放牧对高寒草甸4种优势植物光响应和荧光特性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了研究放牧对高寒草甸优势植物不同季节光合特性的影响,在东祁连山天祝县南泥沟河谷地的披碱草-嵩草型草地设置禁牧(Non-grazing grassland,NG)和放牧(Grazinggrassland,G)两块样地,选取垂穗披碱草(Elymus nutans)、矮嵩草(Kobresia humilis)、黄花棘豆(Oxytropis ochrocephala)、扁蓿豆(Melissitus rutenica)4种优势植物,采用GFS-3000便携式光合仪和Imaging-PAM便携式叶绿素荧光仪,分别测定了4种植物在7、8、9这3个月中放牧和禁牧两种草地中的光合—光响应曲线(Pn-PAR curves)和叶绿素荧光参数。主要研究结果如下:
     1)禁牧草地中,2种豆科植物(黄花棘豆,扁蓿豆)的光合能力要强于莎草(矮嵩草)和禾草(垂穗披碱草),而且扁蓿豆要强于黄花棘豆。而在放牧草地中,7月和8月时黄花棘豆的光合能力最强,9月时扁蓿豆的光合能力最强。虽然在7、9月,黄花棘豆的光合潜力和热耗散能力都降低,但是由于垂穗披碱草、矮嵩草、扁蓿豆作为家畜喜食的牧草,地上部分大部分被采食,整个植株的生长受到影响,导致光合能力下降;而且放牧导致禾草和嵩草等的比例减少,最终使得黄花棘豆作为一种典型的毒草,获得了一定的滋生空间,叶片的接受光面积增大,光合能力增强。
     2)7月是当地草地植物旺盛生长的前期,此时4种植物都有较高的光合速率。在禁牧和放牧两种草地中,综合来看,垂穗披碱草对强光的适应能力最弱,但能有效利用弱光;而扁蓿豆在较强的光辐射下才能发挥出光合潜力,且具有较强的光合能力。放牧提高了4种植物对强光的适应能力,同时提高了垂穗披碱草、黄花棘豆、扁蓿豆对弱光的利用能力。
     3)8月,试验地较干旱,不论是在禁牧草地还是在放牧草地中,4种草的P_(max)、Fv/Fm、qP都处于最低值,远低于7月和9月,说明它们的光合能力受到严重影响。且对弱光的利用能力和对强光的适应能力都降低。所以8月是本地区草地的敏感时期,该时期应该适当减少放牧家畜的数量、减少放牧时间,使草地能在生长后期尽快恢复。扁蓿豆和矮嵩草对干旱不敏感,其LCP、LSP、Fv/Fm、NPQ等都没有因为放牧而降低。放牧使得黄花棘豆的Fv/Fm和qP升高了,且放牧草地中的P_(max)显著高于其他3种草的,它的竞争力得到了提升。
     4)9月(干旱过后),4种植物的光合能力得到了不同程度的恢复。垂穗披碱草、矮嵩草的光合能力虽然得到了一定程度的恢复,但仍然达不到7月的水平。而黄花棘豆、扁蓿豆的光合能力不但得到了恢复,还高于7月。9月放牧增强了垂穗披碱草、黄花棘豆、扁蓿豆这3种草的光合能力,提高了4种草的光合活性和光呼吸水平,也降低了4种草的光合潜力(扁蓿豆的没有受到显著影响)。而相比较来看,扁蓿豆的光合潜力和光呼吸速率最大,但光合活性和热耗散能力小;黄花棘豆的光合活性最高,垂穗披碱草的热耗散能力最强。
In order to study the influence of grazing on photosynthetic characteristics of dominantplants in alpine meadow, two plots, including non-grazing (NG) and grazing grassland (G), weredesigned in Nanni Valley of Tianzhu County in the eastern Qilian Mountains. Four dominantplants in the plots, including, Kobresia humilis, Elymus nutans, Melissitus rutenica, Oxytropisochrocephala, were selected to study their photosynthesis-light response and measure theirchlorophyll fluorescence characteristics in July, August, and September respectively using theGFS-3000portable photosynthesis system and Imaging-PAM portable chlorophyll fluorescenceanalyzer. The main results are as follows:
     1) The photosynthetic capacity of two legumes (O. ochrocephala, M. rutenica) was strongerthan sedge (K. humilis) and grasses (E. nutans) in non-grazing grassland. While the capacity ofM. rutenica was stronger than O. ochrocephala. On the contrary, the photosynthetic capacity ofO. ochrocephala was the strongest in July and August, and M. rutenica in September. Althoughthe photosynthetic potential and heat dissipation capacity of O. ochrocephala (as a typicalpoisonous weed) decreased in July and September under grazing treatment, it still occupied acertain amount of room for growth because of the defoliation of E. nutans, K. humilis and M.rutenica (favorable forages for livestock) through grazing resulted in lower compitation causedby the decrease of photosynthetic capacity. And finally, its light-receiving area of leaf increasedand then the photosynthetic capacity was increased.
