用户名: 密码: 验证码:
德南洼陷下第三系油气运聚成藏特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
临清坳陷经历四十余年油气勘探历程,在约5910Km~2面积上有九个洼陷,钻探了44口,仅有两口在下第三系见低熟油流,说明该区油气成藏的复杂性。本文遵从“从源岩-圈闭”的研究思路,运用新理论、新技术、新方法重点解剖德南洼陷低熟油灶的运聚成藏特征。在成藏动力学系统理论指导下,对德南洼陷下第三系进行整体、系统、动态、宏观与微观相结合的原则,分析压实曲线特征、异常孔隙流体压力;研究有机质演化过程、油气运移方向和分配单元、输导体系、构造样式;提取测井、地震资料,计算流体势;运用相干技术和可视化等技术。认为下第三系油灶的低熟是影响其运聚成藏的关键因素,生油岩低熟决定油气初次排烃的方向指向沙三下段;生油岩低熟决定成熟生油岩分布的局限性和输导体的特殊性;生油岩低熟决定起排烃时间晚、生烃量不足,从而决定有效的圈闭应是近源的、在运移主路线上。本文从成藏动力学系统划分入手,重点追溯成藏作用和过程研究,确定有效成藏动力学系统,确定有利运移分配方向和单元,指出有利的输导体系,并在以上基础上解剖有利区的构造样式和现有油藏特征,提出适合本区特征的成藏模式。研究取得的认识如下:
     1、成藏条件研究表明,德南洼陷下第三系生油岩成熟度低,主力生油层在洼陷深部进入生烃门限,德南洼陷是一个低熟油灶。
     2、泥岩压实特征表明,临清地区下第三系泥岩欠压实起始深度在1300-1500米,存在欠压实型、局部欠压实型、正常压实型三种泥岩压实曲线类型;德南洼陷下第三系泥岩欠压实曲线可划分四个欠压实带;纵向和平面上分布特征表明欠压实带的分布主要与沉积速率和非渗透泥岩的分布有关;欠压实成因分析表明,与沙一段和沙三段对应的欠压实带成因主要与泥岩分布及演化有关,与沙二段对应的欠压实带与沉积速率有较大的关系。
     3、从成藏动力学系统的角度可将德南洼陷下第三系划分为三个成藏动力学系统,即上部、内部和下部成藏动力学系统。
     4、从历史演化角度和二次运移理论出发,研究了德南洼陷下第三系低熟油灶的油气运移作用和分配,提出初次分配主要指向是沙三下段;内部成藏系统是有效的成藏系统,其内部油气的再次分配主要指向德3井南和德1井南是两个Ⅰ类油气分配单元;德南洼陷生烃深度2600-2800米间,排烃起始深度在3100-3400米间,按目前下第三系地层埋深深度,则沙一段生油岩基本上处于未成熟状态,沙三中、下生油岩处于低熟状态,仅在洼陷深部分布成熟生油岩。
     5、通过对德南洼陷输导体空间分布及物性特征分析,揭示并论证了本区特殊的输导层主要是与源岩共生的泥灰岩、泥质白云岩及白云岩中的裂缝系统,为进一步寻找有关油气藏指出方向。
    
     6、利用先进的工作站上的相干技术和可视化技术研究裂缝发育带、精细解
    释了德南断裂系并取得了好的成果,为目标选取提供可靠依据。
     7、德南洼陷低熟油灶具源岩生排烃期短、构造定型早、锅底生油、油气运
    移不远等特点,故近源、在运移路径上的圈闭是形成油气藏的有利地区。
     8、研究有利区带构造样式及其油气关系,认为可能存在三种成藏模式即陡
    坡带的成藏模式、洼中垒成藏模式和缓坡带成藏模式。
There are nine depressions and forty-four drilled wells in Lin Qing sag that has an area of 5910 square kilometers and has been explored for more than forty years. Only two oil wells were found in the Eogene system indicates that petroleum entrapment in this area is complicated. Following the principle of from source to entrapment, the entrapment of De Nan depression is focused in this dissertation. Under the guide of the theory of dynamic system of entrapment, the main methods applied here are multidisciplinary analysis and comprehensive study. The characteristics of compaction curves, the evolution of organic matter, the direction of migration and assignment, conduit system, fluid potential are studied It is concluded that the low maturity of the source of the Eogene age is the main factor to control the entrapment. It controls the direction of the primary migration, confines the location of mature source rock and the special carrier rock, controls the time of expulsion and the amount of petroleum, therefore; the effective traps should be near to oil kitchen and on the pathways of migration. This thesis begins with the partition of dynamic system of entrapment, emphasizes the study on entrapment and process, then makes sure the effective dynamic system of entrapment, favorable direction of migration and conduit system and dissects the present reservoir and structural style, finally points out the likely models of entrapment. The main achievements can be summarized as followings:
    1. By studying the material conditions of entrapment, it is conclude that De Nan depression is a low-mature oil kitchen, that main source rock of Sha San member is partly mature.
