack on axolemma. Ann Neurol 1996a; 40: 635-44.
    8 Ho TW, Hsieh S-T, Nachamkin I, Willison H J, Sheikh K, Kiehlbauch J, et al. Motor nerve terminal degeneration provides a potential mechanism for rapid recovery in acute motor axonal neuropathy after Campylobacter infection. Neurology 1997; 48:717-24.
    9 Hafer-Macko CE, Sheikh KA, Li CY, Ho TW, Cornblath DR, McKhann GM, et al. Immune attack on the Schwann cell surface in acute inflammatory demyelinating polyneuropathy. Ann Neurol 1996b; 39: 625-35.
    10 Hughes RA, Hadden RD, Gregson NA, Smith KJ. Pathogenesis of Guillain-Barre syndrome. J Neuroimmunol 1999; 100:74-97.
    11 van der Meche FG, Schmitz PI. A randomized trial comparing intravenous immune globulin and plasma exchange in Guillain-Barre syndrome. Dutch Guillain-Barre study group. N EnglJ Med 1992;326:1123-9.
    12 Buchwald B, de Baets M, Luijckx GJ, Toyka KV. Neonatal Guillain-Barre syndrome: blocking antibodies transmitted from mother to child. Neurology 1999;53:1246-53.
    13 Ilyas AA, Quarles RH, Dalakas MC, Fishman PH, Brady RO. Monoclonal IgM in a patient with paraproteinemic polyneuropathy binds to gangliosides containing disialosylgroups. Ann Neurol 1985; 18:655-9.
    14 Alaedini A, Green PH, Sander HW, Hays AP, Gamboa ET, Fasano A, et al. Ganglioside reactive antibodies in the neuropathy associated with celiac disease. J Neuroimmunol2002; 127:145-8.
    15 Chapman J, Sela BA, Wertman E, Michaelson DM. Antibodies to ganglioside GM1 in patients with Alzheimer's disease. Neurosci Lett 1988;86:235-40.
    16 Willison H J, Yuki N. Peripheral neuropathies and antiglycolipid antibodies: Brain 2002; 125:2591-625.
    17 Garcia Guijo C, Garcia-Merino A, Rubio G. Presence and isotype of antiganglioside antibodies in healthy persons, motor neuron disease, peripheralneur opathy, and other diseases of the nervous system. J Neuroimmunol 1995;56:27-33.
    18 Odaka M, Yuki N, Nobile-Orazio E, Carpo M, Hirata K. Antibodies to GMI(NeuGc) in Guillain-Barre syndrome after ganglioside therapy. J Neurol Sci 2000; 175:96-106.
    19 Gong Y, Tagawa Y, Lunn MP, Laroy W, Heffer-Lauc M, Li CY, et al. Localization of major gangliosides in the PNS: implications for immune neuropathies. Brain 2002; 125:2491-506.
    20 Jacobs BC, van Doom PA, Schmitz PI, Tio-Gillen AP, Herbrink P, Visser LH, et al. Campylobacter jejuni infections and anti-GM1 antibodies in Guillain-Barre syndrome. Ann Neurol 1996;40:181-7.
    21 Yuki N, Yamada M, Koga M, Odaka M, Susuki K, Tagawa Y, et al. Animal model of axonal Guillain-Barre syndrome induced by sensitization with GM1 ganglioside. Ann Neurol2001;49:712-20.
    22 Buchwald B, Toyka KV, Zielasek J, Weishaupt A, Schweiger S, Dudel J. Neuromuscular blockade by IgG antibodies from patients with Guillain-Barre syndrome: a macro-patch-clamp study. Ann Neurol 1998;44:913-22.
    23 Weber F, RudelR, Aulkemeyer P, Brinkmeier H. Anti-GM1 antibodies can block neuronal voltage-gated sodium channels. Muscle Nerve 2000;23:1414-20.
    24 Dalakas MC. Mechanism of action of intravenous immunoglobulin and therapeutic considerations in the treatment of autoimmune neurologic diseases. Neurology. 1998; 51 (suppl 5): 2-8.
    25 Dalakas MC. Autoimmune peripheral neuropathies. In: Rich RR, ed. Clinical immunology. St. Louis: Mosby Year Book, 1995: 1377-1394.