     2) July was the early period of vigorous growth of the native grasses. During this period, thephotosynthetic rates of these four plants were very high. In non-grazing and grazing grasslands,the adaptability of E. nutans to strong light was the lowest, but it could effectively utilize weaklight. On the contrary, the photosynthetic potential of M. rutenica could be fully exploited onlyin stronger light radiation with higher photosynthetic capacity. Grazing could increase theadaptability of the four plants to strong light, meanwhile, increase the ability of E. nutans, O.ochrocephala and M. rutenica to weak light utilization.
     3) The weather was drought in research site in August. The P_(max), Fv/Fm, qP of the fourplants were at the minimum value in three months, and much lower than those in July andSeptember in both non-grazing and grazing plots. This indicated that their photosyntheticcapacities were seriously affected. Their ability of weak light utilization and the adaptability tostrong light decreased. Therefore, August was a sensitive period of local grassland plants. In thisperiod, the grazing intensity and time should be reduced so that the grassland could recovere inthe later stage of growth as soon as possible. LSP, Rd, P_(max)and a of E. nutans and O.ochrocephala decreased significantly in grazing grassland. LCP, LSP, Fv/Fm and NPQ of K.humilis and M. rutenica, however, did not decrease significantly. It indicated that these twoplants were not sensitive to drought. The photosynthetic potential and photosynthetic activity ofO. ochrocephala were improved, and its P_(max)was significantly higher than the rest three plantsin grazing grassland and its competitiveness was improved.
     4) In September (after the drought), the photosynthetic capacity of the four plants recoveredin a certain degree. E. nutans and K. humilis performed not as good as O. ochrocephala and M.rutenica. Grazing in September enhanced the photosynthetic capacity of E. nutans, O.ochrocephala and M. rutenica, the photosynthetic activity and the photorespiration level of fourplants. However, it reduce the photosynthetic potential of the four grasses (M. rutenica was notsignificantly affected). In comparison, photosynthetic potential and photorespiration rate of M.rutenica were the highest, but the photosynthetic activity and heat dissipation capacity were thelowest. The photosynthetic activity of O. ochrocephala was the the highest, and heat dissipationcapability of E. nutans was the highest.
引文
[1]姜闯道.高等植物光合作用中的激发能分配及光破坏防御机制[D].山东农业大学博士学位论文,2003:10.
    [2]郭蔼光.基础生物化学[M].北京:高等教育出版社,2003.
    [3]沈允钢.地球上最重要的化学反应-光合作用[M].北京:清华大学出版社,2000:32-93.
    [4]王忠.植物生理学[M].北京:中国农业出版社,2000,2:121.
    [5]田冠平.刈割、施肥和浇水对高寒草甸垂穗披碱草补偿生长的影响[D].陕西师范大学硕士学位论文[D].2010.
    [6]孙磊,魏学红,郑维列.藏北高寒草地生态现状及可持续发展对策[J].草业科学,2005,22(10):10-12.
    [7]柳小妮,孙九林,张德罡,等.东祁连山不同退化阶段高寒草甸群落结构与植物多样性特征研究[J].草业学报,2008,17(4):1-11.