    2.The undercompaction starts at the depth of 1300 to 1500 meter. And there are three types of undercompaction , local undercompaction, normal undercompaction and undercompaction, in Lin Qing area. Four undercompaction zones are divided on the undercompaction curves of shale in the Eogene system of De Nan depression. The distribution of the undercompaction is related to sedimentary velocity and the distribution of impermeable shale vertically and laterally. The genesis of undercopaction is different for each zone. The zones, which are related to Sha Yi and Sha San members, are caused by the distribution and evolution of shale. The zone related to Sha Er member is more related to sedimentary velocity.
    3. Three dynamic systems of entrapment are divided in the Eogene of De Nan depression in terms of stratigraphic, tectonic characteristic and the vertical distribution of abnormal formation pressure.
    4. It is concluded that the Es3 is a main member to accommodate the oil expelled from the source rock of the Es3 member, that two assignment units of the type I are prospective areas where faulted reservoirs, fracture reservoirs, lithologic deposits may well be founded. The depth of threshold is among 2600-2800 meter and that of expulsion is around 3100-3400 meter, so the source rock of Sha Er member is totally immature and that of Sha San member is partly mature.
    
    
    
    5. The fractures of marlite, sandstone, faults and the disconformity between Sha San member and Sha Er member are three main conduit systems. For this low maturity of the oil kitchen, The fractures of marlite that coexist with source rock might as well be an important bridge to link oil kitchen and reservoir.
    6. It is indicated that the fractures of marlite are next to De Nan fault zone on the slice of seismic coherence. De Nan fault zone is controlled by De Nan fracture system, which is broom-like and is composed by faults No.l, No.2 and No.3 from north to south.
    7. The source rock in De Nan depression has the characteristics of a short period of expulsion, early tectonic ceasing, short migration distance, therefore; the most favorable places for entrapment is near oil kitchen and on the pathways of migration.
    8. It is concluded that three entrapment models likely exist, a model on the steep slope, a model on the gentle slope and a model on the horst between the two dep
引文
1. Antonellini M. & Aydin A. Effect of faulting on fluid flow in porous sandstones: petrophysical properties. AAPG Bulletin,1994,78:355-377
    2. Antonellini. M. & Aydin A. 1995, Effect of faulting on fluid flow in porous sandstones: geometry and spatial distribution. AAPG Bulletin, 79:642-671
    3. Allan U S. Model for hydrocarbon migration and entrapment within faulted structures. AAPG Bulletin, 1989,73:803-811
    4. Aydin A. & Nur A.(1982) . Evolution of pull-apart basins and their scale independence. Tectonics, 1,91-105.
    5. Aydin A. Myers R.. & Younes A. (1998) . Faults: seals or migration pathways? Yes,no, some are but some aren't, & some faults are but only sometimes! AAPG, Annual Meeting Abstract No.A37.
    6. Aydin, A.,2000 Fractures, faults, and hydrocarbon entrapment, migration and flow. Marine and Petroleum Geology . 17, 797-814
    7. Berg B B. Sealing properties of Tertiary growth faults, Texas Gulf Coast. AAPG,1995,79:375-393.
    8. Bouvuer J D,Kaars-Sijpesteijn C H.Kluesner D F et al. Three-dimensional seismic interpretation and fault sealing investigation, Nun River Field .Nigeria. AAPG, 1989, 11:1397-1414
    9. Barton C A., Zoback M D., & Moos D.(1995) . Fluid flow along potentially active faults in crystalline rock, Geology, 23, 683-686.
    10. Berg R R. & Gangi A F.(1999) ,Primary migration by oil-generation microfracturing in low-permeability source rocks: application to the Austin Chalk,TX. AAPG Bulletin,83 ,727-755.
    11. Bredehoeft J D., Wesley J B.& Fouch T D.(1994) . Simulation of the origin of fluid pressure, fracture generation, and movement of fluids in the Uinta Basin, Utah. AAPG Bulletin,78,1729-1747.
    12. Bachu S.,1995. Synthesis and model of formation-water flow in the Alberta basin. Canada. AAPG.v.79. p.1159-1178.
    13. Bachu S., and Underschultz J R., 1993. Hydrogeology of formation waters. Northeastern Alberta basin. AAPG.V.77. p.l745-1768.