    26 Kurlander RJ. Reversible and irreversible loss of Fc receptor function of human monocytes as a consequence of interaction with immunoglobulin G. J Clin Invest. 1980; 66: 773-781.
    27 Kurlander RJ, Hall J. Comparison of intravenous gammaglobulin and a monoclonal anti-Fc receptor antibody as inhibitors of immune clearance in vivo in mice. J Clin Invest. 1986; 77: 2010-2018.
    28 Samuelsson A, Towers TL, Ravetch JV. Anti-inflammatory activity of ⅣIg mediated through the inhibitory Fc receptor. Science 2001; 291: 484-486.
    29 Abe Y, Horiuchi A, Miyake M, Kimura S. Anti-cytokine nature of natural human immunoglobulin: one possible mechanism of the clinical effect of intravenous immunoglobulin therapy. Immunol Rev. 1994; 139:5-19.
    30 Ankrust P, Muller F, Svenson M, Nordoy I, Bendtzen K, Froland SS. Administration of intravenous immunoglobulin (ⅣIg) in vivo down- regulatory effects on the IL-1 system. Clin Exp Immunol. 1999; 115: 136-143.
    31 Svenson M, Hansen MB, Bendtzen K. Binding of cytokines to pharmaceutically prepared human immunoglobulin. J Clin Invest. 1993; 92: 2533-2539.
    32 Leon-Monzon M, Dalakas MC. Interleukin-1 (IL-1) is toxic to human muscle. Neurology. 1994; 44 (suppl): 132. Abstract.
    33 Dalakas MC, Ⅲa I, Dambrosia JM, et al. A controlled trial of high-dose intravenous immunoglobulin infusions as treatment for dermatomyositis. N Engl J Med. 1993; 329: 1993-2000.
    34 Kekow J, Reinhold D, Pap T, Ansorge S. Intravenous immunoglobulins and transforming growth factor β. Lancet. 1998; 351: 184-185.
    35 Sharief MK, Ingrain DA, Swash M, Thompson EJ. Ⅳ immunoglobulin reduces circulating proinflammatory cytokines in Guillain-Barre syndrome. Neurology. 1999; 52: 1833-1838.
    36 Kieseier BC, Tani M, Mahad D, et al. Chemokines and chemokine receptors in inflammatory demyelinating neuropathies: a central role for IP-10. Brain. 2002; 125: 823-834.
    37 Damas JK, Gullestad L, Aass H, et al. Enhanced gene expression of chemokines and their corresponding receptors in mononuclear blood cells in chronic heart failure modulatory effect of intravenous immunoglobulin. J Am Coll Cardiol. 2001; 38: 187-193.
    38 Kieseier BC, Kiefer R, Clements JM, et al. Matrix metalloproteinase-9 and -7 are regulated in experimental autoimmune encephalomyelitis. Brain. 1998; 121: 159-166.
    39 Senzaki H, Masutani S, Kobayashi J, et al. Circulating matrix metalloproteinases and their inhibitors in patients with Kawasaki disease. Circulation. 2001; 104: 860-863.
    40 Kazatchkine MD, Kaveri SV. Immunomodulation of autoimmune and inflammatory diseases with intravenous immune globulin. N Engl J Med. 2001; 345: 747-755.
    41 Dwyer JM. Manipulating the immune system with immune globulin. N Engl J Med. 1992; 326:107-116.
    42 Dalakas MC. Intravenous immunoglobulin therapy for neurological diseases. Ann Intern Med. 1997; 126: 721-730.
    43 Dalakas MC, ed. The use of intravenous immunoglobulin for neurologic diseases. Neurology 51(suppl 5): 1998.
    44 Dalakas MC. Intravenous immunoglobulin in the treatment of autoimmune neuromuscular diseases: present status and practical therapeutic guidelines. Muscle Nerve. 1999; 22: 1479-1497.
    45 Tankersley DL, Preston MS, Finlayson JS. Immunoglobulin G dimer: an idiotype-anti-idiotype complex. Mol Immunol. 1988; 25: 41-48.
    46 Varela F, Andersson A, Dietrich G, et al. The population dynamics of antibodies in normal and autoimmune individuals. Proc Natl Acad Sci USA. 1991; 88: 5917-5921.