    [8]田玉强,高琼,张智才,等.青藏高原高寒草甸光合特征研究简述[J].安徽农业科学,2009,37(25):12082-12084,12102.
    [9]张如力,张如清,肖云峰.绢蝶在祁连山(北坡)寺大隆林牧区的垂直分布及物种多样性[J].草业科学,2005,22(9):9-13.
    [10]刘金荣,谢晓蓉.祁连山高寒草地特点及可持续发展利用对策[J].草原与草坪,2002,2:15-16.
    [11]田玉强,高琼,张智才,等.青藏高原高寒草地植物光合与土壤呼吸研究进展[J].生态环境学报,2009,18(2):711-721.
    [12]张德罡,曹文侠,蒲小鹏,等.东祁连山杜鹃属植物光合作用特点的研究[J].甘肃农业大学学报,2003,38(2):140-143.
    [13]高丽楠.青藏高原东缘高寒草甸优势植物光合作用日变化的比较研究[D].四川师范大学硕士学位论文,2008:7-32.
    [14] S. Pandey,N. Kumar,R. Kushwaha. Morpho-anatomical and physiological leaf traits of two alpine herbs,Podophyllum hexandrum and Rheum emodi in the Western Himalaya under different irradiances [J].Photosynthetica,2006,44(1):11-16.
    [15] Christina Kaiblinger,Sonja Greisberger,Katrin Teubner,et al. Photosynthetic efficiency as a functionof thermal stratification and phytoplankton size structure in an oligotrophic alpine lake [J].Hydrobiologia,2007,578(1):29-36.
    [16]贾宏涛,赵成义,盛钰,等.干旱地区紫花苜蓿光合日变化规律研究[J].草业科学,2009,26(7):56-60.
    [17]莫凌,黄玉清,桂堂辉,等.5个热带禾本科牧草品种的光合-光响应特性研究[J].草业科学,2010,27(09):64-68.
    [18] Shiping Chen,Yongfei Bai,Lixia Zhang,et al. Comparing physiological responses of two dominantgrass species to nitrogen addition in Xilin River Basin o f China [J]. Environmental and ExperimentalBotany,2005(53):65-75.
    [19]赵鸿,王润元,郭铌,等.禁牧对安西荒漠化草原芨芨草光合生理生态特征的影响[J].干旱气象,2007,25(1):63-66.
    [20]闫瑞瑞,卫智军,运向军,等.放牧制度对短花针茅荒漠草原主要植物种光合特性日变化影响的研究[J].草业学报,2009,18(5):160-167.
    [21]常乐,夏宜平,楼建华,等.践踏胁迫对4种园林地被植物叶绿素荧光特性的影响[J].园艺学报,2010,37(10):1673-1678.
    [22] Hipkins M F.Photosynthesis In: Advanced plant physiology [M].(Malcolm B Wilkins, Ed). Pitmanpublishing PryLtd, Melbourne,1984.
    [23]户艾义次主编(1973),薛德榕译.作物的光合作用与物质生产[M].北京:科学出版社,1979.
    [24] Malik C P, Srivastava A K. Text book of plant physiology [M]. Kalyani Pub, New Delhi,1979:210-258.
    [25] Kramer. Pj.植物的水分关系[M].北京:科学出版社,1989.
    [26] Kramer和Kozlowski(克雷默尔PJ,考兹洛夫斯基TT)著.汪振儒等译.木本植物生理学[M].北京:中国林业出版社,1992.)(Kramer PJ and Kozlowski TT: Physiology of Woody Plants [M]. AcademicPress,New York,San Francisco and London,1979,63-222.
    [27]沈允钢,施教耐,许大全.动态光合作用[M].北京:科学出版社,1998:14-15.
    [28]杜占池,杨宗贵.十种草原植物光合速率与光照的关系[J].生态学报,1988,8(4):319-332.
    [29]高守疆,陈升枢,李明启.不同磷营养水平对烟草叶片光合作用和光呼吸的影响[J].植物生理学报,1989,15(3):281-28.