    14. Berker C.,1972. Aquathermal pressuring role of temperature in development of abnormal pressure zones. AAPG.V.56. p.2068-2072.
    15. Bethke C M. et al. 1991. Long-Range Petroleum Migration in the Illinois Basin. AAPG Bull,75,925-945
    16. Bekele E. et al,1999. Petrolum Migration Pathways and Charge Concentration: A Three-Dimbtional Model: Discussion
    
    
    17. Caine J S., Evans J P. & Forster C B.(1996) Fault zone architecture and permeability structure. Geology,24, 1025-1028.
    18. Catalan L et al. 1992. An experimental Study of Secondary Oil Migration. AAPG Bull,76(5) , 638-650
    19. Dembicki H J etal. 1989. Seondary Migration of Oil Experiments Supporting Efficient Movement of Separate, Buoyant Oil Phase Along Limited Conduits. AAPG Bull,73(8) ,1018-1021
    20. Davis R W., 1987. Analysis of hydrodynamics factors in petroleum migration and entrapment. AAPG.71(6) ,643-649.
    21. Dholakia S K., Aydin A., Pollard D D. & Zoback M D.(1998) .Fault-controlled hydrocarbon pathways in the Monterey Formation, CA. AAPG Bulletin,82,1551-1574.
    22. Dahlberg E C. 1982. Applied Hydrodynamics in Petroleum Exploration. Springr, New York
    23. Finkbeiner T., Barton C A.& Zoback M D.(1997) . Relationships among in-situ stress, fractures and faults, and fluid flow. Monterey Formation, Santa Maria Basin,California,AAPG Bulletin,81 , 1975-1999.
    24. England, W. A., Mackenzie, A. S., Mann, D. M., & Quigley, T.M., 1987, The movement and entrapment of petroleum fluids in the subsurface, Jour. Geol. Soc. Lond, 144,327-347
    25. Gibson R G. Fault-zone seals in siliclastic strata of the Columbus Basin, Offshore Trinidad. AAPG,1994,78:1372-1385
    26. Hindle A D., 1997, Petroleum migration pathways and charge concentration: a three dimensional model: AAPG Bulletin. V.81. p.l451-1481.
    27. Hooper E C D., 1991, Fluid migration along growth faults in compacting sediments: Journal of Petroleum Geology, V.4(2) ,161-180.
    28. R. J. Knipe. Juxtaposition and seal diagrams to help analyze fault seals in hydrocarbon reservoirs. AAPG Bulletin, 1997,81(2) : 187-195.
    29. Magara K. 1993. Pressure Sealing: An Important Agebt for Hydrocarbon Entrapment. Journ. Of Petrol. Sci. And Engine,(9) ,67-80
    30. Hunt, J.1990. Generation and migration of petroleum from abnormally pressured fluid compartments. AAPG. V.74. p. 1-12.
    31. Hubbert M K.,1953, Entrapment of petroleum under hydrodynamic conditions . Bull.AAPG,Vol.37,No.8,p,1954-2026.
    32. Hubbert M K. and Ruber W W., 1959, Role of fluid pressure in mechanics of overthrust faulting. Geol. Soc. Am. Bull. , Vol.70,No.2,p. 115-206.
    33 . Jean Burrus, Kirk Osadetz et al. A two-dimensional regional basin model of Williston Basin hydrocarbon systems. AAPG-Bulletin,1996,80(2) :265-291
    34. Jones, G., Fisher, O. J., & Knip, R. J.,1998. Faulting,fault sealing and fluid flow in hydrocarbon reservoirs, Geological Society, Special Publication, 147-319
    35. Smith D A., 1966,Theoretical consideration of sealing and non-sealing faults. AAPG, 50:363-374.
    36. Smith D A., 1980,Sealing and non-sealing faults in the Louisiana Gulf Coast Basin. AAPG,
    
    64:145-172.
    37. Simbson, R. H., 1992. Implications pf fault-valve behaviour for rupture nucleation and recurrence: Tectonophysics, V.211, 283-293
    38. Simbon, R.H., 2000, Fluid involvement in normal faulting: Journal of Geodynamics, V.29, 469-499
    39. Stewart, S. A., 2001, Displacement distributions on extensional faults: Implications for fault stretch, Linkage, and seal. AAPG BULL. V85(4), 587-599
    40. Toth. J. 1980. Cross-formational gravity flow of groundwater: a mechanism of the transport and accumulation of petroleum (The generalized hydraulic theory of petroleum migration). AAPG Bull, Studies in Geology 10: Problems of Petroleum Migration.