    47 Roux KH, Tankersley DL. A view of the human idiotypic repertoire. Electron microscopic and immunologic analyses of spontaneous idiotypeanti-idiotype dimers in pooled human IgG. J Immunol. 1990; 144: 1387-1392.
    48 Dietrich G, Kazatchkine MD. Normal immunoglobulin G (IgG) for therapeutic use (intravenous Ig) contains anti-idiotypic specificities against an immunodominant, disease-associated, cross-reactive idiotype of human anti-thyroglobulin autoantibodies. J Clin Invest. 1990; 85: 620-629.
    49 Kaveri S, Prasad N, Vassilev T, et al. Modulation of autoimmune responses by intravenous immunoglobulin. Mult Scler. 1997; 3: 121-128.
    50 Kazatchkine MD, Dietrich G, Hurez V, et al. V region-mediated selection of autoreactive repertoires by intravenous immunoglobulin. Immunol Rev. 1994; 139: 79-107.
    51 Krause I, Blank M, Shoenfeld Y. Anti-DNA and antiphospholipid antibodies in ⅣIg preparations: in vivo study in naive mice. J Clin Immunol. 1998; 18: 52-60.
    52 Lopez PH, Irazoqui F J, Nores GA. Normal human plasma contains antibodies that specifically block neuropathy-associated human anti-GM1 IgG-antibodies. J Neuroimmunol. 2000; 105:179-183.
    53 Terryberry JW, Shoenfeld Y, Sherer Y, et al. Detection of antibodies to gangliosides and glycolipids in various intravenous immunoglobulin (ⅣIg) preparations. Immunol Invest. 2000; 29: 337-347.
    54 Diegel M, Rankin B, Bolen J, Dubois P, Kiener P. Cross linking of Fc receptor to surface immunoglobulin on B cells provides an inhibitory signal that closes the plasma membrane calcium channel. J Biol Chem. 1994; 269:11409-11416.
    55 Uher F, Dickler HB. Cooperativity between B-lymphocytes membrane molecules: independent ligand occupancy and crosslinking of antigen receptors and Fc gamma receptors down-regulates B lymphocyte function. J Immunol. 1986; 137: 3124-3129.
    56 Ghetic V, Ward ES. FcRn: the MHC Class Ⅰ-related receptor that is more than an IgG transporter. Immunol Today. 1997; 18: 592-598.
    57 Yu Z, Lennon VA. Mechanism of intravenous immune globulin therapy in antibody-mediated autoimmune diseases. N Engl J Med. 1999; 340: 227-228.
    58 Basta M, Kirshbom P, Frank MM, Fries LF. Mechanisms of therapeutic effect of high-dose intravenous immunoglobulin. J Clin Invest. 1989; 84: 1974-1981.
    59 Dalakas MC. Polymyositis, dermatomyositis and inclusion body myositis. N Engl J Med. 1991; 325: 1487-1498.
    60 Dalakas MC. Clinical relevance of ⅣIg in the modulation of the complement-mediated tissue damage: implications in dermatomyositis, Guillain Barre syndrome and myasthenia gravis. In: Kazatchkine M, Morel D, eds. Intravenous immunoglobulin research and therapy. London: Parthenon Publishing, 1996: 89-93.
    61 Basta M, Dalakas MC. High-dose intravenous immunoglobulin exerts its beneficial effect in patients with dermatomyositis by blocking endomysial deposition of activated complement fragments. J Clin Invest. 1994; 94: 1729-1735.
    62 Basta M, Illa I, Dalakas MC. Increased in vitro uptake of the complement C3b in the serum of patients with Guillain Barre syndrome, myasthenia gravis and dermatomyositis. J Neuroimmunol. 1996; 71: 227-229.
    63 Dalakas MC, Engel WK. Immunoglobulin deposits in chronic relapsing polyneuropathies. Arch Neurol. 1980; 37:637-640.
    64 Hafer-Macko C, Hsieh ST, Li CY, et al. Acute motor axonal neuropathy: an antibody-mediated attack on axolemma. Ann Neurol. 1996; 40: 635-644.
    65 Odaka M, Yuki N, Hirata K. Anti-GQlb IgG antibody syndrome: clinical and immunological range. J Neurol Neurosurg Psychiatry 2001;70:50-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700