    [30]韩凤山,赵明,赵松山,等.小麦午睡原因的研究Ⅲ:形成小麦午睡生态生理因素作用的综合分析[J].作物学报,1988,14(4):296-302.
    [31]林植芳,李双顺,林桂珠.叶龄对苋菜光合作用特性的影响[J].植物学通报,1988,5(1):41-44.
    [32]刘孟雨,陈培元.水分胁迫条件下气孔与非气孔因素对小麦光合的限制[J].植物生理学通讯,1990,4:24-27.
    [33]唐鸿青,刘桐华,余彦波.小麦光合作用午休的生态因子研究[J].生态学报,1986,6(2):128-132.
    [34]薛青武,陈培元.土壤干旱条件下氮素营养对小麦水分状况和光合作用的影响[J].植物生理学报,1990,16(1):49-5.
    [35]余彦波,刘桐华.植物光效生态学研究Ⅰ:小麦光合作用午休的原因[J].生态学报,1985,5(4):336-342.
    [36]张其德,唐崇钦,林世青,等.光强度对小麦幼苗光合特性的影响[J].植物学报,1988,30(5):508-514.
    [37]葛滢,常杰,陈增鸿,等.青冈(Quercus glauca)净光合作用与环境因子的关系[J].生态学报,1999,19(5):683-688.
    [38]杨丽涛,Timothy J A.欧洲杨、榛子、短叶松和黑云杉气体交换的日变化[J].植物生态学报,2000,24(4):408-419.
    [39]张小全,徐德应.杉木中龄林针叶光合作用对光斑的响应[J].植物生态学报,2000,24(5):534-540.
    [40]李新,冯玉龙.砂仁光合作用的CO2扩散限制与气孔限制分析[J].植物生态学报,2005,29(4):584-590.
    [41]张绪成,上官周平.施氮对不同抗旱性冬小麦叶片光合与呼吸的调控[J].应用生态学报,2007,17(11):2064-2069.
    [42]黄娟,吴彤,孔国辉,等.油页岩废渣地12种木本植物光合作用的季节变化[J].植物生态学报,2006,30(4):666-674.
    [43] Farquhur, G. D., Sharkey, T. D. Stomatal conductance and photosynthesis[J]. Amuual Review of P1antPhysiology,1982,33:317-345.
    [44] Cregg, B. M., Zhang, J. W. Physiology and morphology of Pinus sylvestris from diverse sources undercyclic drought stress[J]. Forest Ecology and Management,2001,154:131-139.
    [45] Ma C C,Gao Y B,Guo H Y,e al.Interspecific transit ion among caragana microphylla,C.avazamcii and C.korsh in ski along geographic gradient ê.Characteristics of photo-synthesis andwatermetabolism[J].Acta B tunica Sonica,2003,45(10):1228-1237.
    [46]牛书丽,蒋高明.内蒙古浑善达克沙地97种植物的光合生理特征[J].植物生态学报,2003,27(3):318-324.
    [47] Terwilliger V J,Zeroni M.Gas exchange of a desert shrub (Zygophyllum duosum Boiss.) underdifferentsoil moisture regimes during summer drought [J]. Vegetatio,1994,115:133-144.
    [48] FilellaI,Liusia J,Piol J.Leaf gas exchange and the fluorescence of Phillgralatifolia,Pistacialentiscusand Quercusilex sump lings in severe drought and high temperature conditions[J].Environmental andExperimental Botany,1998,39:213-219.
    [49] Jiang G M,Dong M.A comparative study on photosynthesis and water use efficiency betweenclonallyand Nonclonal plant species along the northeast China Transect(NECT)[J].Acta BotanicaSinica,2000,42(8):855-863.
    [50] Zheng W J,Zheng X P,Zhang C L.A survey of Photosynthetic carbon metabolism in4eco typesofPhragmites communism in northwest China:leaf anatomy,ultra structure,and activities ofribulose1,52bisphosphate carbolated,phosphor enopyruvate carboxylase and glycol late oxidize[J]. PhysiolPlant,2000,110:201-208.