    41. Toth J. 1990. Hydrolic Continuity in Large Sedimentary Basins. In: International Conference on Groundwater in Large Sedimentary Basins, 1-13
    42. Thomas, M.M., and Clouse, 1995, Scaled physical mode of secondary oil migration: AAPG Bulletin, V.79, P.19-29.
    43. Thomas Hantschel et al, 2000. Finite element analysis and ray tracing modeling of petroleum migration. Marie and Petroleum Geology, 17,815-820
    44. Ungerer P. 1990. Basin Evaluation by Integrated 2-Dimensional Modeling of Heat Transfer, Fluid Flow, Hydrocarbon Generation, and Migration. AAPG Bull, 74(3),309-335
    45. Ungerer P. Et al. 1987. A 2-d Model of Basin Scale Petroleum Migration by Two-Phase Fluid Flow: Application to Some Case Studies. In: Migration of Hydrocarbon in Sedimentary Basins, Doligez, B.(eds), Editions Technip, Paris,415-455
    46. Weber K J., et al. The role of faults in hydrocarbon migration and trapping in Nigerian growth faults structures. Tenth Annual Offshore Technology Conference Proceedings, 1978,4:2643-2653.
    47. Yielding G. et al.,Quantitative fault seal predication. AAPG, 1997, 81 (6).
    48.徐振宏译自G.Jones and R.J.Knipe. 〈First Break, Vol.14, No. 12, 1996〉,地震属性图及其在北海等地构造解释和断层封堵性分析中的应用,国外油气勘探,1998,4,402-414。
    49.朱海龙,地震资料可视化解释的研究应用现状,石油物探译丛,1999,5,100-111,11;
    50.谢习农、王其允、李思田,沉积盆地泥质岩石的水力破裂和幕式压实作用,科学通报,1997,42(20):2193—2195
    51.王震亮、陈荷立,有效运移通道的提出与确定初探,石油实验地质,1999,21(1):71—75。
    52.鲁兵、丁文龙,断层封闭性与异常压力间的关系探讨,西北大学学报,1996,26(增刊):556-559
    53.曹瑞成、陈章明,早期探区断层封闭性评价方法,石油学报,1992,13:33-37
    54.吕延防、陈章明,非线性映射分析判断断层封闭性,石油学报,1995,16(2):36-41
    55.吕延防、李国会、王跃文等,断层封闭性的定量研究方法,石油学报,1996,17:39-43
    56.李德生,中国东部新生代盆地与油气分布,地质学报,1983,57(3),224-233.
    57.马杏垣,中国东部中新生代裂陷作用和伸展构造,地质学报,
    
    
    58.赵重远,渤海湾盆地的构造格局及其演化,石油学报,1989,5(1),1-7。
    59.王燮培等,石油勘探构造分析,武汉:中国地质大学出版社,1990。
    60.陈建渝、王启军,有机地球化学,武汉:中国地质大学出版社,1980。
    61.王捷、关德范等,油气生成运移聚集模型研究,石油工业出版社,1999。
    62.田世澄、陈永进等,论成藏动力系统中流体动力学机制,地学前缘,2001,8(4)329-335。
    63.田世澄、毕研鹏,论成藏动力学系统,北京:地震出版社,2000。
    64.华保钦,构造应力场、地震泵和油气运移,沉积学报,1995,13(2),77-85。
    65.张树林、田世澄、陈建渝,断层构造与成藏动力系统,石油与天然气地质,1997,18(4),261-266。
    66.张树林,复式成藏动力学,现代地质,1997,11(4),522-528。
    67.龚再生、杨甲明,油气成藏动力学与油气成藏作用,石油学报,1999,20(1),30-33。
    68.康永尚、庞雄奇,油气成藏流体动力系统分析原理及应用,沉积学报,1998,16(3),80-84。
    69.康永尚、王捷,流体动力系统与油气成藏作用,石油学报,1999,20(1),30-33。
    70.孙义梅、杨春峰、陈程、田世澄等,相干数据体参数选取与效果分析[J],石油地球物理勘探,2001(5):640-645。