    [51]李卫华,张承烈.泡泡刺叶磷酸烯醇式丙酮酸羧化酶季节性聚态变化[J].植物生态学报,2000,24(3):284-288.
    [52] Zhu X Y, Chen G C, Zhang C L. Photosynthetic electron transport, photophosphorylationandantioxidants in two ecotypes of reed(Phragmites communism Trin.)from differenthabitats[J].Photosynthetica,2001,39(2):183-189.
    [53] Pyankov V I, Guinn P D. C4plants in the vegetation of Mongolia: their natural occurrenceandgeographical distribution in relation to climate[J].Oecologia,2000,123:15-31.
    [54]殷立娟,李美荣.中国C4植物的地理分布与生态学研究[J].中国C4植物及其与气候环境的关系[J].生态学报,1997,17(4):350-363.
    [55] Ehleringer J R, Cerling T E, Helliker B R. C4photosynthesis, atmospheric CO2,andclimate[J].Oecologia,1997,112:285-299.
    [56] Zhao CH M,Wang G X.Effects of drought stress on photo protection in Ammopiptanthus mongolicusleaves[J].Acta Botanica Sinica,2002,44(11):1309-1313.
    [57]肖春旺,周广胜.毛乌素沙地中间锦鸡儿幼苗生长、气体交换和叶绿素荧光对模拟降水量变化的响应[J].应用生态学报,2001,12(5):692-696.
    [58]徐伟洲,徐炳成,段东平,等.不同水肥条件下白羊草光合生理生态特征研究I.光合生理日变化[J].草地学报,2010,18(5):629-634.
    [59]刘金祥,王铭铭,肖生鸿,等.干旱胁迫对香根草生长及光合生理主要特征的影响[J].牧草科学,2005,3:28-30.
    [60]刘金荣,杜建雄,谢晓蓉.干热胁迫和复水对草坪草光合生理生态特性的影响[J].生态学报,2009,29(5):2694-2699.
    [61]李林芝,张德罡,辛晓平,等.呼伦贝尔草甸草原不同土壤水分梯度下羊草的光合特性[J].生态学报,2009,29(10):5271-5278.
    [62]李有忠,卉桂英,韩发,等.海拔高度的变化对植物叶片内部结构的影响[J].青海师范大学学报,1995,(4):4-40.
    [63]韩发,卉桂英,师生波.青藏高原不同海拔矮嵩草抗逆性的比较研究[J].生态学报,1998,18(6):654-659.
    [64]胡相明,王希英,程积民,等.云雾山草地优势种的光合生理特性对光强的响应[J].水土保持通报,2008,28(4):33-37.
    [65]张教林,曹坤芳.光照对两种热带雨林树种幼苗光合能力、热耗散和抗氧化系统的影响[J].植物生态学报,2002,26(6):639-646.
    [66] Caldwell, M., Teramura, A.H., Tevini, M., et al. Effects of increased solar UV radiation on terrestrialplants [J]. Ambio,1995,24:166-173.
    [67] Johanson, U., Gehrke, C., Bjorn, L.O., et al. The effects of enhanced UV-B radiation on a subarctic heathecosystem [J]. Ambio,1995,24:106-111.
    [68] Jordan, B.R. The effects of ultraviolet-B radiation on plants: a molecular perspective. In: Callow, J.A.(Ed.), Advances in Botanical Research Incorporating Advances in Plants Pathology [M]. Academic Press,1996,97-162.
    [69]董志新.不同苜蓿品种光合特性研究[D].西北农林科技大学硕士学位论文,2007.
    [70] Hamerlynck, E.P., Huxman, T.E., Loik, M.E., et al. Effects of extreme high temperature,drought andelevated CO2on photosynthesis of Mojave Desert evergreen shrub[J]. Plant Ecol,2000,148:183-193.
    [71]李文华,周兴民.青藏高原生态系统及优化利用模式.青藏高原研究丛书[M].广州:广东科技出版社,1998,39:183-270.