    71.孙义梅、田世澄,断层对油气运移作用研究的新进展[J],地学前缘,2001(4):252。
    72.孙义梅、陈程等,德南洼陷下第三系低熟油灶油气运移分配[J],地质科技情报(武汉)2001(4)。
    73.孙义梅、宋国奇等,德南洼陷下第三系油气运移的通道[J],地学前缘,2001(3):94。
    74.孙义梅、肖玉茹、田世澄等,平面可视化技术对德南断裂系的精细识别[J],现代地质2002。
    75.秦永霞、姜素华、王永诗,斜坡带油气成藏特征与勘探方法——以济阳坳陷为例,复式油气田,1999,3,10~14。
    76.宋国奇,临清坳陷东部构造样式及成藏条件分析,石油实验地质,1997,19(4),323-327,336。
    77.杨克绳,冀中拗陷断裂形成机理的探讨,石油地球物理勘探,1987,22(3),292~306。
    78.田崇鲁、李德同、刘铁铨,箕状凹陷演化模式及其研究方法探讨——以冀中坳陷早第三纪凹陷演化为例,地质论评,1991,37(2),107~116。
    79.张亚敏、吕延仓、徐林丽、王世坤、邹森林、宋静,东濮凹陷兰聊断裂带构造演化与油气勘探,石油与天然气地质,2000,21(1),57~60。
    80.刘前志,冀中坳陷地质和构造特征及油气分布,石油勘探与开发,1988,15(6),19~27。
    81.陈景达,渤海湾盆地的复式油气聚集带—以辽河西部、廊固和东濮三个凹陷为例,石油大学学报(自然科学版),1988,3,总44,41~51。
    82.吴兴宁、周建勋,渤海湾盆地构造成因观点剖析,地球物理学进展,2000,15(1),总53,98~107。
    83.史卜庆、吴智平、王继祥、戴启德,渤海湾盆地东营运动的深部动力机制试析,复式油气田,1999,1,4~7。
    84.张德林,渤海湾盆地第三纪箕状凹陷陡翼的石油地质特征,石油地球物理勘探,1991,26(4),499~513。
    
    
    85.黄雄伟,渤中坳陷新生代断裂构造特征与油气聚集,西北地质,19991,32(3),总130,16~20。
    86.王永刚、刘礼农,利用相干数据体检测断层与特殊岩性体,石油大学学报(自然科学版),2000,24(1),总117,69~72。
    87.赵新国、苏玉山、季增本、孙青,东濮凹陷西部斜坡带潜山成藏条件与成藏模式,复式油气田,1999,3,15~17。
    88.鲁兵、丁文龙,断层封闭性研究进展,地质科技情报,1998,Vol.17 No.3:77-79。
    89.徐旭辉,犁式正断层几何形态的确定及计算机实现,石油实验地质,1996,18(2),200~205,173。
    90.程军林,断层封堵类型及并置封堵模式概述,海相油气地质,1999,4(1),总13,52~56。
    91.程军林,断层封堵性预测,西北地质,1999,32(2),总129,41~47。
    92.孙忠、杨梦岩,利用地震资料分析断层封堵的方法,石油地球物理勘探,1999,34,增刊,45~49,84。
    93.曹宏、姚逢昌、宋新民等,小拐油田夏子街组冲积扇沉积微相,石油与天然气地质,1999,20(1),62~65,77。
    94.曹宏、宋新民、张爱卿,冲积扇砾岩油藏裂缝预测新技术,石油学报,2000,21(6),117~12。
    95.周英、王文强、朱立新,断层封堵分析技术在油气地质勘探中的应用,石油地球物理勘探,1998,33(5),649~657。
    96.刘崇禧,我国东部某油田水文地球化学特征,地球化学,第3期,1980年。
    97.杨忠辉,油气田的水文地球化学标志及其应用,石油与天然气地质,第4期,1982年。
    98.刘方槐、颜婉荪,油气田水文地质学原理,石油工业出版社,1991。
    99.陈发景、田世澄,压实与油气运移,中国地质大学出版社,1989。
    100.李明诚,石油与天然气运移,石油工业出版社,1993。
    101.刘泽容等,断块群油气藏形成机制和构造模式,石油工业出版社,1998。
    102.韩文功,利用地震资料预测地层压力,石油物探技术,1988(1)。
    103.蒋凤仙,用地震速度预测地层压力的方法特点与精度,江汉石油学院学报,1988(1)。
    104.蔺殿中,渤海盆地断块体扭转翘倾及其形成机制的探讨,石油勘探与开发,1984(3)。
    105. Morley C K et al. 1990. Transfer zones in the East African rift system and their relevance to hydrocarbon exploration in tifts, AAPG.BulI.,74,1234-1253.
    106.曹忠祥等,禹城、德南洼陷油气成藏史分析及勘探目标评价,1998(内部材料)。
    107.刘德来、王伟、马莉,伸展盆地转换带分析-以松辽盆地北部为例,1994,地质科技情报,Vol.13 No.2.
    108.赵红格、刘池阳等,调节带和转换带及其在伸展区德分段作用,2000,世界地质,Vol.19 No.2.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700