    [72] Safaa Al-Hamdania and Glenn W Todd. Effect of temperature regimes on photosynthesis, respiration,andgrowth in alfalfa[J]. Proc Okla Acad Sci.1990,70:1-4.
    [73] Brown R H and Radcliffe D E. A comparison of apparent photosynthesis in sericea lespedeza. And alfalfa[J]. Crop Science.1986,26(6):1208-1211.
    [74] Murata Y., Iyama J. and Honma T. Influence of air temperature upon the photosynthesis and respirationof alfalfa and several southern-type forage crops [J]. Proc Crop Sci Soc (Japan),1965,34:154-158.
    [75] Krner, C.h., Diemer, M. In situ photosynthetic responses to light, temperature and carbon dioxide inherbaceous plants from low and high altitude [J]. Funct Ecol,1987,1:179-194.
    [76]唐如航,郭连旺,陈根云,等.大气CO2浓度倍增对水稻光合速率和Rubisco的影响[J].植物生理学报,1998,24(3)309-312.
    [77] Jiang G M. Review on some hot topics towards the researches in the field of plant physio—ecology. ActaPhytoecologica Sinica(植物生态学报),2001,25:514-519.
    [78]安慧,上官周平.光照强度和氮水平对白三叶幼苗生长与光合生理特性的影响[J].生态学报,2009,29(11):6018-6024.
    [79]王满莲,韦霄,蒋运生,等.氮对黄花蒿生长、光合特性和青蒿素含量的影响[J].广西植物,2009,29(2):260-263.
    [80]董祥开,衣莹,刘恩财,等.氮素对燕麦冠层结构及光合特性的影响[J].华北农学报,2008,23(3):133-137.
    [81]谷巍,施国新,张超英,等. Hg2+、Cd2+和Cu2+对菹草光合系统及保护酶系统的毒害作用[J].植物生理与分子生物学学报,2002,28(1):69-74.
    [82]刘俊祥,孙振元,巨关升,等.重金属Cd2+对结缕草叶片光合特性的影响[J].核农学报,2009,23(6):1050-1053.
    [83]张喜焕,田春雨,李永进. NaCl胁迫对两种冷季型草坪草光合特性的影响[J].河南农业科学,2007,8.
    [84]时丽冉,牛玉璐.干旱和盐胁迫对紫叶酢浆草光合性能和渗透调节能力的影响[J].农业科技与装备,2009,4:5-7.
    [85]王加真,夏更寿,李建龙,等.高盐胁迫对沟叶结缕草叶片光合色素含量的影响[J].上海交通大学学报(农业科学版),2007,25(6):583-586.
    [86]李红燕.模拟酸雨对有性繁殖香根草光合速率的影响[J].安徽农业科学,2009,37(4):1449-1451.
    [87]张守仁.叶绿素荧光动力学参数的意义及讨论[J].植物学通报,1996,16(4):444–448.
    [88]陈建明,俞晓平,程家安.叶绿素荧光动力学及其在植物抗逆生理研究中的应用[J].浙江农业学报,2006,18(1):51-55.
    [89] Schreiber U, Bilger W, Neubauer G,1994. In: Ecophysiology of Photosynthesis.(Eds Schulze, E-D andCaldwell, MM.), Springer-Verlag, Berlin.
    [90]马晓娣,彭慧茹,汪矛,等.作物耐热性的评价[J].植物学通报,2004,21(4):411-418.
    [91]苏秀红,强胜,宋小玲.不同地理种群紫茎泽兰耐热性差异的比较分析[J].西北植物学报,2005,25(9):1766-1771.
    [92]黄红英,窦新永,邓斌,等.不同次生种源麻疯树对高温胁迫的响应[J].林业科学,2009,45(7):150-155.
    [93]宋莉英,窦新永,孙兰兰,等.高温下2种不同生态型麻疯树叶片光能利用和分配特性的比较[J].华南师范大学学报,2009,(3):99-103.
    [94]宋莉英,孙兰兰,张强,等.高温对入侵种三裂叶蟛蜞菊叶片PSII功能和光能分配的影响[J].植物生理学通讯,2009,54(5):464-468.
    [95]姚军朋,陈莉,崔洪霞,等.丁香属植物光合机构的热响应特征研究[J].草原与草坪,2010,30(5):50-57.
    [96]郭学民,王贵禧,高荣孚.丁香属植物光合机构的热响应特征研究[J].林业科学,2010,46(4):64-69.
    [97]施征,史胜青,肖文发,等.脱水胁迫对梭梭和胡杨苗叶绿素荧光特性的影响[J].林业科学研究,2008,21(4):566-570.
    [98]宋莉英,孙兰兰,舒展,等.干旱和复水对入侵植物三裂叶蟛蜞菊叶片叶绿素荧光特性的影响[J].生态学报,2009,29(7):3713-3720.
    [99]代微然,任健,墨继光.干旱胁迫对假俭草叶绿素荧光特性的影响[J].草原与草坪,2010,30(5):1-5.
    [100]邓培雁,刘威,韩志国.砷胁迫下蜈蚣草光合作用的变化[J].生态环境,2007,16(3):775-778.
    [101]邓培雁,刘威,韩博平.宝山堇菜(Viola baoshanensis)镉胁迫下的光合作用[J].生态学报,2007,27(5):1858-1862.
    [102]李阳春,孙吉雄.天祝县金强河地区植被资源的调查[J].兰州大学学报,1984,(专辑):119-122.
    [103]中国科学院中国植物志编辑委员会.中国植物志[M].北京:科学出版社,1987,9(3):9.
    [104]中国科学院中国植物志编辑委员会.中国植物志[M].北京:科学出版社,2000(12):35.
    [105]中国科学院中国植物志编辑委员会.中国植物志[M].北京:科学出版社,1998,42(2):21.
    [106]黄迎新,周道玮,岳秀泉,等.扁蓿豆研究进展[J].草业科学,2007,24(12):34-39.
    [107]中国科学院中国植物志编辑委员会.中国植物志[M].北京:科学出版社,1998,42(2):318-320.
    [108]蒋高明,何维明.一种在野外自然光照条件下快速测定光合作用光响应曲线的新方法[J].植物学报,1999,16(6):712-718.
    [109]刘宇锋,萧浪涛,童建华,等.非直线双曲线模型在光合光响应曲线数据分析中的应用[J].农业基础科学,2005,2(8):76-79.
    [110]徐伟洲,徐炳成,段东平,等.不同水肥条件下白羊草光合生理生态特征研究Ⅱ.光响应曲线[J].草地学报,2010,18(6):773-779.
    [111]陈小莉,李世清,任小龙,等.大气NH3和介质供氮水平对不同氮效率玉米基因型叶绿素荧光参数的影响[J].生态学报,2008,28(3):1026-1033.
    [112]汪诗平,王艳芬.不同放牧率下糙隐子草种群补偿性生长的研究[J].植物学报,2001,43(4):413-418.
    [113]张璐璐,周晓松,李英年,等.刈割、施肥和浇水对矮嵩草补偿生长的影响[J].植物生态学报,2011,35(6):641-652.
    [114]崔艳.青藏高原东部高草属植物的生态解剖学研究[D].西北师范大学硕士论文,2006:1-45.
    [115]张守仁.叶绿素荧光动力学参数的意义及讨论[J].植物学通报,1999,16(4):444-448.
    [116]邓培雁,刘威,邱元凯,等.宝山堇菜(Viola baoshanensis)和紫花地丁(V. yedoensis)叶绿素荧光参数的日变化[J].华南师范大学学报(自然科学版),2009(2):96-99.
    [117] Flexas J,Escalona J M,Medrano H. Water stress induces different levels o f photosynthesis and electrontransport rate regulation in grapevines [J]. Plant Cell Environ,1999,22:39-48.
    [118]王小利,张力,张德罡,等.青海湖地区线叶嵩草型中度与重度退化草地群落的比较研究[J].草业科学,2006,23(10):8-13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700